
Efficient arithmetic

on elliptic curves

D. J. Bernstein

University of Illinois at Chicago



Classic question about the

Diffie-Hellman system:

How quickly can we compute

nth powers mod p?

Assume that someone gives you p;

e.g. p = 2262
� 5081.

This talk asks

the analogous question

for elliptic-curve Diffie-Hellman:

How quickly can we compute

nth multiples in an

elliptic-curve group?

“Elliptic-curve

scalar multiplication.”



Assume that someone gives you

a field and an elliptic curve.

e.g. NIST P-224: the elliptic curve

y

2 = x

3
� 3x + a6 over Z=p.

Here p = 2224
� 296 + 1

and a6 = 18958286285566608
00040866854449392
64155046809686793
21075787234672564.

e.g. NIST P-256.

e.g. Curve25519.



Your task: Given (x; y) on curve,

and given integer n � 0,

compute nth multiple of (x; y)

in the elliptic-curve group.

Warning: Answer is not (nx; ny)

unless you’re extremely lucky.

Elliptic-curve point addition

is not vector addition;

(x; y) + (x0; y0) is almost never

(x + x

0

; y + y

0).

Can emphasize this by changing

notation: +, �, [n], etc. But

this talk uses simplified notation.



Multiples via additions

Typical recursive formulas:

2P = P+P . 3P = 2P+P .

4P = 2P+2P . 5P = 3P+2P .

6P = 3P+3P . 7P = 5P+2P .

2nP = 7P+(n�7)P if 4�n<8.

(2n+1)P = 2nP+P if 4�n<8.

(4n+1)P = 4nP+P if 4�n<8.

(4n+3)P = 4nP+3P if 4�n<8.

2nP = nP+nP if 8 � n.

(8n+1)P = 8nP+P if 4 � n.

(8n+3)P = 8nP+3P if 4 � n.

(8n+5)P = 8nP+5P if 4 � n.

(8n+7)P = 8nP+7P if 4 � n.



This “addition chain”

(“length-3 sliding windows”)

uses � lgn doublings and

� 0:25 lgn more additions

to compute nP for average n.

e.g. � 320 additions for

average n 2

�

0; 1; : : : ; 2256
� 1

	

.

Some easy improvements from

fast negation on elliptic curves:

(16n� 7)P = 16nP � 7P , etc.

Also use “endomorphisms” for

“Koblitz curves,” “GLV curves.”

More complicated methods

replace 0:25 by � 1=lg lgn.



Explicit doubling formulas

On curve y

2 = x

3
� 3x + a6:

2(x; y) = (x00; y00) where

� = (3x2
� 3)=2y,

x

00 = �

2
� 2x,

y

00 = �(x� x

00)� y.

7 subs etc., 2 squarings,

1 more mult, 1 division.

How do we divide efficiently

in a finite field?



f=g = fg

p�2 in prime field Z=p.

Can compute g

p�2 with

� lg p squarings and

� (lg p)=lg lg p more mults.

e.g. p = 2224
� 296 + 1:

223 squarings, 11 more mults.

More generally, f=g = fg

q�2

in any field of size q.

There are faster division methods

(e.g. “Euclid”—beware timing

attacks!); smaller “I/M ratio.”

Special methods for some fields.



Speedup: delay divisions

Division costs many mults

even with fastest division methods.

Save time by delaying divisions.

Naive division-delay method:

Store field elements as fractions

until end of computation.

Divide once before output.

Mult fractions with 2 field mults.

Divide fractions with 2 field mults.

Add fractions with 3 field mults.



Speedup: unify denominators

For elliptic-curve doubling,

have denominator 2y

in � = (3x2
� 3)=2y;

denominator (2y)2

in x

00 = �

2
� 2x;

denominator (2y)3

in y

00 = �(x� x

00)� y.

Subsequent computations will

perform separate computations

on the denominators (2y)2; (2y)3

of x00; y00.

Save time by manipulating

denominators together.



“Jacobian coordinates”:

Store (x; y; z) to represent

elliptic-curve point (x=z2
; y=z

3).

2(x=z2
; y=z

3) = (x00; y00) where

� = (3(x=z2)2 � 3)=2(y=z3)

= �=2yz with � = 3x2
� 3z4;

x

00 = �

2
� 2(x=z2)

= (�2
� 8xy2)=(2yz)2;

y

00 = �((x=z2)� x

00)� (y=z3)

= (12xy2
���

3
� 8y4)=(2yz)3.



2(x=z2
; y=z

3) = (x2=z
2
2 ; y2=z

3
2)

where z2 = 2yz,

� = 3x2
� 3z4,

x2 = �

2
� 8xy2,

y2 = �(4xy2
� x2)� 8y4.

Easily compute with 6 squarings,

3 more mults: x

2, z2, z4, y2, y4,

yz, xy2, �2, �(� � �).

Also some subs, doublings, etc.

Use fast field arithmetic:

e.g., can delay carries and

reductions in computing y2.



Speedup: difference of squares

Can compute 3x2
� 3z4 as

3(x� z

2)(x + z

2).

Replace 3 squarings by 1 mult,

1 squaring. Revised total:

4 squarings, 4 more mults.

Note:

3x2
� 3z4 came from 3x2

� 3,

derivative of x3
� 3x + a6.

Wouldn’t have same speedup

for, e.g., x3
� 5x + a6.



Speedup: f

2
; g

2
; 2fg

After computing f

2 and g

2

can compute 2fg

as (f + g)2 � f

2
� g

2.

In particular:

After computing y

2 and z

2

can compute 2yz

as (y + z)2 � y

2
� z

2.

Replace 1 mult with 1 squaring.

Revised total: 5 squarings,

3 more mults.



Explicit addition formulas

Similar speedups in formulas

for adding distinct points.

5 squarings, 11 more mults.

Again some opportunities

to delay carries, etc.



Speedup: cache results

In adding (x1=z
2
1 ; y1=z

3
1)

to (x2=z
2
2 ; y2=z

3
2),

compute many intermediates,

including z

2
1 ; z

3
1 .

Often add same point again

to a different point;

can reuse z

2
1 ; z

3
1 .

“Chudnovsky coordinates.”



Speedup: delay fewer divisions?

Faster divisions sometimes justify

delaying fewer divisions.

e.g. Do we really need

fractions for P; 3P; 5P; 7P?

Can convert P; 3P; 5P; 7P

out of Jacobian coordinates

with one division, several mults.

Then save mults in every

addition of P; 3P; 5P; 7P .

“Mixed coordinates.”

Sometimes worthwhile,

depending on division speed.



Montgomery coordinates

On elliptic curves with

“Montgomery form”

y

2 = x

3 + a2x
2 + x,

preferably with small (a2 � 2)=4:

n(x1; : : :) = (x
n

=z

n

; : : :) where

z1 = 1; x2m = (x2
m

� z

2
m

)2;

z2m=4x
m

z

m

(x2
m

+a2xmz

m

+z

2
m

);

x2m+1=4(x
m

x

m+1�zmz

m+1)
2;

z2m+1=4(x
m

z

m+1�zmx

m+1)
2
x1.

Can also figure out y,

or use cryptographic protocols

that ignore y.



x

m

�� ##GG
GG

GG
z

m

{{ww
ww

ww

��

x

m+1

&&LLLLLLL

��

z

m+1

xxrrrrrrr

��
+

���� ,,XXXXXXXXXXXXXXXXXXXXXXX
�

���� %%JJJJJJJ +

��

�

��
�

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�� ##GG
GG

GG
�

��{{ww
ww

ww
�

�� &&LLLLLLLL �

��xxrrrrrrrr

�

��

�

��

��

+

����

�

����
�

��

�

��

�

��
+

��

a2�2
4

ccGGGGGG

�

��

�

��

x1

::tttttttt

x2m z2m x2m+1 z2m+1



Assuming (a2 � 2)=4 small,

main operations are

4 squarings, 5 more mults

for each bit of n.

Compare to Jacobian coordinates:

each bit of n has

5 squarings, 3 more mults,

and on occasion

5 more squarings, 11 more mults.

Montgomery form is better

if n is not gigantic.


