
Circuits for integer factorization

D. J. Bernstein

University of Illinois at Chicago



Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.



Exercise for the reader:

Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors

are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)

scales surprisingly well.

(1987 Lenstra)

ECM has found a prime � 2219.

(2005 Dodson; rather lucky;

� 3 � 1012 Opteron cycles)

www.loria.fr/~zimmerma/records/p66



For worst-case integers with

two very large prime factors,

ECM does not scale as well as

“number-field sieve” (NFS).

(1988 Pollard, et al.)

Latest record: NFS has found

two prime factors � 2332

of “RSA-200” challenge. (2005

Bahr/Boehm/Franke/Kleinjung;

� 5 � 1018 Opteron cycles)

How much more difficult

is it to find prime factors � 2512

of an integer n � 21024?

www.loria.fr/~zimmerma/records/rsa200



This talk focuses on scalability.

Example: Trial division finds

primes � y dividing n using

y1+o(1) easy operations.

(Here o(1) means a function of y
that converges to 0 as y !1;

could be 1=y or �1= log y or

106(log log log y)5= log log y.)

� method (1975 Pollard),

assuming standard conjectures:

y0:5+o(1); therefore

much faster than trial division

once y is sufficiently large.



ECM finds primes � y in n using

exp
p

(2 + o(1))log y log log y
easy operations. (1987 Lenstra)

Compare to trial division and �:
y1+o(1) = exp((1 + o(1)) log y);

y0:5+o(1) = exp((0:5+o(1)) log y).

Easily see from these formulas

that ECM is much faster

than trial division and �
once y is sufficiently large.

(What is “sufficiently large”?

Many papers analyzing details.)



Extreme case, y =
�pn�:

ECM finds all primes in n using

exp
p

(1 + o(1))logn log logn
easy operations as n!1.

NFS has better scalability:

NFS finds all primes in n using

L1:901:::+o(1) easy operations

as n!1, where L =

exp((logn)1=3(log logn)2=3).
(1=3, exponent 1:922 : : ::
1993 Buhler/Lenstra/Pomerance;

1:901 : : :: 1993 Coppersmith)



These NFS operations take

L1:901:::+o(1) seconds

on a standard serial computer

costing L0:950:::+o(1) e.

“TWINKLE”: another circuit

costing L0:950:::+o(1) e

that performs same operations in

L1:901:::+o(1) seconds.

(2000 Lenstra/Shamir)

A better-designed circuit costing

L0:950:::+o(1) e

can perform same operations in

L1:426:::+o(1) seconds.

(2001 Bernstein)



Better parameter choices:

Can find all primes in n using

L1:185:::+o(1) seconds

with an NFS circuit costing

L0:790:::+o(1) e.

(2001 Bernstein)

Can vary circuit size, but

L1:976:::+o(1) e � seconds is

best price-performance ratio

in this class of algorithms.

Also vary serial-computer size.

Best price-performance ratio:

L2:760:::+o(1) e � seconds.

(2002 Pomerance)



Conclusion: Circuit factors n
much more quickly than

standard serial computer

of the same size,

once n is large enough.

(What about n � 21024?

Much more difficult analysis.

Many estimates in new papers,

usually < 1 year for < 109 e.)

How is this possible?

How can a circuit be

so much faster than

a standard serial computer?



Computational complexity

Start with simpler problem.

How fast is sorting?

Input: array of n numbers.

Each number in
�
1; 2; : : : ; n2

	
,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?



The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing n1+o(1) “cells.”

Each cell stores no(1) bits.

Input and output are

stored in these cells.



The machine also has a

“head” moving through array.

Head contains no(1) cells.

Head can see the cell at

its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the largest number,

moves it to the end of the array,

picks up the second largest,

etc.



Moving to adjacent array position

takes no(1) seconds.

Moving a number to end of array

takes n1+o(1) seconds.

Same for comparisons etc.

Total sorting time:

n2+o(1) seconds.

Cost of machine:

n1+o(1) e

for n1+o(1) cells.

Negligible extra cost for head.



Possibility 2: The machine is a

“2-dimensional RAM

using merge sort.”

Machine has n1+o(1) cells

in a 2-dimensional array:

n0:5+o(1) rows, n0:5+o(1) columns.

Machine also has a head.

Merge sort: Head recursively

sorts first bn=2
 numbers;

sorts last dn=2e numbers;

merges the sorted lists.



Merging requires n1+o(1) jumps

to “random” array positions.

Average jump: n0:5+o(1) moves

to adjacent array positions.

Each move takes no(1) seconds.

Total sorting time:

n1:5+o(1) seconds.

Cost of machine: once again

n1+o(1) e.



Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine has n1+o(1) cells

in a 2-dimensional array.

Each cell in the array has

network links to the 2 adjacent

cells in the same column.

Each cell in the bottom row has

network links to the 2 adjacent

cells in the bottom row.



Machine also has a CPU

attached to bottom-left cell.

CPU can read/write any cell by

sending request through network.

While waiting for response,

can send subsequent requests.

CPU can read an entire row

of n0:5+o(1) cells

in n0:5+o(1) seconds.

Sends all requests,

then receives responses.



Radix-2 sort: CPU

shuffles array using bit 0,

even numbers before odd.

3 1 4 1 5 9 2 6 7!
4 2 6 3 1 1 5 9.

Then using bit 1:

4 1 1 5 9 2 6 3.

Then using bit 2:

1 1 9 2 3 4 5 6.

Then using bit 3:

1 1 2 3 4 5 6 9.

etc.



Each shuffle takes

n1+o(1) seconds.

no(1) shuffles.

Total sorting time:

n1+o(1) seconds.

Cost of machine: once again

n1+o(1) e.



Possibility 4: The machine is a

“2-dimensional mesh

using Schimmler sort.”

Machine has n1+o(1) cells

in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to bottom-left cell.

CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.



Sort row of n0:5+o(1) cells

in n0:5+o(1) seconds:

Sort each pair in parallel.

3 1 4 1 5 9 2 6 7!
1 3 1 4 5 9 2 6

Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7!
1 1 3 4 5 2 9 6

Repeat until number of steps

equals row length.

Sort each row, in parallel,

in n0:5+o(1) seconds.



Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

� Sort each column in parallel.

� Sort each row in parallel.

� Sort each column in parallel.

� Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.



For example, assume that

this 8� 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2



Recursively sort quadrants,

top !, bottom  :

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9



Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9



Sort each row in parallel,

alternately  , !:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8



Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9



Sort each row in parallel,

 or ! as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9



Sort one row

in n0:5+o(1) seconds.

All rows in parallel:

n0:5+o(1) seconds.

Total sorting time:

n0:5+o(1) seconds.

Cost of machine: once again

n1+o(1) e.

(n0:5+o(1) on mesh:

1977 Thompson/Kung;

this very simple algorithm:

1987 Schimmler)



“VLSI algorithms” literature

contains similar improvements

in price-performance ratio

(“AT”) for many computations.

Consider, e.g.,

multiplying two n-bit integers.

Time n1+o(1)

on standard serial computer

with n1+o(1) bits of memory.

(1971 Schönhage/Strassen,

using FFT; see also 2007 Fürer)



Knuth: “we leave the domain of

conventional computer

programming: : : ”
Time n1+o(1)

on a 1-dimensional mesh

of size n1+o(1).

(1965 Atrubin, elementary)

Time n0:5+o(1)

on a 2-dimensional mesh

of size n1+o(1).

(1981 Brent/Kung, using FFT)



Some philosophical notes

1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions.

Prove this by proving that

each machine can simulate

computations on the others.

(We believe that every

reasonable model of computation

can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)



1-tape Turing machines,

RAMs, 2-dimensional meshes

compute the same functions

in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?

Is it possible to build

a large quantum computer?

Poly-size quantum computer

can factor in polynomial time.

Can Turing machine do that?)



1-tape Turing machines,

RAMs, 2-dimensional meshes

do not compute

the same functions

within, e.g., time n1+o(1)

and cost n1+o(1).

Example: 1-tape Turing machine

cannot sort in n1+o(1) seconds.

Too local.

Example: 2-dimensional RAM

cannot sort in n0:5+o(1) seconds.

Too sequential.



Review of sorting times,

measured in seconds, for

machine costing n1+o(1) e:

n2:0+o(1): 1-tape Turing machine.

n1:5+o(1): 2-dimensional RAM.

n1:0+o(1): pipelined RAM.

n0:5+o(1): 2-dimensional mesh.

Why does anyone say that

sorting time is n1+o(1)?

Why choose third machine?

Silly! Once n is large enough,

fourth machine is better.



Myth:

Parallel computation cannot

improve price-performance ratio;

p parallel computers

may reduce time by factor p
but increase cost by factor p.
Reality: Can often convert

a large serial computer

into p small parallel cells

with only mild slowdown.

Cost does not

increase by factor p.



Myth:

Designing a new machine

cannot produce more than a

small constant-factor speedup

compared to, e.g., a Pentium.

What matters is special-purpose

streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker

was 1000 times faster than a

set of Pentiums at the same price.

What matters is parallelism.



Future computers will be

massively parallel meshes.

Look at o(1) details to see that

we’ve reached large enough n.

Computer designers will laugh at

today’s RAM-style machines,

just as we laugh at

a 1-tape Turing machine.

Older meshes such as MasPar

had a limited market,

but n is much larger now.

See new wave of FPGA-based

supercomputers from SRC etc.



New myth:

We can continue

designing algorithms

and writing programs

for conventional computers,

and then put them on

mesh computers to reduce cost.

Reality: Optimizing AT
on a 2-dimensional mesh

has huge differences from

optimizing “operations”

on a conventional computer.

Example: NFS circuits use

completely different subroutines.



Current algorithm-analysis culture

—focus on operation counts;

maybe mention machine size

and communication complexity,

but only as a secondary issue—

will eventually be considered

shortsighted, archaic, obsolete.

Yes, it’s fun, but it’s doomed!

Have to redesign algorithms

and rewrite programs

from the ground up,

analyzing communication cost

and price-performance ratio.



NFS circuits in a nutshell

Most important NFS step:

find all factors � y of

auxiliary numbers related to n.

Traditional method, “sieving”:

AT 2 L2:85:::+o(1).

Parallel: AT 2 L2:37:::+o(1).

Better scalability from

many parallel ECM circuits:

AT 2 L2:08:::+o(1).

Also parallel linear algebra:

AT 2 L1:976:::+o(1).


