
Faster factorization into coprimes

D. J. Bernstein

Finding multiplicative relations

Define q = 1000003;

u1 = x2 + 690277x + 961618;

u2 = x2 + 532806x + 661735;

u3 = x2 + 874868x + 419951;

u4 = x3 + 548974x2 + 43298x +

899386; u5 = x7 + 587463x6 +

66890x5 + 25045x4 + 886824x3 +

439217x2 + 28014x + 191136.

Does u1952681
1 u1513335

2 u634643
3

equal u1708632
4 u439346

5 in Fq[x]?

Which (a; b;
; d; e) 2 Z5 have

ua1ub2u
3ud4ue5 = 1 in Fq(x)?

Factor into primes of Fq[x]:

u1 = p1p2 where p1 = x� 325894

and p2 = x� 983835;

u2 = p1p3 where p3 = x�141303;

u3 = p2p3; u4 = p1p2p3;

u5 = p4
1p2

2p3.

Now ua1ub2u
3ud4ue5 =

pa+b+d+4e
1 pa+
+d+2e

2 pb+
+d+e
3 ;

and p1; p2; p3 are distinct primes.

ua1ub2u
3ud4ue5 = 1 ,
pa+b+d+4e
1 � � � = 1 ,

(a + b + d + 4e; : : :) = 0 ,
(a; b;
; d; e) 2
(1; 1; 1;�2; 0)Z+(3; 2; 0;�1;�1)Z.

Primality was overkill here.

All we needed was coprimality:

gcdfp1; p2g = 1;

gcdfp1; p3g = 1;

gcdfp2; p3g = 1.

Many applications of

factorization into primes

can instead use any

factorization into coprimes.

In particular, this application:

Coprimes p1; p2; p3 have

pa1
1 pa2

2 pa3
3 = 1 iff (a1; a2; a3) = 0.

Finding multiplicative relations

is the critical bottleneck in

modern “index-calculus” methods

to compute “discrete logarithms”

by “combining congruences”:

e.g., the “function-field sieve.”

In simplest methods, can “sieve”

to efficiently find prime factors.

Advanced methods can’t sieve.

Standard backup: qth powering

to factor into primes.

(For integers: ECM etc.)

As before, this is overkill;

adequate to factor into coprimes.

How fast is factorization?

Obvious algorithm to factor

monic u1; u2; : : : 2 k[x]

into coprimes:

divide out gcd’s until coprime.

Algorithm is algebraic over k;

O(n3) ops for n input coeffs.

1990 Bach Driscoll Shallit:

avoid pointless gcd’s; O(n2).

1995 Bernstein: n1+o(1);

more precisely, n(lgn)O(1).

2004 Bernstein: n(lgn)4+o(1);

O(n(lgn)4(lg lgn)2).

The natural coprime base cbS
for a set S
is the unique set P such that

� P can be obtained from

S [f1g via product,

exact quotient, gcd;

� S can be obtained from

P [̇ f1g via product; and

� P is coprime: gcdfa; bg = 1

for all distinct a; b 2 P .

All of the above algorithms

compute cbfu1; u2; : : :g.
(Can replace k[x] by Z.)

Factor into primes? Abandon cb?

1995 Kaltofen Shoup for k = Fq:
factor into primes using

O(n1:815 lg q) operations in k.

For large n, faster than

1990 Bach Driscoll Shallit,

but slower than 1995 Bernstein.

Slight improvements later,

but every known method to

factor into primes is slower than

factoring into coprimes.

Look for applications that

(1) factor into primes but

(2) can use arbitrary coprimes.

Some algorithms for

factorization into primes

use, as a subroutine,

factorization into coprimes.

e.g. Given squarefree g 2 F2[x]:

Find basis h1; h2; : : :
for

�h 2 F2[x] : (gh)0 = h2
	

as a vector space over F2.

Then cbfg; h1; h2; : : :g contains

all prime divisors of g.
(1993 Niederreiter, 1994 Göttfert)

More examples, applications

of factoring into coprimes: see

1890 Stieltjes; 1974 Collins;

1985 Kaltofen; 1985 Della

Dora DiCrescenzo Duval; 1986

Bach Miller Shallit; 1986 von

zur Gathen; 1986 Lüneburg;

1989 Pohst Zassenhaus; 1990

Teitelbaum; 1990 Smedley; 1993

Bach Driscoll Shallit; 1994 Ge;

1994 Buchmann Lenstra; 1996

Bernstein; 1997 Silverman; 1998

Cohen Diaz y Diaz Olivier; 1998

Storjohann; : : :
cr.yp.to/coprimes.html

How to compute cb

n(lgn)1+o(1): a; b 7! ab
if a; b together have n coeffs.

n(lgn)1+o(1): a; b 7! ba=b
.
n(lgn)1+o(1): a; b 7! a mod b.
n(lgn)2+o(1): a; b 7! gcdfa; bg.
n(lgn)1+o(1) + m(lgm)2+o(1):

a; b 7! gcdfa; bg
if b has m coeffs.

n(lgn)2+o(1): a;b 7! gcdfa; b1g.
See cr.yp.to/papers.html

#multapps for a fast-mult survey.

n(lgn)2+o(1): a; b 7! cbfa; bg
by the following algorithm.

Permute (a; b) so deg a � deg b.
Compute successively

a0 = a; g0 = gcdfa0; bg;
a1 = a0=g0; g1 = gcd

�a1; g2
0

	
;

a2 = a1=g1; g2 = gcd
�a2; g2

1

	
;

etc. Stop when gk = 1.

Compute

x0 = g0=gcd
�g0; g11

	
;

x1 = g1=gcd
�g1; g12

	
;

etc.

Compute b mod g1; b mod g2; : : :
using a remainder tree.

Compute

gcdfb; g1g = gcdfb mod g1; g1g;
gcdfb; g2g = gcdfb mod g2; g2g;
etc.

Compute y0 = gcd
�b; x10

	
;

y1 = gcd
�g0; x11

	
;

y2 = gcd
�
gcdfb; g1g; x12

	
;

y3 = gcd
�
gcdfb; g2g; x13

	
;

y4 = gcd
�
gcdfb; g3g; x14

	
;

etc.

Then cbfa; bg is disjoint union of

cbfx0; y0=x0g;
cbfx1; y1g; cbfx2; y2g; : : : ;
fakg�f1g, fb=gcdfb; a1gg�f1g.

What about cbS for #S � 3?

n(lgn)2+o(1) if lg #P 2 (lgn)o(1):

multiset S, coprime set P
7! gcdfs; p1g
for each s 2 S, each p 2 P .

n(lgn)2+o(1):

a, coprime set Q 7! cb(fag [Q).

More complicated than the case

Q = fbg but same basic ideas.

n(lgn)3+o(1):

coprime set P , coprime set Q
7! cb(P [Q).

Idea of cb(P [Q) algorithm:

Replace Q with cb(fag [Q)

for each a 2 P successively.

But that’s too slow if #P is large,

so first replace P with P 0 having

#P 0 2 O(lgn) and cbP 0 = cbP .

e.g. p0p1p4p5p8p9 � � � 2 P 0.
n(lgn)4+o(1): S 7! cbS.

n(lgn)3+o(1): Factor S over cbS.

cr.yp.to/papers.html#dcba

cr.yp.to/papers.html#dcba2

cr.yp.to/talks.html

#2004.07.07

