
On the design of

message-authentication codes

D. J. Bernstein

University of Illinois at Chicago



When we design

hash functions, stream ciphers,

and other secret-key primitives,

should we use

integer multiplication?

AES uses 32; 32 ! 32 xor;

32 ! 8 byte extraction;

and 8 ! 32 inversion box.

IDEA uses 16; 16 ! 16 xor;

16; 16 ! 16 addition; and

16; 16 ! 16 multiplication.



Rabbit uses 32 ! 32 rotation;

32; 32 ! 32 addition;

32; 32 ! 32 xor; and

32; 32 ! 32; 32 multiplication.

RC6 uses 32; 8 ! 32 rotation;

32; 32 ! 32 addition;

32; 32 ! 32 xor; and

32; 32 ! 32 multiplication.

Salsa20 uses 32 ! 32 rotation;

32; 32 ! 32 addition; and

32; 32 ! 32 xor.



“Multiplication is slow!”

> 10� as many bit operations

as addition.

Counterargument:

“Multiplication

is surprisingly fast!”

Has many applications,

so CPU designers include

big multiplication circuits.

Typical CPUs can start a

new multiplication every cycle.



“Multiplication

scrambles its output

as thoroughly as

several simple operations!”

“No, it doesn’t!

Look at these scary attacks.

Need many multiplications

to achieve confidence.”

What if we can prove

that multiplication provides

the security we need?



An authentication system

Let’s use multiplication

to authenticate messages.

Standardize a prime p = 1000003.

Sender rolls 10-sided die

to generate independent

uniform random secrets

r 2 f0; 1; : : : ; 999999g,
s1 2 f0; 1; : : : ; 999999g,
s2 2 f0; 1; : : : ; 999999g,
: : :,
s100 2 f0; 1; : : : ; 999999g.



Sender meets receiver in private

and tells receiver the same

secrets r; s1; s2; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ;m100,

each having 5 components

mn[1];mn[2];mn[3];mn[4];mn[5]

with mn[i] 2 f0; 1; : : : ; 999999g.
Sender transmits 30-digit

mn[1];mn[2];mn[3];mn[4];mn[5]

together with an authenticator

(mn[1]r + � � �+mn[5]r5 mod p)
+ sn mod 1000000

and the message number n.



e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:
Sender computes authenticator

(6r + 7r2 mod p)
+ s10 mod 1000000 =

(6 � 314159 + 7 � 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.



Speed analysis

Notation: mn(x) =
Pmn[i]xi.

To compute mn(r) mod p:
multiply mn[5] by r,
add mn[4], multiply by r,
add mn[3], multiply by r,
add mn[2], multiply by r,
add mn[1], multiply by r.
Reduce mod p after each mult.

Slightly more time to

compute authenticator an =

(mn(r) mod p) + sn mod 1000000.



Reducing mod 1000003 is easy:

e.g., 240881099091 =

240881 � 1000000 + 99091 �
240881(�3) + 99091 =

�722643 + 99091 =

�623552.

Easily adjust to range

f0; 1; : : : ; p� 1g
by adding/subtracting a few p’s.
(Beware timing attacks!)

Speedup: Delay the adjustment;

extra p’s won’t damage

subsequent field operations.



Main work is multiplication.

For each 6-digit message chunk,

have to do one multiplication

of the 6-digit secret r
into an accumulator mod p.
Scaled up for serious security:

“Poly1305” uses p = 2130 � 5.

For each 128-bit message chunk,

have to do one multiplication

of a 128-bit secret r
into an accumulator mod 2130� 5.

� 5 cycles per message byte,

depending on the CPU.



Security analysis

Attacker’s goal:

Find n0;m0; a0 such that

m0 6= mn0 but a0 =

(m0(r) mod p)+sn0 mod 1000000.

Here m0(x) =
P

im0[i]xi.
Obvious attack:

Choose any m0 6= m1.

Choose uniform random a0.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.



More subtle attack:

Choose m0 6= m1 so that

the polynomial m0(x)�m1(x)

has 5 distinct roots

x 2 f0; 1; : : : ; 999999g
modulo p. Choose a0 = a.
e.g. m1 = (100; 0; 0; 0; 0),

m0 = (125; 1; 0; 0; 1):

m0(x)�m1(x) = x5 + x2 + 25x
which has five roots mod p:
0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.



Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p
2 f1000000; 1000001; 1000002g
then a forgery (1;m0; a1) with

m0(x) = m1(x) + x5 + x2 + 25x
also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m0(x)�m1(x) + 1000000.

Can have as many as 15 roots

of (m0(x)�m1(x)) �
(m0(x)�m1(x) + 1000000) �
(m0(x)�m1(x)� 1000000).



Do better by varying a0?
No. Easy to prove: Every choice

of (n0;m0; a0) with m0 6= mn0
has chance � 15=1000000

of being accepted by receiver.

Underlying fact: � 15 roots

of (m0(x)�m1(x)� a0 + a1) �
(m0(x)�m1(x)� a0 + a1 + 106) �
(m0(x)�m1(x)� a0 + a1 � 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + � � �+mn[5]r4 mod p)
+ sn mod 1000000:

solve m0(x)�m1(x) = a0 � a1.



Scaled up for serious security:

Poly1305 uses 128-bit r’s,
with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming � L-byte messages:

Each forgery succeeds for

� 8 dL=16e choices of r.
Probability � 8 dL=16e =2106.

D forgeries are all rejected

with probability

� 1� 8D dL=16e =2106.

e.g. 264 forgeries, L = 1536:

Pr[all rejected] � 0:9999999998.



Authenticator is still secure

for variable-length messages,

if different messages are

different polynomials mod p.
Split string into 16-byte chunks,

maybe with smaller final chunk;

append 1 to each chunk;

view as little-endian integers

in
�
1; 2; 3; : : : ; 2129

	
.

Multiply first chunk by r,
add next chunk, multiply by r,
etc., last chunk, multiply by r,
mod 2130 � 5, add sn mod 2128.



Reducing the key length

Like the one-time pad,

this authentication system

has a security guarantee.

One-time pad needs

L shared secret bytes

to encrypt L message bytes.

Authentication system needs

16 shared secret bytes

to authenticate L message bytes.

Each new message needs

new shared secret bytes,

used only once.

How to handle many messages?



Authenticator is mn(r) mod p
encrypted with one-time pad sn.

Can replace one-time pad

with stream-cipher output.

Typical stream cipher:

AES in counter mode.

Sender, receiver share (r; k)
where k is 16-byte AES key;

compute sn = AESk(n).

Security proof breaks down

since sn’s are dependent,

but can still prove that

attack on authenticator

implies attack on AES.



unsigned int j;

mpz_class rbar = 0;

for (j = 0;j < 16;++j)

rbar += ((mpz_class) r[j]) << (8 * j);

mpz_class h = 0;

mpz_class p = (((mpz_class) 1) << 130) - 5;

while (mlen > 0) {

mpz_class c = 0;

for (j = 0;(j < 16) && (j < mlen);++j)

c += ((mpz_class) m[j]) << (8 * j);

c += ((mpz_class) 1) << (8 * j);

m += j; mlen -= j;

h = ((h + c) * rbar) % p;

}

unsigned char aeskn[16];

aes(aeskn,k,n);

for (j = 0;j < 16;++j)

h += ((mpz_class) aeskn[j]) << (8 * j);

for (j = 0;j < 16;++j) {

mpz_class c = h % 256;

h >>= 8;

out[j] = c.get_ui();

}



Another stream cipher:

Fk(n) = MD5(k; n).

Somewhat slower than AES.

“Hasn’t MD5 been broken?”

Distinct (k; n); (k0; n0) are known

with MD5(k; n) = MD5(k0; n0).
(2004 Wang)

Still not obvious how to predict

n 7! MD5(k; n) for secret k.
We know AES collisions too!

Many other stream ciphers

are unbroken, faster than AES.



Alternatives to +

Use � � � � AESk(n)

instead of � � �+ AESk(n)?

No! Destroys security analysis;

might allow successful forgeries

even if AES is secure.

Use AESk(� � �), omitting n?

No! Broken by known attacks

using < 264 authenticators.

But ok for small # messages.

Use Salsa20(k; n; � � �)?
Seems to be massive overkill.



Alternatives to Poly1305

Notation: Poly1305r(m) =

(m(r) mod 2130 � 5) mod 2128.

For all distinct messages m;m0:
Pr[Poly1305r(m) =

Poly1305r(m0)] is very small.

“Small collision probabilities.”

For all distinct messages m;m0
and all 16-byte sequences ∆:

Pr[Poly1305r(m) =

Poly1305r(m0) + ∆ mod 2128]

is very small.

“Small differential probabilities.”



Easy to build other functions

that satisfy these properties.

Embed messages and outputs into

polynomial ring Z[x1; x2; x3; : : :].
Use m 7!m mod r where

r is a random prime ideal.

Small differential probability

means that m�m0 �∆

is divisible by very few r’s
when m 6= m0.
(Addition of ∆ is

mod 2128; be careful.)



Example: (1981 Karp Rabin)

View messages m as integers,

specifically multiples of 2128.

Outputs:
�
0; 1; : : : ; 2128 � 1

	
.

Reduce m modulo a uniform

random prime number r
between 2120 and 2128.

(Problem: generating r is slow.)

Low differential probability:

if m 6= m0 then m�m0 �∆ 6= 0

so m�m0 �∆ is divisible

by very few prime numbers.



Variant that works with �:

View messages m as polynomials

m128x128 +m129x129 + � � �
with each mi in f0; 1g.
Outputs: o0 + o1x+ � � �+ o127x127

with each oi in f0; 1g.
Reduce m modulo 2; r where

r is a uniform random irreducible

degree-128 polynomial over Z=2.

(Problem: division by r is slow;

typical CPU has no big circuit

for polynomial multiplication.)



Example: (1974 Gilbert

MacWilliams Sloane)

Choose prime number p � 2128.

View messages m as linear

polys m1x1 +m2x2 +m3x3 with

m1;m2;m3 2 f0; : : : ; p� 1g.
Outputs: f0; : : : ; p� 1g.
Reduce m modulo

p; x1 � r1; x2 � r2; x3 � r3

to m1r1 +m2r2 +m3r3 mod p.
(Problem: long m needs long r.)



Example: (1993 den Boer;

independently 1994 Taylor;

independently 1994 Bierbrauer

Johansson Kabatianskii Smeets)

Choose prime number p � 2128.

View messages m as polynomials

m1x+m2x2 +m3x3 + � � � with

m1;m2; : : : 2 f0; 1; : : : ; p� 1g.
Outputs: f0; 1; : : : ; p� 1g.
Reduce m modulo p; x� r
where r is a uniform random

element of f0; 1; : : : ; p� 1g; i.e.,

compute m1r+m2r2 + � � � mod p.



“hash127”: 32-bit mi’s,
p = 2127 � 1. (1999 Bernstein)

“PolyR”: 64-bit mi’s,
p = 264 � 59; re-encode mi’s
between p and 264 � 1; run twice

to achieve reasonable security.

(2000 Krovetz Rogaway)

“Poly1305”: 128-bit mi’s,
p = 2130 � 5. (2002 Bernstein,

fully developed in 2004–2005)

“CWC”: 96-bit mi’s, p = 2127�1.

(2003 Kohno Viega Whiting)



There are other ways to

build functions with small

proven or conjectured

differential probabilities.

Example:

(“CBC”: “cipher block chaining”)

Conjecturally m1;m2;m3 7!
AESr(AESr(AESr(m1)�m2)�m3)

has small differential probabilities.

True if AES is secure.

(Much slower than Poly1305.)



Example: (1970 Zobrist, adapted)

Conjecturally m1;m2;m3 7!
AESr(1;m1)�
AESr(2;m2)�
AESr(3;m3)

has small differential probabilities.

(Even slower.)

Example: m 7! MD5(r;m)

is conjectured to have

small collision probabilities.

(Faster than AES,

but not as fast as Poly1305,

and “small” is debatable.)



How to build your own MAC

1. Choose a combination method:

h(m) + f(n) or h(m)� f(n)

or f(h(m))—worse security—

or f(n; h(m))—bigger f input.

2. Choose a random function h
where the appropriate probability

(+-differential or �-differential

or collision or collision) is small:

e.g., Poly1305r.
3. Choose a random function f
that seems indistinguishable

from uniform: e.g., AESk.



4. Optional complication:

Generate k; r from a shorter key;

e.g., k = AESs(0), r = AESs(1);

or k = MD5(s), r = MD5(s� 1);

many more possibilities.

5. Choose a Googleable name

for your MAC.

6. Put it all together.

7. Publish!



Example:

1. Combination: f(h(m)).

2. Low collision probability:

AESr(AESr(m1)�m2).

3. Unpredictable: AESk.
4. Optional complication: No.

5. Name: “EMAC.”

6. EMACk;r(m1;m2) =

AESk(AESr(AESr(m1)�m2)).

7. (2000 Petrank Rackoff)



Example: “NMAC-MD5” is

MD5(k;MD5(r;m)).

“HMAC-MD5” is NMAC-MD5

plus the optional complication.

(1996 Bellare Canetti Krawczyk,

claiming “the first rigorous

treatment of the subject”)

Stronger: MD5(k; n;MD5(r;m)).

Stronger and faster:

MD5(k; n;Poly1305r(m)).

Wow, I’ve just invented two

new MACs! Time to publish!



State-of-the-art MACs

Cycles per byte to

authenticate 1024-byte packet:

Poly UMAC
1305 -128
-AES

Athlon 3.75 7.38
Pentium M 4.50 8.48
Pentium 4 5.33 3.12
SPARC III 5.47 51.06

PPC G4 8.27 21.72
bytes/key 32 1600

UMAC really likes the P4.

Similar: VMAC likes Athlon 64.



Some important speed issues:

1. Implementor flexibility.

Poly1305 uses 128-bit integers,

split into whatever sizes are

convenient for the CPU.

UMAC uses P4-size integers

and suffers on other CPUs.

2. Key agility.

Poly1305 can fit thousands

of simultaneous keys into cache,

and remains fast even when

keys are out of cache.

UMAC needs big expanded keys.



3. Number of multiplications.

den Boer et al.; Poly1305:

(m1r +m2)r + � � �.
Each chunk: mult, add.

Gilbert-MacWilliams-Sloane:

m1r1 +m2r2 + � � �.
Each chunk: mult, add.

Winograd; UMAC; VMAC:

(m1 + r1)(m2 + r2) + � � �.
Each chunk: 0:5 mults, 1:5 adds.



Does small key r allow

0:5 mults per message chunk?

Yes!

Another old trick of Winograd:

(((m1 + r)(m2 + r2) +

(m3 + r))(m4 + r4) +

((m5 + r)(m6 + r2) +

(m7 + r)))(m8 + r8) + � � �
times a final nonzero mn
times r.
“MAC1071,” coming soon.


