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Problem: Completely factor

314159265358979323.

Eventually find that

314159265358979323 =

317213509 � 990371647.

Factorization completed? Yes:

317213509; 990371647 are prime.

“Prove it!”



Next 15 slides are

the world’s longest proof

that 317213509 is prime.

Exercise: Do the same for

990371647.



First step: 3391 is prime.

Proof: 3391 is not divisible by 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58.

Note that 592 = 3481 > 3391.



Next: Define n = 317213509.

Then n is not divisible by any

prime < 3364.

Proof: n is not divisible by

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66,

67, 68, 69, 70, 71, 72, : : : , 3363.



Define p as the smallest

prime divisor of n.

Then p � 3364.

In other words:

In F
p

[x], the polynomials

x� 1; x� 2; : : : ; x� 3364

are distinct.

Unique factorization: The product

(x� 1)e1 � � � (x� 3364)e3364

in F
p

[x] determines

the vector (e1; : : : ; e3364).



Next:

n is a primitive root modulo 3391;

i.e., has order 3390 modulo 3391.

Proof:

n mod 3391 = 2414 6= 1;

n

2 mod 3391 = 1658 6= 1;

n

3 mod 3391 = 1032 6= 1;

n

4 mod 3391 = 2254 6= 1;
...

n

3389 mod 3391 = 2558 6= 1;

n

3390 mod 3391 = 1.



Next:

(x� 1)n = x

n

� 1

in the ring (Z=n)[x]=(x3391
� 1).

Proof:

(x� 1)2 = x

2 + 317213507x + 1;
...

(x� 1)158606754

= 7406606x3390 + � � �;

(x� 1)317213508

= 93545x3390 + � � �;

(x� 1)317213509

= x

2414 + 317213508

= x

n mod 3391
� 1.



Next:

(x� 2)n = x

n

� 2

in the ring (Z=n)[x]=(x3391
� 1).

Proof:

(x� 2)2 = x

2 + 317213505x + 4;
...

(x� 2)158606754

= 114354286x3390 + � � �;

(x� 2)317213508

= 164442849x3390 + � � �;

(x� 2)317213509

= x

2414 + 317213507

= x

n mod 3391
� 2.



More exponentiations:

(x� 3)n = x

n

� 3,

(x� 4)n = x

n

� 4,

(x� 5)n = x

n

� 5,

(x� 6)n = x

n

� 6,

(x� 7)n = x

n

� 7,

(x� 8)n = x

n

� 8,

(x� 9)n = x

n

� 9,

(x� 10)n = x

n

� 10,

(x� 11)n = x

n

� 11,

(x� 12)n = x

n

� 12,

(x� 13)n = x

n

� 13,

(x� 14)n = x

n

� 14,

(x� 15)n = x

n

� 15,

(x� 16)n = x

n

� 16,

(x� 17)n = x

n

� 17,

(x� 18)n = x

n

� 18,

x�

n

x

n

�



Last exponentiation:

(x� 3364)n = x

n

� 3364

in the ring (Z=n)[x]=(x3391
� 1).

Proof:
...

(x� 3364)158606754

= 261799987x3390 + � � �;

(x� 3364)317213508

= 196658336x3390 + � � �;

(x� 3364)317213509

= x

2414 + 317210145

= x

n mod 3391
� 3364.



Now play with equations.

p divides n

so (x� a)n = x

n

� a

in F
p

[x]=(x3391
� 1)

for each a 2 f1; 2; : : : ; 3364g.

For each integer i � 0,

substitute x

n

i

for x:

(xn
i

� a)n = x

n

i+1
� a in

F
p

[x]=((xn
i

)3391
� 1),

hence in F
p

[x]=(x3391
� 1).

By induction (x � a)n
i

= x

n

i

� a

in F
p

[x]=(x3391
� 1).



For each integer j � 0,

apply Fermat’s little theorem:

(x� a)n
i

p

j

= (xn
i

� a)p
j

=

x

n

i

p

j

� a in F
p

[x]=(x3391
� 1).

Define h 2 F
p

[x] as the

smallest irreducible polynomial

dividing (x3391
� 1)=(x� 1).

Then (x� a)n
i

p

j

= x

n

i

p

j

� a

in the field F
p

[x]=h.

Have x

3391 = 1 in F
p

[x]=h,

so x has order 1 or 3391.



Can x have order 1 in F
p

[x]=h?

If so then h divides x � 1 in F
p

[x]

so h

2 divides x3391
� 1 in F

p

[x].

But x3391
� 1 is squarefree in F

p

[x]

since 3391 6= 0 in F
p

.

Contradiction.

Thus x has order 3391 in F
p

[x]=h.

Recall that n mod 3391 6= 1.

Thus xn 6= x in F
p

[x]=h.

Thus (x� a)n = x

n

� a 6= x� a

in F
p

[x]=h.

Thus x� a is nonzero in F
p

[x]=h.



For each subset

T � f1; 2; : : : ; 3364g

define �

T

2 F
p

[x]

by �

T

=
Q

a2T

(x� a).

e.g. �

f6;9g = (x� 6)(x� 9).

Each �

T

has degree � 3364.

Critical equation in F
p

[x]=h:

�

n

i

p

j

T

=
Q

a2T

(x� a)n
i

p

j

=
Q

a2T

(xn
i

p

j

� a) =

�

T

(xn
i

p

j

).



Assume �

T

= �

U

in F
p

[x]=h.

Then �

n

i

p

j

T

= �

n

i

p

j

U

in F
p

[x]=h

so �

T

(xn
i

p

j

) = �

U

(xn
i

p

j

)

in F
p

[x]=h.

Thus xn
i

p

j

is a root in F
p

[x]=h

of the polynomial �
T

� �

U

.

Thus �
T

� �

U

has

3390 distinct roots in F
p

[x]=h.

But �
T

� �

U

has degree � 3364.

Hence �

T

= �

U

.

By unique factorization, T = U.



There are 23364 subsets T . The

23364 polys �
T

=
Q

a2T

(x� a)

are all different in F
p

[x]=h.

Consider the products nipj with

i; j 2 f0; 1; : : : ; 58g. Have

1 � n

i

p

j

� (229)58+58 = 23364.

There are 592 = 3481 pairs (i; j).

Products mod 3391 must collide:

n

i

p

j mod 3391 = n

k

p

` mod 3391

with (i; j) 6= (k; `). Have

jn

i

p

j

� n

k

p

`

j � 23364
� 1.



In F
p

[x]=h have �

n

i

p

j

T

=

�

T

(xn
i

p

j

) = �

T

(xn
k

p

`

) = �

n

k

p

`

T

so �

n

i

p

j

�n

k

p

`

T

= 1.

If nipj � n

k

p

`

6= 0: Number

of (nipj � n

k

p

`)th roots of 1

in a field is at most 23364
� 1,

contradiction.

Thus nipj = n

k

p

`.

If i = k then p

j = p

` so

(i; j) = (k; `), contradiction.

Thus n is a power of p.

None of n1=2, n1=3, : : : , n1=29

are integers, so n = p.



We’ll see that

every prime n has

a similar primality proof.

Can find and verify the proof

using (lgn)O(1) bit operations.

No randomness required.

No conjectures required.

The proof is

much slower than trial division

for n as small as 317213509,

but it scales surprisingly well

to larger values of n.



One complication:

We believe that, for each n � 2,

there is a prime q in

[4dlgne2 + 3; O((lgn)2)]

for which n is a primitive root.

But we don’t know how to prove

that q exists.

So we loosen the q requirements.

Then easy to prove that q exists.

Compensate with slightly more

work in the rest of the proof.



Given integer n > 1:

Find smallest prime number q

that does not divide

n(n� 1)(n2
� 1)(n3

� 1) � � �

(n4dlgne2
� 1); i.e., such that

n has order > 4 dlgne2 modulo q.

How? For each small integer p,

check primality by trial division,

and inspect powers of n modulo p.

Fast since q is small.

Conjecture: q 2 O((lgn)2).

Theorem: q 2 O((lgn)5).



How to prove q 2 O((lgn)5)?

Prime-number theorem says that
Q

p�k

p � exp k.

Weak, relatively easy to prove:
Q

p�k

p grows exponentially.

In particular, have
Q

p�k

p >

n(n� 1)(n2
� 1)(n3

� 1) � � �

(n4dlgne2
� 1)

for some k 2 O((lgn)5).

So n(n� 1)(n2
� 1)(n3

� 1) � � �

(n4dlgne2
� 1) can’t be

divisible by all p � k.



Compute � = 2 dlgne b
p

q � 1
.

Conjecture: � 2 O((lgn)2).

Theorem: � 2 O((lgn)3:5).

Enumerate primes < �.

If n equals a prime < �,

stop: n is prime. Otherwise,

if n is divisible by a prime < �,

stop: n is composite.

Assume from now on

that n is not divisible

by any of the primes < �.



Define p as the smallest

prime divisor of n.

Evidently p � �.

In F
p

[x], the polynomials

x� 1; x� 2; : : : ; x� �

are distinct.

Unique factorization: The product

(x� 1)e1 � � � (x� �)e�

in F
p

[x] determines

the vector (e1; : : : ; e
�

).



Define

G =
�

n

i

p

j mod q : i � 0; j � 0
	

and 
 = 2 dlgne b
p

#G
.

Then n

2b
p

#G


� 2
 .

0 =2 G so #G � q � 1

and 
 � 2 dlgne b
p

q � 1
 = �.

G includes all ni mod q

so #G > 4dlgne2 and


 � 2 dlgne
p

#G < #G.



For each a 2 f1; 2; : : : ; �g check

whether (x� a)n = x

n

� a

in the ring (Z=n)[x]=(xq � 1).

These exponentiations take �

�(q(lgn)2)1+o(1) bit operations.

Conjecture: � (lgn)6+o(1).

Theorem: � (lgn)10:5+o(1).

Slow arithmetic: � (lgn)16:5+o(1).

If (x� a)n 6= x

n

� a, stop:

n is composite.

Assume from now on

that (x� a)n = x

n

� a

for each a 2 f1; 2; : : : ; �g.



Play with equations as before.

(x� a)n
i

p

j

= (xn
i

� a)p
j

=

x

n

i

p

j

� a in F
p

[x]=(xq � 1)

for each a 2 f1; 2; : : : ; �g,

each i � 0, each j � 0.

Define h 2 F
p

[x] as the

smallest irreducible polynomial

dividing (xq � 1)=(x� 1).

(x� a)n
i

p

j

= x

n

i

p

j

� a

in the field F
p

[x]=h.

x has order q in F
p

[x]=h.

x� a is nonzero in F
p

[x]=h.



For each subset T � f1; 2; : : : ; 
g

define �

T

2 F
p

[x]

by �

T

=
Q

a2T

(x� a).

Each �

T

has degree � 
.

Critical equation in F
p

[x]=h:

�

n

i

p

j

T

=
Q

a2T

(x� a)n
i

p

j

=
Q

a2T

(xn
i

p

j

� a) =

�

T

(xn
i

p

j

).



Assume �

T

= �

U

in F
p

[x]=h.

Then �

n

i

p

j

T

= �

n

i

p

j

U

in F
p

[x]=h

so �

T

(xn
i

p

j

) = �

U

(xn
i

p

j

)

in F
p

[x]=h.

Thus xn
i

p

j

is a root in F
p

[x]=h

of the polynomial �
T

� �

U

.

Thus �
T

� �

U

has

#G distinct roots in F
p

[x]=h.

But deg(�
T

� �

U

) � 
 < #G.

Hence �

T

= �

U

.

By unique factorization, T = U.



There are 2
 subsets T . The

2
 polys �
T

=
Q

a2T

(x� a)

are all different in F
p

[x]=h.

Consider the products nipj with

i; j 2 f0; 1; : : : ; b
p

#G
g. Have

1 � n

i

p

j

� n

2b
p

#G


� 2
 .

There are > #G pairs (i; j).

Products mod q must collide:

n

i

p

j mod q = n

k

p

` mod q

with (i; j) 6= (k; `). Have

jn

i

p

j

� n

k

p

`

j � 2
 � 1.



In F
p

[x]=h have �

n

i

p

j

T

=

�

T

(xn
i

p

j

) = �

T

(xn
k

p

`

) = �

n

k

p

`

T

so �

n

i

p

j

�n

k

p

`

T

= 1.

If nipj � n

k

p

`

6= 0: Number

of (nipj � n

k

p

`)th roots of 1

in a field is at most 2
 � 1,

contradiction.

Thus nipj = n

k

p

`.

If i = k then p

j = p

` so

(i; j) = (k; `), contradiction.

Thus n is a power of p.



Finally check whether n is a

square, cube, etc. If so, stop:

n is composite.

Otherwise n = p so n is prime.

Done! Have proven primality of n,

or have proven compositeness of n.

Length of proof,

including all computations,

is (lgn)O(1).

Conjecture: � (lgn)6+o(1).

Theorem: � (lgn)10:5+o(1).

Easiest theorem: � (lgn)16:5+o(1).

Bottleneck is the exponentiations.



Appendix: exponential growth

Weak prime-number theorem:
Q

1<p�2k p � 22k
=(2k+1)(2k)

p

2k.

Proof: What is ord
p

�2k
k

�

?

0 if p > 2k.

� 1 if
p

2k < p � 2k.

� (lg 2k)=lg p if 1 < p �

p

2k.

Thus 22k
=(2k + 1) �

�2k
k

�

�

(
Q

p

2k<p�2k p)
Q

p�

p

2k 2k �

(
Q

1<p�2k p)(2k)
p

2k.


