
CPU traps and pitfalls

D. J. Bernstein

University of Illinois at Chicago



Situation: You’ve written

software for a cipher/hash/etc.

It computes correct output.

But it has speed problems:

it’s awfully slow.

It also has security problems:

it leaks secret data

through side channels.

This talk: some CPU behaviors

that cause slowdowns, leaks;

lessons for the implementor;

lessons for the designer.



Load throughput

Oversimplification: CPU has

many megabytes of “RAM,”

instantaneously accessible.

Reality: A few “registers”

are instantaneously accessible.

Must copy (“load”) data

from RAM into registers

before performing computations.

Imagine 256 bytes of registers.

Exact number depends on CPU.



n loads take

� n cycles on a Pentium III,

� n cycles on a Pentium 4,

� n cycles on an UltraSPARC,

� n=2 cycles on an Athlon,

� n cycles on a Pentium M,

� n cycles on a Core 2,

etc.

“Load throughput: 1 load/cycle

but 2 loads/cycle on Athlon.”

“Cycles” = microseconds/MHz;

e.g., on a 1600MHz Pentium M,

1600 cycles every microsecond.



Typical line of AES code:

y0 = T0[x0&255]

T0 is a 1024-byte array

with 4-byte elements

T0[0], T0[1], : : : , T0[255].

Array is stored in RAM:

it won’t fit into registers!

T0[...] is a load.

Each AES round involves

16 of these “S-box loads”

and 4 “expanded-key loads”:

� 20 cycles on typical CPU.

10 rounds: � 200 cycles.



When loads are a bottleneck,

try to eliminate loads

by keeping data in registers;

recomputing instead of loading;

merging adjacent loads; etc.

e.g. In AES, can replace

44 expanded-key loads

with 14 loads, 30 xors.

“Partially expanded keys.”

For subsequent AES blocks,

can eliminate these 14 loads

at expense of 14 regs,

if CPU has 14 spare regs.



Skipping operations

Oversimplification: CPU takes

time n for an n-iteration loop.

Reality: CPU stops early if asked.

1970s: TENEX operating system

compares user-supplied string

against secret password

one character at a time,

stopping at first difference.

Attackers watch comparison time,

deduce position of difference.

A few hundred tries

reveal secret password.



1996: Kocher points out

timing attacks on

cryptographic key bits.

Example: key-dependent branch

in modular reduction,

performing big-integer subtraction

for some inputs and not others,

leaking key via timings.

1999: Koeune Quisquater

publish fast timing attack

on a “careless implementation”

of AES that used

input-dependent branches.



Koeune-Quisquater attack target:

byte c = S(b);

if (c<128) return c+c;

return (c+c)^283;

Faster if 
 < 128.

Fix, eliminating leak:

replace branch by arithmetic.

byte c = S(b);

X = c>>7;

X |= (X<<1);

X |= (X<<3);

return (c<<1)^X;



2007: IPsec software uses

memcmp to check authenticators!

TENEX disaster redivivus.

How memcmp works:

for (i = 0;i < n;++i)

if (x[i] != y[i])

return 0;

return 1;

Fix, eliminating leak:

diff = 0;

for (i = 0;i < n;++i)

diff |= x[i] ^ y[i];

return !diff;



Arithmetic latency

Oversimplification:

Pentium III performs

2 arithmetic ops every cycle;

Pentium 4 performs

4 arithmetic ops every cycle;

UltraSPARC performs

2 arithmetic ops every cycle;

Athlon performs

3 arithmetic ops every cycle;

Pentium M performs

2 arithmetic ops every cycle;

Core 2 performs

3 arithmetic ops every cycle; etc.



Typical lines of MD5 code:

w+=(z^(x&(y^z)))+block[i]+c;

w <<<= s; w += x

8 arithmetic operations.

4 cycles on Pentium M?

2:66666 : : : cycles on Core 2?

Reality: 6 cycles!

Reason: Result of arithmetic

isn’t usable until next cycle.

“Arithmetic latency: 1 cycle.”

^ ! & ! ^ ! + ! <<< ! +.

MD5 takes > 5 cycles/byte.



Each Salsa20 round involves

16 adds of 32-bit words,

16 rotations, 16 xors.

One Salsa20 implementation

works with 4-word vectors

using “XMM” instructions.

Salsa20 state is 4 vectors.

Each Salsa20 round involves

4 vector adds,

8 vector copies,

8 vector shifts,

8 vector xors,

3 vector shuffles.



=

��

+

�� %%
K

K

K

K

K

K

K

=

��

<<

��

>>

%%
J

J

J

J

J

J

J

^

��

^

��

=

��

...



Core 2: 3 vector ops/cycle,

but > 20-cycle latency

for this sequence of ops.

Better software by Wei Dai:

Take advantage of counter mode;

handle 4 blocks in parallel.

No more latency concerns.

Throughput is bottleneck.

< 14 cycles/round,

despite extra load time.

4:9 cycles/byte for Salsa20/20.

3:1 cycles/byte for Salsa20/12.

2:3 cycles/byte for Salsa20/8.



Branch-prediction channels

Oversimplification:

If x() and y() have same speed

then

if (secretbit)

outbit = x();

else

outbit = y();

doesn’t leak secretbit.

Reality: CPU’s branch predictor

remembers secretbit—

and doesn’t hide it from

other programs on computer.



Complete fix:

outbit =

(x() & secretbit) +

(y() & (1-secretbit));

Takes twice as much time.

Look for ways to merge work

between x() and y().

2005: Bernstein “Curve25519”

elliptic-curve Diffie-Hellman

“avoids all input-dependent

branches, all input-dependent

array indices”; overhead is

“about 6% of the total” time.



Load latency

Typical memory hierarchy:

3-cycle latency to load from

32768-byte “L1 cache.”

10-cycle latency to load from

2097152-byte “L2 cache.”

250-cycle latency to load from

1073741824-byte “DRAM.”

The numbers here depend on

CPU, motherboard, etc.



Pentium III, Pentium 4,

Athlon, Pentium M, Core 2

(but not UltraSPARC) are

“out-of-order” CPUs:

they’ll look ahead in program

to find load instructions

(and various other instructions)

that can be performed now.

Latency is still a problem:

many loads aren’t ready yet;

lookahead distance is limited;

loads are performed greedily.



Warning: Most benchmarks

load all data into cache,

hiding the cache-miss latency.

In (e.g.) busy network server,

data is often out of cache,

and cache misses are critical.

Try to reduce latency

by compressing data in RAM;

reusing recently used data;

prefetching data; etc.

e.g. 8192-byte AES tables

can be compressed to 2048 bytes.



Load-address channels

Time for array lookup

depends on array index,

leaking information to attacker.

Variability mentioned by

1996 Kocher,

2000 Kelsey Schneier Wagner

Hall (“We believe attacks based

on cache hit ratio in large S-box

ciphers like Blowfish, CAST and

Khufu are possible”),

2003 Ferguson Schneier.



In AES, y0 = T0[x0&255]

time depends on x0&255,

a byte of plaintext � key.

Attacker can force selected

table entries out of L2 cache,

observe encryption time.

Each cache miss

creates timing signal,

easily visible despite noise

from other AES cache misses,

other software, etc.

Repeat for many plaintexts,

easily deduce key.



Partial fix:

Eliminate all cache misses.

Put AES software into

operating-system kernel.

Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The bad news: Stopping

cache misses isn’t enough.

There are timing leaks

in cache hits.



Load-after-store conflicts:

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

This timing variation happens

even if all loads

are from L1 cache!



Cache-bank throughput limits:

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Time for cache hit

again depends on array index.

No guarantee that

these are the only effects.



Complete fix: Never use

secret data as load address.

Every cipher can be simulated

with simple arithmetic:

e.g., add, xor, rotation.

To compute T[secret]:

load T[0], T[1], T[2], : : :

and do appropriate arithmetic.

Takes time to load all of T.

Look for ways to reduce time:

e.g., bitslicing.



Design thoughts

Modern CPUs offer

considerable parallelism:

can compute several independent

adds, xors, etc. each cycle.

We can design ciphers with

many parallel adds, xors, etc.,

allowing implementors to

exploit CPU capabilities.

Do other operations achieve

the same level of security

at higher speed?



An AES S-box lookup

mangles its input

more thoroughly than

an addition or xor.

But it is slower and

has a much smaller input.

Challenge: Can anyone build

an unbroken stream cipher

using AES S-box lookups

: : : as fast as Salsa20/12?

: : : as fast as Salsa20/8?

: : : as fast as Salsa20/8,

without side-channel leaks?



Advertisement

“SPEED: Software

Performance Enhancement

for Encryption and Decryption”

A workshop on software speeds

for secret-key cryptography

and public-key cryptography.

Amsterdam, June 11–12, 2007

http://

www.hyperelliptic.org/SPEED


