
Proving tight security

for Rabin-Williams signatures

D. J. Bernstein



Public-key signatures

1976 Diffie Hellman:

Public-key signatures

would allow verification by

anyone, not just signer. Cool!

Can we build a signature system?

1977 Rivest Shamir Adleman:

verify s

e

�m 2 pqZ.

Public (pq; e) with big random e;

message m; signature s 2 Z=pq.

1977 (and 1978) RSA was slow:

many mults in eth powering.

Even worse, horribly insecure:

e.g. forge (m; s) = (1; 1).



1979 Rabin: s2
�H(m) 2 pqZ.

Standard H. Public pq.

Message m. Signature s.

Fast; conjecturally secure; but

can sign only � 1=4 of all m’s.

1979 Rabin: s2
�H(r;m) 2 pqZ.

Signature (r; s) instead of s.

Signer tries random r’s,

on average � 4 times.

1980 Williams: efs

2
� � � � 2 pqZ;

e 2 f�1; 1g; f 2 f1; 2g.

Each h 2 Z=pq is efs2

for exactly 4 vectors (e; f; s)

if p 2 3 + 8Z, q 2 7 + 8Z.



Subsequent RW variations:

� Eliminate Euclid, Jacobi.

� Expand s for faster verification.

� Compress s to 1=2 size.

� Compress pq to 1=3 size.

� Compress (“recover”) m via H.

Many other signature systems

(e.g. elliptic-curve Schnorr),

but RW family still holds

verification speed records.

RW is the best choice for

verification-heavy applications:

e.g., Internet DNS security.



Attacks against RW

Attacker sees public key pq

and many vectors (m; e; f; r; s)

legitimately signed under that key.

Attacker forges (m0

; e

0

; f

0

; r

0

; s

0)

with e

0

2 f�1; 1g, f 0

2 f1; 2g,

r

0 of standard length, s0

2 Z=pq.

Forgery is successful if

e

0

f

0(s0)2 �H(r0

;m

0) 2 pqZ and

m

0 wasn’t legitimately signed.

Fundamental security question:

What’s maximum Pr[A succeeds]

among all feasible attacks A?



Maybe answer depends on

how messages are generated.

We want Pr[A succeeds] small

for all message generators

and all feasible attacks A.

Different users have different

types of message generators,

communication between attacker

and message generator, etc.

Would be painful to analyze

each generator separately.

Similarly, would be painful

to limit set of messages.



Attack 1: Blind H inversion.

Attacker chooses e0

; f

0

; s

0,

chooses h 2 e

0

f

0(s0)2 + pqZ,

guesses uniform random r

0

;m

0

until finding H(r0

;m

0) = h,

forges (m0

; e

0

; f

0

; r

0

; s

0).

Obstacle to success of attack:

What’s chance of finding

H(r0

;m

0) = h after a

feasible number of guesses?

Conjecturally negligible

for every popular H.



Attack 2: Blind collision search.

Attacker guesses r0

;m

0

; r

00

;m

with m

0

6= m and

H(r0

;m

0) = H(r00

;m).

Message generator gives m

to signer: (m; e; f; r; s).

Attacker forges (m0

; e; f; r

0

; s).

Forgery succeeds if r = r

00:

H(r;m) = H(r00

;m) = H(r0

;m

0).

Good chance if r is short.

Same obstacle as before:

Feasible number of guesses

has conjecturally negligible

chance of finding collision in H.



Attack 3: MD5 collision search.

Was popular last decade

to build H(x) = G(MD5(x))

for standard function G.

Assume this shape of H.

Feasible calculation,

highly non-uniform guessing,

finds collisions in MD5.

(2004 Wang Feng Lai Yu)

Thus obtain collision in H.

Forge as in attack 2.

Good chance of success

if r is short. Feasible attack!



One reaction to this attack:

MD5 was a bad design.

Change choice of H.

Collisions conjecturally infeasible

for many popular H’s.

Another reaction (1979 Rabin,

1989 Schnorr, et al.):

Standardize 256-bit r.

Negligible chance of r = r

00.

Inversions conjecturally infeasible

for many popular H’s.

Is second reaction better?

Long r is clear disadvantage.

Maybe outweighed by faster H?



Attack 4: Factorization by NFS.

Attacker hires computational

number theorist to factor n

using the number-field sieve.

Attacker chooses m0, signs m0

same way as legitimate signer.

1978 RSA: “We recommend

using 100-digit (decimal)

prime numbers p and q,

so that n has 200 digits.”

2005 Bahr Boehm Franke

Kleinjung: “We have factored

RSA200 by GNFS.”



Attack 5: Leak detection.

Signer has many choices

of signature for m:

2B choices of B-bit r,

and then 4 choices of (e; f; s).

Imagine idiotic signer

making successive bits of p

visible to attacker by, e.g.,

copying them into bits of r or

into Jacobi symbol of s mod pq.

Evidently security depends on

choice of signing algorithm.



Many more attacks in literature.

Many (most?) of the attacks

are H-generic:

attack works for every function H

(or a large fraction of H’s)

if signer, attacker, verifier

use an oracle for H.

It’s quite embarrassing

for a system to be broken

by an H-generic attack

faster than factorization!

Example: Signing-leak attacks

are H-generic, embarrassing.



1987 Fiat Shamir:

Here’s a signature system

where embarrassment is limited.

Can convert H-generic attack

into factorization algorithm

with only polynomial loss of

efficiency and effectiveness.

1996 Bellare Rogaway:

Here’s a signature system

immune to embarrassment.

Can convert H-generic attack

into factorization algorithm

with almost negligible loss of

efficiency and effectiveness.



Many subsequent systems and

“reductions in the random-oracle

model.” Confusing terminology.

Common flaws in the theorems:

� Reductions aren’t very tight.

� Tightness isn’t quantified.

� Proofs have gaps, errors.

� The theorems don’t apply

to the fastest systems.

The point of this talk:

We can do better! Now have

very tight proofs for some

state-of-the-art RW variants.

(most recently 2006 Bernstein)



Three state-of-the-art systems

“Fixed 0-bit unstructured RW”

is immune to embarrassment.

“0-bit”: 0 bits in r

(despite 2002 Coron theorem

that “FDH can’t be tight”).

“Unstructured”: Signer’s choice

of (e; f; s) is uniform random,

independent of (p; q).

“Fixed”: Given same m again,

signer chooses same signature.

For comparison, easily break

“variable 0-bit unstructured RW.”



“Fixed” needs memory

for signatures of old m’s.

But, without memory, can

produce indistinguishable results,

assuming standard conjectures

in secret-key cryptography:

signer generates “random” bits

by hashing m together with

a secret independent of p; q.

(1997 Barwood, 1997 Wigley)

Can hash m using Poly1305

or forthcoming MAC1071;

just a few cycles per byte.

Scramble output with Salsa20.



“Fixed 1-bit principal RW”

is immune to embarrassment.

“1-bit”: uniform random bit r,

independent of (p; q).

“Principal”: Signer chooses

e = 1 when there’s a choice;

f = 1 when there’s a choice;

and the unique s 2 Z=pq

that’s a square in Z=pq.

(Same idea as 2003 Katz Wang

reduction for fixed 1-bit RSA etc.,

but need generalization beyond

“claw-free permutation pairs.”)



“Fixed 128-bit jprincipalj RW”

is immune to embarrassment.

“128-bit”: uniform random

128-bit r, independent of (p; q).

“jPrincipalj”: Signer chooses

e = 1 when there’s a choice;

f = 1 when there’s a choice;

and s 2 f0; 1; : : : ; (pq � 1)=2g

with s or �s square in Z=pq.

Implementation note: Can

continue to avoid Euclid, Jacobi.



Blind attacks

Consider algorithm A1 that,

given pq 2

�

22048
; : : : ; 22049

� 1
	

and h

0, computes (e0

; f

0

; s

0).

How large is Pr[e0

f

0(s0)2 = h

0]

for uniform random 2048-bit h0?

Build factorization algorithm A0:

choose uniform random (e; f; s);

compute h

0 = efs

2;

start over if h0

� 22048;

compute (e0

; f

0

; s

0) = A1(pq; h
0);

compute gcd
�

pq; s

0

� s

	

.

Comparable efficiency to A1.



Define A1 as successful

if e0

f

0(s0)2 = h

0.

If A1 is always successful

then e

0

f

0(s0)2 = efs

2;

s

0

; s are coprime to pq

with probability 1� �, tiny �;

s

0

; s are independent square roots;

so gcd
�

pq; s

0

� s

	

2 fp; qg

with probability � (1� �)=2.

More generally:

If Pr[A1 succeeds] = � for

uniform random 2048-bit h0 then

Pr[A0 factors pq] � �(1� �)=2.



Seeing a signature

Consider algorithm A2 that,

given h; e; f; s; h

0

; pq with

h = efs

2, computes (e0

; f

0

; s

0).

How large is Pr[e0

f

0(s0)2 = h

0]

for independent uniform

random 2048-bit h; h0?

Three versions of question:

1. Unstructured (e; f; s).

2. Principal (e; f; s).

3. jPrincipalj (e; f; s).

Analogy: Attack sees signature of

m, forges signature of m0

6= m.



Intuition: A2 learns nothing

from seeing h; e; f; s.

Formalization:

Simulated signer, given pq,

generates random (h; e; f; s) with

exactly the right distribution.

Thus can build A1 from A2.

A1, given pq; h

0,

generates h; e; f; s;

runs A2 with h; e; f; s; h

0

; pq.

Pr[A2 succeeds] = Pr[A1 succeeds].



How to generate h; e; f; s?

How does simulated signer work?

For unstructured:

Generate uniform random e; f; s;

compute h = efs

2;

start over if h � 22048.

For principal:

Generate uniform random e; f; x;

compute s = x

2;

tweak e; f if gcdfx; pqg > 1;

compute h = efs

2;

start over if h � 22048.

For jprincipalj: Similar.



Seeing many signatures

Consider A3 that, given pq; h

0

;

(h1; e1; f1; s1); : : : ; (hq; eq; fq; sq)

with each h

i

= e

i

f

i

s

2
i

,

computes (e0

; f

0

; s

0).

How large is Pr[e0

f

0(s0)2 = h

0]

for independent uniform

random h1; : : : ; hq; h
0?

Again three versions of question.

Analogy: Attack sees signatures

of distinct m1; : : : ;mq

, forges

signature of m0

=2

�

m1; : : : ;mq

	

.



Intuition: A3 learns nothing

from seeing h

i

; e

i

; f

i

; s

i

.

Formalize exactly as before.

Build A1 from A3

by generating h

i

; e

i

; f

i

; s

i

using same simulated signer.

Warning regarding distinctness:

Reasonable to vary problem,

forcing h

i

= h

j

for various (i; j);

analogous to attacker forcing

repetitions in m1; : : : ;mq

.

Same simulated signer

is fine for fixed signatures

but not for variable signatures.



Hashing first

The “FDH” case (B = 0, no r):

Consider algorithm A4 that

is given pq; h1; h2; : : : ; hq+1;

selects i, sees e
i

; f

i

; s

i

;

repeats for any number of i’s;

computes i0; e0

; f

0

; s

0.

Algorithm is successful

if h
i

0

= e

0

f

0(s0)2 and i

0 is new.

How large is Pr[A4 succeeds]?

Analogy: Attack chooses

messages to feed to legitimate

signer after inspecting hashes.



Conventional treatment of FDH

(1996 Bellare Rogaway, etc.):

Easily build A3 from A4

by guessing i

0 in advance.

Guess is correct

with probability 1=(q + 1).

Can increase probability

from 1=#fhash queriesg

to Θ(1=#fsigning queriesg).

(2000 Coron)

“We show : : : it is not possible to

further improve the security proof

of FDH.” (2002 Coron)



New treatment (2006 Bernstein):

Easily build A0 from A4

for unstructured signatures.

Tight! No guessing required.

Warning: construction fails

for principal, jprincipalj, etc.

For each i 2 f1; : : : ; q + 1g

choose independent uniform

random (e
i

; f

i

; s

i

).

No need to distinguish i

0

from the signing queries.

2002 Coron theorem

assumes “unique signature.”

Signatures here aren’t “unique.”



The non-“FDH” case, B � 1:

Consider algorithm A4 that

is given random access to pq,

h1(0); : : : ; h1(2
B

� 1),

h2(0); : : : ; h2(2
B

� 1); : : :,

h

q+1(0); : : : ; h
q+1(2

B

� 1);

selects i, sees r
i

; h

i

(r
i

); e
i

; f

i

; s

i

;

repeats for any number of i’s;

computes i0; e0

; f

0

; r

0

; s

0.

Algorithm is successful if

h

i

0

(r0) = e

0

f

0(s0)2 and i

0 is new.

Analogy: h
i

(r) = H(r;m
i

),

distinct m1; : : : ;mq+1.



Unstructured: as for B = 0.

What about principal etc.?

Resort to 2003 Katz Wang.

Katz-Wang theorem is limited to

“claw-free permutation pairs”

but idea also works for RW.

Build h

i

(r) for r 6= r

i

using unstructured simulator.

Build h

i

(r) for r = r

i

using principal simulator.

If i0 new then r

0

; r

i

0

independent

so Pr[r0

6= r

i

0

] = 1� 1=2B .

Probability loss is 2 for B = 1;

converges rapidly to 1 as B !1.



The final reduction

Consider attack A5 that

is given H oracle and pq;

selects m, sees signature;

repeats for any number of m’s;

computes (m0

; e

0

; f

0

; r

0

; s

0).

Easily convert into A4,

thanks to fixed signatures.

Pr[A5 succeeds] = Pr[A4 succeeds]

assuming uniform random H.

Credit for exposition:

I stole A4 shape from

2004 Koblitz Menezes (“RSA1”).



The “random-oracle” debate

“These proofs are required!

Security must be proven!

Cryptosystems without theorems

are bad cryptosystems!”

“No! These proofs are useless!

Some attacks aren’t generic!”

My view: Insisting on proofs

exposes many security problems,

weeds out many awful systems,

saves time for cryptographers.

Reconsider this insistence

if it sacrifices system speed;

but today there’s no conflict.


