High-speed Dithie-Hellman,
part 1

D. J. Bernstein
University of lllinois at Chicago

Can quickly compute
4™ mod 2292 — 5081
given n € {0,1,2,..., 2256 _ 1}.

Similarly, can quickly compute
4™" mod 2292 — 5081 given n
and 4™ mod 22°% — 5081.

“Discrete-logarithm problem™:
given 4™ mod 22%% — 5081, find n.
Is this easy to solve?

Ditfie-Hellman secret-sharing
system using p = 2292 — 5081

Alice’s Bob's
secret key m secret key n
Alice’s Bob's
public key public key

\4”"’ mod 'p>< 4™ mod p/

{Alice, Bob}'s {Bob, Alice}'s

shared secret = shared secret
4" mod p 4" mod p

Can attacker find 4™" mod p?

Bad news: DLP can be solved at
surprising speed! Attacker can find
m and n by “index calculus.”

To protect against this attack,
replace 2202 — 5081 with

a much larger prime.

Much slower arithmetic.

Alternative: Elliptic-curve

cryptography. Replace
{1,2,...,2%2 - 5082}

with a comparable-size

“safe elliptic-curve group.”
Somewhat slower arithmetic.

An elliptic curve over R

Consider all pairs
of real numbers z, y
such that y? — 5zy = 23 — 7.

The “points on the elliptic curve
y? — 5zy = 23 — 7 over R’

are those pairs and

one additional point, co.

i.e. The set of points is

{(z,y) € RXR:
y2—53:y::c3—7}u{oo}.

(R is the set of real numbers.)

Graph of this set of points:

Y
A

<~ (6,35.83...)

ZN

Don't forget oo.
Visualize co as top of y axis.

There is a standard definition
of 0, —, + on this set of points.

Magical fact: The set of points
Is a “commutative group’;

l.e., these operations 0, —, +
satisfy every identity

satisfied by Z.

e.g. All P,Q, R € Z satisfy
(P+Q)+R=P+(QR+R),

so all curve points P, @, R

satisfy (P+ Q)+ R =P+ (Q+ R).

(Z is the set of integers.)

Visualizing the group law

0 =00, —00 = 0.

Distinct curve points P,
on a vertical line

have — P = Q;

P+ Q =0= oo.

A curve point R

with a vertical tangent line
has —R = R;

R+ R=0=o00.

Here —P=Q, —-Q =P, —R=R:

Distinct curve points P, @, R
on a line

have P+ (@) = — R:
P+Q+R=0= .

Distinct curve points P, R
on a line tangent at P
have P+ P = —R;
P+P+R=0=o00.

A non-vertical line

with only one curve point P
has P+ P = —P;

P+ P+ P =0.

Here P+ Q@ = — R:

Here P+ P = —R:

Curve addition formulas

Easily find formulas for +
by finding formulas for lines
and for curve-line intersections.

z £z (z,9)+ (2 y) = (2" y")
where A = (v — vy)/(2' — z),
:z:“:Az—S)\—a:—a:’

y' =5z" — (y + A(z" — z)).

2y # 5z (z,y) + (z.9) = (", ¥")
where X = (5y + 3z2)/(2y — 5z),
:1:” —)2 —5)\ — 2z,

y' =5z" — (y + A(z" —2)).

(z,y) + (z, 5z — y) = .

An elliptic curve over Z/13

Consider the prime field
Z/13=4{0,1,2,...,12}
with —, 4+, - defined mod 13.

The “set of points on the elliptic
curve y2 — by = 3 — 7
over Z/13" is
{(z,y) € Z/13 x Z/13 :
y> —5zy =23 — 7} U {0}

Graph of this set of points:

As before, don't forget oo.

The set of curve points
IS a commutative group with
standard definition of 0, —, +.

Can visualize 0, —, + as before.
Replace lines over R

by lines over Z/13.

Warning: tangent is defined by
derivatives; hard to visualize.

Can define 0, —, +

using same formulas as before.

Example of line over Z/13:

Formula for this line: y =7z + 9.

An elliptic curve over Fi¢

Consider the non-prime field

(Z/2)[t]/(t* —t —1) ={
0t3 + 0t + 0t + 049,
0t3 + 0t? + 0t! + 1¢0,
0t3 + 0t + 11 + 049,
0t3 + 0t + 1t + 149,
0t3 + 1¢2 + 0t + 049,

1£3 + 1¢2 + 1t + 1£9}
of size 2% = 16.

Graph of the “set of points on the
elliptic curve y2 — 5zy = 23 — 7
over (Z/2)[1f5]/(t4 —t—1)":

Line y =tz + 1:

....... @
.............. @
...... @
............... @
..... @
............ @
@
............. @
@
.......... @
@
........... @
@ @
@

More elliptic curves

Can use any field k.

Can use any nonsingular curve
y? + a1zy + a3y =
3 -+ a,2:c2 + Q4T + Qg.

“Nonsingular’: no (z,y) € k X k
simultaneously satisfies

y2 + a1zy + a3y = z3 + a2a32 +-
a4 + ag and 2y + a1z + a3 = 0
and a1y = 322 + 2aoT + aq.

Easy to check nonsingularity.
Almost all curves are nonsingular

when £ is large.

3 .
e.g. y2 =23 — 30z

{(z,y) € k X k:

y° + a1zy + a3y =

23 + arz® + a4z + agt U {oo}
IS a commutative group with
standard definition of 0, —, +.
Points on line add to 0
with appropriate multiplicity.

Group is usually called “E(k)"

where E I1s “the elliptic curve
y2 + a1y + a3y =
3 + arz? + a4z + ag.”

Fairly easy to write down
explicit formulas for 0, —, +
as before.

Using explicit formulas can quickly

compute nth multiples in E(k)
given n € {0,1,2,..., 2256 _ 1}
and given E, k with #k =~ 222

(How quickly?
We'll study this later.)

“Elliptic-curve discrete-logarithm
problem” (ECDLP):
given points P and nP, find n.

Can find curves where ECDLP

seems extremely difficult:
~ 2128 gperations.

See “Handbook of elliptic and

hyperelliptic curve cryptography
for much more information.

Two examples of elliptic curves

useful for cryptography:

“NIST P-256": E(Z/p) where p is
the prime 22202224 91924 996 _ 1
and E is the elliptic curve y° =

23 — 3z + (a particular constant).

“Curve25519": E(Z/p) where
p is the prime 2222 — 19
and E is the elliptic curve

y2 — 23 + 486662z° + x.

Fast arithmetic

1. Someone specifies k.
How quickly can we
perform arithmetic in &7

2. Someone specifies k£ and E.
How quickly can we
compute nth multiples in E(k)?

3. How quickly can we
compute nth multiples in E(k)
if we choose k and E?

Some examples of finite fields:

Z/(2%>° — 19).

(Z/(2°F = 1)t/ - 3).
(2/223))[t]/(t°" - 2).
(Z/2)[t]/(#°83 —t12 —t7 —t> —1).

How quickly can we
add, subtract, multiply
in these fields?

Answer will depend on platform:

AMD Athlon, Sun UltraSPARC |V,
Intel 8051, Xilinx Spartan-3, etc.
Warning: different platforms

often favor different fields!

Fast integer arithmetic

How to multiply big integers?

Child’'s answer: Use polynomial
with coefficients in {0,1,...,9}
to represent integer in radix 10.

With this representation,
multiply integers In two steps:

1. Multiply polynomials.
2. “Carry” extra digits.

Polynomial multiplication
involves small integers.

Have split one big multiplication
into many small operations.

Example of representation:

839 =8-10% +3-10' +9-10° =
value (at ¢ = 10) of polynomial
8t% + 3t! + 9t°.

Squaring: (8152 1 3¢l o 9t0)2 —
64t* + 48¢3 + 1532 + 54¢1 + 810,
Carrying:
64t* + 48t3 + 153t% 4 54t! + 81¢Y;
644 + 4883 + 1532 + 62t + 1¢0.
64t* + 483 + 159t + 2! + 1¢°;
64t* 4 63t3 + 9t + 2t + 1¢Y;
70t* 4 3t3 4 o2 4 21 4 140,

7t 4 0t* + 3t3 + 9t% + 2t1 + 140,

In other words, 8392 = 703921.

What operations were used here?

3

T>E§< jmultiply

(2 9 (2
d

N

153 o
6
Y /add
159

divide by 10
/ J/mod 10

15 9

Scaled variation:

839 =800+ 30+ 9 =

value (at ¢ = 1) of polynomial
800t + 30t! + 9t°.

Squaring: (800¢% + 30t! + 9t°)? =
640000£% + 48000¢3 + 15300t2 +
540t1 + 81¢Y.

Carrying:

640000t* + 480003 + 15300¢2 +
540t + 81¢Y:

640000£% + 48000¢3 + 15300¢2 +
620t +- 1t0; L

700000¢> + 0t* + 3000¢3 + 900¢% +
20t + 1¢V.

What operations were used here?

800 30 9

| T ey

7200 900 7200

\ l add

15300

e

600

b

15900

UOEAS | mod 1000

15000 900

Speedup: double inside squaring

Squaring - - - + f2t2 + fltl + foto
produces coefficients such as

fafo+ 31+ fofo+ f1fz + fofa

Compute more efficiently as

2fafo+ 2131+ faf2.
Or, slightly faster,

2(fafo + f3f1) + fafo.
Or, slightly faster,

(2fa)fo + (2f3)f1 + f2fo

after precomputing 2f1,2f,

Have eliminated ~ 1/2 of the work

if there are many coetficients.

Speedup: allow negative coeffs

Recall 159 — 15, 9.
Scaled: 15900 — 15000, 900.

Alternative: 159 — 16, —1.
Scaled: 15900 — 16000, —100.

instead of {0, 1, ..., 9}.
Several small advantages:

easily handle negative integers;

easily handle subtraction:;

reduce products a bit.

Speedup: delay carries

Computing (e.g.) big ab + c*:
multiply a, b polynomials, carry,
square ¢ poly, carry, add, carry.

e.g. a =314, b =271, c = 839:
(3t2 4 1¢! +4t9) (222 + 7t +120) =

6% 1+ 2383 + 18¢2 + 201 1 440-

carry: 8t* + 5t3 + 0t% + 9t! + 4¢°.

As before (8t% + 3t! + 9t¥)? =
64t* + 48t3 + 153t2 + 544!
70 + 0t 4+ 33 + 92 + 2l

. 7t5

gt*

8¢

Ot?

11¢1

1 81¢0-
1+ 149,

5¢Y ;

7t5 1+ 8t% 1 0t3 1 0t2 + 1¢1 + 540,

Faster: multiply a, b polynomials,
square ¢ polynomial, add, carry.

(6t* + 23t3 + 18¢% + 20t + 4¢0) +
(64t*+48t34153t°454t1+81t0) =
70t* + 7183 + 171¢2 + 83¢! + 85¢0;
7> 4 8t* + 9t3 + 0t% + 1t! + 5¢0.

Eliminate intermediate carries.
Outweighs cost of handling
slightly larger coefficients.

Important to carry between

multiplications (and squarings)
to reduce coefficient size; but

carries are usually a bad idea for
additions, subtractions, etc.

Speedup: polynomial Karatsuba

Computing product of polys f, g
with (e.g.) deg f < 20, deg g < 20:
400 coefficient mults,
361 coefhicient adds.

Faster: Write f as Fy + Fti0
with deg Fo < 10, deg F; < 10.

Similarly write g as Gg + G1t1Y.

Then fg = (Fo+ F1)(Go + Gl)tlo
-+ (F()Go — FlGltlo)(l — th)_

20 adds for Fg + F1, Gg + G1.
300 mults for three products
FoGo, F1G1, (Fo + F1)(Go + G1).
243 adds for those products.

9 adds for FoGo — F1G1t'°

with subs counted as adds

and with delayed negations.
19 adds for - -- (1 — ¢19).
19 adds to finish.

Total 300 mults, 310 adds.
Larger coefficients, slight expense;
still saves time.

Can apply idea recursively

as poly degree grows.

Many other algebraic speedups

N

polynomial multiplication:

Toom, FFT, etc.

Increasingly important as

polynomial degree grows.
O(nlgnlglgn) coeff operations

to compute n-coeff product.

L

seful for sizes of n

that occur in cryptography?

Maybe; active research area.

Using CPU'’s integer instructions

Replace radix 10 with, e.g., 224

Power of 2 simplifies carries.
Adapt radix to platform.

e.g. Every 2 cycles, Athlon 64
can compute a 128-bit product
of two 64-bit integers.

(5-cycle latency; parallelize!)
Also low cost for 128-bit add.

Reasonable to use radix 2°0.
Sum of many products of digits
fits comfortably below 2128

Be careful: analyze largest sum.

e.g. In 4 cycles, Intel 8051
can compute a 16-bit product
of two 8-bit integers.

Could use radix 2°.

Could use radix 28
with 24-bit sums.

e.g. Every 2 cycles, Pentium 4 F3
can compute a 64-bit product

of two 32-bit integers.

(11-cycle latency; yikes!)

Reasonable to use radix 24°.

Warning: Multiply instructions
are very slow on some CPUs.
e.g. Pentium 4 F2: 10 cycles!

Using floating-point instructions

Big CPUs have separate
floating-point instructions,
almed at numerical simulation
but useful for cryptography.

In my experience,
floating-point instructions
support faster multiplication

(often much, much faster)
than integer instructions,
except on the Athlon 64.
Other advantages: portability;
easily scaled coetfficients.

e.g. Every 2 cycles, Pentium |l
can compute a 64-bit product
of two floating-point numbers,
and an independent 64-bit sum.

e.g. Every cycle, Athlon
can compute a 64-bit product
and an independent 64-bit sum.

e.g. Every cycle, UltraSPARC Il
can compute a 53-bit product

and an independent 53-bit sum.

Reasonable to use radix 244

e.g. Pentium 4 can do the same
using SSE2 instructions.

How to do carries In
floating-point registers?
(No CPU carry instruction:
not useful for simulations.)

Exploit floating-point rounding:
add big constant,
subtract same constant.

e.g. Given a with |a] < 27;
compute 53-bit floating-point sum
275

224.

of & and constant 3 -
obtaining a multiple of
subtract 3 -2 from result,

obtaining multiple of 224

nearest a; subtract from a.

Reducing modulo a prime

Fix a prime p.

The prime field Z/p

is the set {0,1,2,...,p— 1}
with — defined as — mod p,
+ defined as + mod p,

- defined as - mod p.

e.g. p = 1000003:

1000000 + 50 = 47 in Z/p;
—1 = 1000002 in Z/p;
117505-23131 =1 in Z/p.

How to multiply in Z/p?

Can use definition:
fgmodp=fg—p|fg/p].

Can multiply fg by a
precomputed 1/p approximation;
easily adjust to obtain | fg/p|.

Slight speedup: “2-adic inverse”;

Montgomery reduction.”

We can do better: normally

p is chosen with a special form
(or dividing a special form; see
“redundant representations”)
to make fg mod » much faster.

e.g. In Z/1000003:
314159265358 =

314159 - 1000000 + 265358 =
314159(—3) + 265358 =
—942477 + 2653538 =
—6/77119.

Easily adjust to range

{0,1, ..., p— 1}

by adding/subtracting a few p's.
(Beware timing attacks!)

Speedup: Delay the adjustment;
extra p's won't damage
subsequent field operations.

Can delay carries until after

multiplication by 3.

e.g. To square 314159
in Z/1000003: Square po
32 + 1t* + 4¢3 + 1t2 + 5

ly
tl 1+ 90

obtaining 9t1° + 67 + 25¢3 +
1487 1+ 48¢0 L 72¢° 1+ 5044 1+
82t3 1 43t% + 90t + 81#Y.

Reduce: replace (c;)tot?

DY

(—3¢;)t*, obtaining 72¢t° -

- 32t +

64t3 — 32t% + 48t1 — 63¢Y.

Carry: 8t0 — 4¢° — 2% +
183 + 2t2 + 2¢1 — 3¢9,

To minimize poly degree,
mix reduction and carrying,
carrying the top sooner.

e.g. Start from square 0t10 4+ 689 +
25¢8 + 14¢7 + 48¢5 + 72¢° 4+ 594 +
82t3 + 43t2 + 90t! + 81¢0.

Reduce t19 — ¢* and carry t* —
£2 5 6. 689 12548 1 14¢7 £ 5610 —
52+ 2¢% 18243 1+ 43¢2 1+ 90t 48140,

Finish reduction: —5t2 4+ 2¢* +
64t3 — 32t% + 48t1 — 87¢Y. Carry
t0 ¢l 2 53 5t g
—4g2 — 2t 4 183 4 22 — 1t + 30,

Speedup: non-integer radix

Consider Z /(21 —1).

Five coeffs in radix 2137

fat* + f3t3 + fot® + frtt + fot°.

Most coeffs could be 212,

Square - +2(faf1 + f3f2)t> + - -
Coeff of 2 could be > 2%°.

Reduce: 2°° =2%in Z/(2%! —1);
A+ (22(faf1 + f3f2) + FHE.

Coeff could be > 229,
Very little room for

additions, delayed carries, etc.

on 32-bit platforms.

Scaled: Evaluate at t = 1.

fa is mu
f3 1s mu

fo 1s mu
f1 1s mu
fo 1s mu

ti

ti
ti
ti

ti

D

OO O O 0O

e of 252;

e of 239;

e of 226;

e of 213;

e of 20. Reduce:

o+ @70(fafr + faf2) + fE)E

Better: Non-integer radix 2122,

fa is mu
f3 1s mu

fo I1s mu
f1 1s mu

fo 1s mu
Saves a -

ti
ti

D

D

tip

tip

tip

e of 2%9;
e of 237;
e of 22°;
e of 213;

e of 20.

‘ew bits in coeffs.

More finite fields

Fix a prime p. Fix a
poly ¢ In one variable ¢
with ¢ Irreducible mod p.

The finite field (Z/p)[t]/¢

is the set of polynomials

fdegcp 1tdeggo 1"‘ ‘|‘flt1‘|‘f0t0
with each f;, € Z/p

and with —, +, - defined

modulo p and modulo ¢.

(Z/p)|t] /¢ is an “extension”
of the prime field Z/p;

it has “characteristic” p.

e.g. 223 Is prime, and poly
t® — 3 is irreducible mod 223,
so (Z/223)[t]/(t® — 3) is a field.

2230 elements of field.

namely polynomials fst° + fat* +
fat> + fot? + fit! + fot"
with each f; € {0,1,..., 2221

After adding, subtracting,

multiplying: replace t° by 3,

replace t/ by 3t, etc.; and

reduce coefficients modulo 223.
e.g. (9t* +1)2 =813 4 18t* +1 =
243t° +18t* + 1 = 18t* +20t% + 1.

Have two levels of polynomials

when p is large: element

of (Z/p)[t]/¢ is poly mod ¢;
each poly coefficient Is integer

represented as poly in some radix.

e.g. fat*+ f3t3 + fot® + fit! + fot°

in (Z/(2° = 1))[t]/ (> - 3)

could have each coefficient f;

represented as poly of degree < 3
in radix 261/3,

When p i1s small, especially » = 2,

many speedups beyond this talk:
batching coefficients,
using fast Frobenius, et al.

