
Elliptic vs. hyperelliptic, part 1

D. J. Bernstein

Goal: Protect all Internet packets

against forgery, eavesdropping.

We aren’t anywhere near the goal.

Most Internet packets have

little or no protection.

Why not deploy cryptography?

Why http://www.google.com,

not https://www.google.com?

Common answer: Cryptography

takes too much CPU time.

Obvious response, maybe enough:

Faster cryptography!

Streamlining protocols

Often quite easy to save time

in cryptographic protocols

by recognizing and eliminating

wasteful cryptographic structures.

Example #1 of waste:

Sender feeds a message through

“public-key encryption” and

then “public-key signing.”

Improvement: “Signcryption.”

No need to partition into

encryption and signing;

combined algorithms are faster.

Example #2: Sender signcrypts

two messages for same receiver.

Improvement: Signcrypt one key

and use secret-key cryptography

to protect both messages.

Example #3: Sender signcrypts

randomly generated secret key.

Improvement: Diffie-Hellman,

generating unique shared secret

for each pair of public keys.

Obtain randomness of secret

from randomness of public keys.

No need for extra randomness.

Streamlined structure to protect

private communication:

Alice has secret key a,

long-term public key G(a).

Alice, Bob have long-term

shared secret G(ab).

Alice, Bob use shared secret

to encrypt and authenticate

any number of packets.

(Public communication has a

different streamlined structure.

This talk will focus on

private communication.)

How much does this cost?

Key generation: one evaluation

of a 7! G(a) for each user.

Shared secrets: one evaluation

of a; G(b) 7! G(ab) for each

pair of communicating users.

Encryption and authentication:

secret-key operations

for each byte communicated.

This talk will focus on

applications with many pairs of

communicating users and with

not much data communicated

between each pair.

Bottleneck is a; G(b) 7! G(ab).

How fast is this?

Answer depends on CPU,

on choice of G, and on

choice of method to compute G.

Many parameters.

Many interactions across levels.

Choices are not easy

to analyze and optimize.

Elliptic vs. hyperelliptic

Last year: Analyzed wide range

of elliptic-curve functions G

and methods of computing G.

Obtained new speed records

for a; G(b) 7! G(ab)

on today’s most common CPUs.

The big questions for today:

Can we obtain higher speeds

at comparable security levels

using genus-2 hyperelliptic curves?

How fast is hyperelliptic-curve

scalar multiplication?

Basic advantage of genus 2:

use much smaller field

for same conjectured security.

This talk will focus on a

comfortable security level:

> 2128 bit ops for known attacks.

Last year’s genus-1 records

used field size 2255 � 19.

� 2255 points on curve.

Jacobian of genus-2 curve

over field of size 2127 � 1

has � 2254 points.

Much smaller field, so

much faster field mults.

Basic disadvantage of genus 2:

many more field mults.

Last year’s genus-1 records

used Montgomery-form curve

y2 = x3 + 486662x2 + x,

G(a) = X0(aP), standard P .

10 mults per bit of a.

Culmination of extensive work

on eliminating field mults for

similar G(a) defined by

genus-2 hyperelliptic curve:

25 mults per bit. (2005 Gaudry)

Does the advantage

outweigh the disadvantage?

Superficial analysis: Yes!

Half as many bits in field

means, uhhh, 4� faster? 3�?

Anyway, (3� 10)=25 = 1:2.

That’s a 20% gap!

Genus-2 field mults have

finally been reduced enough

to beat genus 1!

This analysis has several flaws.

Let’s do a serious analysis.

What are the formulas?

Genus-1 setup: Field k, big char.

Specify elliptic curve E � P2 by

equation y2z = x3 + a2x
2z + xz2.

(Full moduli space if k = k.)

Rational map (x : y : z) 7! (x : z)

induces X : E=f�1g ,! P1.

Analogous genus-2 setup:

Specify genus-2 curve C by

particular parametrization.

Build “Kummer surface” K � P3

and particular rational map

X : (JacC)=f�1g ,! K.

Recursively build rational

functions F1; F2; : : : with

X(nQ) = Fn(X(Q)) generically.

Recursion uses very fast rational

functions X(nQ) 7! X(2nQ) and

X(Q); X(nQ); X((n + 1)Q) 7!

X((2n + 1)Q).

(genus 1: 1986 Chudnovsky,

Chudnovsky; independently

1987 Montgomery; 10 mults:

1987 Montgomery; genus 2:

1986 Chudnovsky, Chudnovsky;

25 mults: 2005 Gaudry)

Montgomery’s recursion for

genus 1, X(nQ) = (xn : zn):

x2

�� &&MM
MMM

M z2

xxqqq
qqq ��

x3

%%KK
KKK��

z3

yysss
ss ��

+

���� ,,YYYYY
YYYYYY

YYYYYY
YYY �

���� &&MM
MMM

M +

��
�

��
�

,,

�� &&MM
MMM

M �

��xxqqq
qqq

�

�� %%KK
KKK

�

��yyttt
tt

�

��

�
��

��

+

����

�

����
�a2�2

4

��

�

��

�

��
+

��

�x1
z1

��

�

��
x4 z4 x5 z5

Gaudry’s recursion for genus 2,

X(nQ) = (xn : yn : zn : tn):

x2

����

y2

����

z2

����

t2
����

x3

����

y3

����

z3

����

t3
����

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

H

����
55

��

��

��

��

��

��

H

�� �� �� ��

� A
2

B2

��
77

�A
2

C2

��
77

� A
2

D2

��
77�

��
�
��

�
��

�
��

�
��

�
��

�
��

�
��

H

��

�� �� ��

H

��

�� �� ��
�ab

��

�ac

��

�ad

��

�x1
y1

��

�x1
z1

��

�x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

H(�; �;
; �) =

(� + � +
 + �;

� + � �
 � �;

�� � +
 � �;

�� � �
 + �).

Easy 8-addition chain

(“fast Hadamard transform”):

�� ((RR
RRR

RRR
RRR

||zz
zz
z

""D
DD

DD

||zz
zz
z

""D
DD

DD

vvllll
lll

lll
l

��
+

�� @
@@

@@
+

~~~~
~~
~
��

�

��   @
@@

@@
�

~~~~
~~
~
��

+ � + �

Total Gaudry field operations:

25 mults, 32 adds.

X(nQ) = Fn(X(Q)) generically:

“Generically” allows failures.

Maybe trouble for cryptography!

Can detect failures by

testing for zero at each step.

Can we avoid these tests?

For genus 1: Yes,

after replacing X by X0.

cr.yp.to/papers.html

#curvezero, Theorem 5.1.

Similar in genus 2?

Looks like painful calculations.

Let me know if you have

ideas for tackling this.

Curve specialization

Montgomery-form curves can be

specialized to save time.

For y2 = x3 + 486662x2 + x,

1 of the 10 mults is by 121665;

much faster than general mult.

Do Gaudry-form surfaces

allow similar specialization?

Gaudry: Out of 25 mults,

6 “are multiplications by

constants that depend only on the

surface : : : Therefore by choosing

an appropriate surface, a few

multiplications can be saved.”

What’s “a few”?

Let’s look at the formulas.

Gaudry has params (a : b : c : d).

Also (A : B : C : D) satisfying

H(A2; B2; C2; D2) =

(a2; b2; c2; d2).

Gaudry’s 6 mults are by

a=b; a=c; a=d;

(A=B)2; (A=C)2; (A=D)2.

Can choose small B;C;D,

small A 2 BZ \ CZ \DZ.

Then solve for a; b; c; d.

Can scale formulas to have

multiplications by, e.g., (BCD)2,

(ACD)2, (ABD)2, (BCD)2.

Choose any small A;B; C;D.

Can also hope for some of

a; b; c; d to be small.

More flexibility:

Can choose small A2; B2; C2; D2.

e.g. A2 = 21, B2 = 16,

C2 = 8, D2 = 4, a = 7,

b = 5, c = 3, d = 1.

Scale 1; a=b; a=c; a=d

to bcd; acd; abd; abc.

Apparently “a few” is “all 6”!

Products with a=b; a=c; a=d

will be squared before use.

Convenient to change K by

squaring coordinates. (as in

1986 Chudnovsky, Chudnovsky)

In data-flow diagram,

roll top squarings to bottom

and through a; b; c; d layer.

No loss in speed.

(2006 André Augustyniak)

Thus have even more flexibility:

small a2; b2; c2; d2 suffice.

Unfortunately,

these specialized surfaces

have a big security problem:

genus-2 point counting

is too slow to reach 256 bits.

Our only secure genus-2 curves

are from CM. How to locate

a secure specialized surface

over, e.g., Z=(2127 � 1)?

Maybe can speed up

genus-2 point counting.

Inspiring news: speed records

for Schoof’s original algorithm.

(2006 Nikki Pitcher)

Squarings and other operations

For Montgomery-form curves:

4 of the 9 big mults

are squarings;

faster than general mults.

For Gaudry-form surfaces:

9 squarings out of 25 mults.

4S + 5M in big field

comparable to, uhhh,

12S + 15M in small field?

9S + 16M still slightly better,

but gap is only � 5%,

depending on S=M ratio.

Gaudry understated benefit

of specialized surfaces.

One of Gaudry’s speedups:

compute (a=b)u2; (a=b)uv

by first computing (a=b)u.

3M. Total: 9S + 16M.

Specialized: 2M.

Specialized total: 9S + 10M.

Better when a=b is small:

simply undo this speedup.

S + 3M. Total: 12S + 16M.

Specialized: S + M.

Specialized total: 12S + 7M.

The 3�; 4� myths

Why do some people say that

half as many bits in field

means 4� speedup?

Answer: “n-bit arithmetic

takes time n2.”

Why do some people say that

half as many bits in field

means 3� speedup?

Answer: “n-bit arithmetic

takes time nlg 3.”

Reality: Both n2 and nlg 3 are

horribly inaccurate models.

Field speed is CPU-dependent.

Today let’s focus on

one common CPU: Pentium M.

Experience says:

Fastest Pentium M arithmetic

uses floating-point operations.

#ffp opsg=#fcyclesg � 1;

optimized code always close to 1,

very little variation.

Last year’s speed records

for y2 = x3 + 486662x2 + x

over Z=(2255 � 19):

640838 cycles; 92% fp ops.

Accurately (but not perfectly)

analyze cycles by counting fp ops.

e.g. Z=(2255 � 19) arithmetic

in last year’s records:

10 fp ops for f; g 7! f + g.

55 fp ops for f 7! 121665f .

162 fp ops for f 7! f2.

243 fp ops for f; g 7! fg.

Where do these numbers come

from? How do they scale?

Is Z=(2127 � 1) really 4� faster?

Or at least 3� faster?

Element of Z=(2255 � 19) is

represented as 10-coeff poly.

Field add is poly add: 10 fp adds.

In context, can skip carries.

Field mult is poly mult

and reduction mod 2255 � 19

and carrying:

102 fp mults for poly,

(10� 1)2 fp adds for poly,

10� 1 fp mults for reduce,

10� 1 fp adds for reduce,

4 � 10 + 4 fp adds for carry.

Squaring: save (10� 1)2 ops.

Element of Z=(2127 � 1) is

represented as 5-coeff poly.

Field add is 5 fp ops; 2� faster.

Poly mult is 52 + (5� 1)2

but reduce is (5� 1) + (5� 1)

and carry is 4 � 5 + 4.

73 fp ops; 3:329� faster.

Squaring saves (5� 1)2 ops.

57 fp ops; 2:842� faster.

Surprisingly small ratios,

even without Karatsuba.

Heavy optimization of mults

makes linear effects more visible.

Montgomery uses 8 adds,

1 mult by 121665,

4 squarings, 5 mults:

8 � 10 + 1 � 55 + 4 � 162 + 5 � 243

= 1998.

Gaudry uses 32 adds,

9 squarings, 16 mults:

32 � 5 + 9 � 57 + 16 � 73 = 1841.

Gaudry loses in adds,

wins in squarings,

wins in other mults.

Specialized Gaudry: [1355; 1659]

depending on exact coeff size.

Far fewer than 1998 ops!

Reciprocals

What about divisions?

At end of computation,

(x : y : z : t) 7! (x=t; y=t; z=t)

for transmission.

Three multiplications and

one reciprocal in Z=(2127 � 1).

Montgomery needs division

in Z=(2255 � 19);

more than twice as slow.

Not big part of computation

but still a disadvantage.

Space disadvantage for Gaudry:

� 384 bits in (x=t; y=t; z=t).

Standard 512-bit alternative:

blinding. Choose random r,

send (xr : yr : zr : tr).

Negligible computation cost.

Also negligible for Montgomery.

Standard 256-bit alternative:

point compression.

Transmit, e.g., (x=t; y=t).

Then have to solve quartic.

Disadvantage for Gaudry.

Open: Compression method

allowing faster decompression?

Extra Gaudry division problem:

recall multiplications by

x1=y1; x1=z1; x1=t1.

Even if we’re given t1 = 1,

have to divide by y1; z1.

How to avoid extra division?

Can’t merge with final division.

Scaling (1 : x1=y1 : x1=z1 : x1)

is bad: extra mult for each bit.

Easy solution: Don’t send

(x=t; y=t; z=t). Instead send

(t=x; t=y; t=z) or (x=y; x=z; x=t).

Sender can merge divisions.

Software speed measurements

Using qhasm tools, wrote

Pentium M implementation

of scalar multiplication

(with no input-dependent

branches, indices, etc.)

on a Gaudry-form surface.

n; P 7! nP . Coords

(x=y; x=z; x=t) for P; nP .

Arbitrary params a; b; c; d.

Recall the competition,

last year’s speed record:

640838 cycles for genus 1.

Genus 2: 582363 cycles.

New Diffie-Hellman speed record!

Try the software yourself:

cr.yp.to/hecdh.html

Standardize genus-2 curve

for cryptography? Use CM

to generate secure a; b; c; d?

I think that’s premature.

Very small choices of a; b; c; d

will provide a big speedup.

Let’s wait for point counting,

then standardize.

Halftime advertising, part 1

Part 1 was brought to you by : : :

eBATS!

ECRYPT Benchmarking

of Asymmetric Systems!

New project to measure

time and space consumed by

public-key signature systems,

public-key encryption systems,

public-key secret-sharing systems.

www.ecrypt.eu.org/ebats/

