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Sieving small integers 2 > 0
using primes 2, 3,5, 7:
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Sieving 7 and 611 + 2 for small 2

using primes 2, 3,5, 7:
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Have complete factorization of
the “congruences” (611 + 2)
for some 7's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 -64 -75 - 625 - 675 - 686

_ 28345874 (24325472)
gcd{611, 14 - 64 - 75 — 24325472}
— 47.

611 =47 -13.



Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides s2 — ¢
where s =14 -64 - 75

and t = 24325472,

So each prime > 7 dividing 611
divides either s — t or s + t.

Not terribly surprising
(but not guaranteed in advance!)

that one prime divided s — ¢
and the other divided s + t.



Why did the first three
completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1, 2, 3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,
quickly find nonempty subsequence
with sum 0 mod 2.



This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. forn =671
1(n+ 1)=2%315071;
4(n + 4) = 22335279,
15(n + 15) = 21315173
)
)

49(n + 49
64(n + 64

F>-kernel of exponent matrix is
gen by (01011)and (10110);
e.g., 1(n+1)15(n + 15)49(n + 49)
IS a square.



Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

1. Try to completely factor i(n+1)
fori€{1,2,3,...,9y%}
into products of primes < y.

2. Look for nonempty set of 2's
with 2(n + 2) completely factored

and with | |z2(n + 2) square.
1

3. Compute gcd{n, s —t} where

s:Diandt:\/W(nM).




How large does y have to be
for this to find a square?

Let's aim for number of
completely factored congruences
to exceed length of each vector,
guaranteeing a square.

(This is somewhat pessimistic;
smaller numbers usually work.)

Vector length ~ y/log y.
Will there be > y/logy
completely factored congruences

out of y? congruences?



What's chance of random 2(n + %)
being y-smooth, i.e., completely
factored into primes < y?

Consider, e.g., y = |n!/19].
Uniform random integer in [1, y°]

has y-smoothness chance ~ 0.306;

uniform random integer in [1, ]
has chance ~ 2.77 - 10~ 11,
Plausible conjecture:
y-smoothness chance of #(n + )
is ~ 8.5 10712,

Find ~ 8.5 - 1071242

fully factored congruences.



If n > 2340 and y = [n1/19] then
8.5-1071%y? > 3y/logy, and
approximations seem fairly close,
so conjecturally the Q sieve

will find a square.

Find many independent squares
with negligible extra effort.

If gcd turns out to be 1,

try the next square.

Conjecturally always works:
splits odd 7 into
prime-power factors.



How about y & nl/v

for larger u?

Uniform random integer in [1, n|

1/%_smoothness chance

U

roughly u=*.

has n

Plausible conjecture:
Q sieve succeeds

with y = |nl/¥]

for all m > g(1+o(1)u?.

here o(1) is as u — 00.



How about letting u grow with n?

Given n, try sequence of y's
In geometric progression
until Q sieve works:

e.g., increasing powers of 2.

Plausible conjecture: final y €
exp \/(% o(1))log n loglogn,
u € 1/(2+ o(1))logn/ loglogn.

Cost of Q sieve is a power of v,

hence subexponential in n.



More generally, if y €

exp \/(2% + o(l))logn log log n,
conjectured y-smoothness chance

i 1/yc—|—0(1)_

Find enough smooth congruences
by changing the range of 7's:
replace y? with yct1to(l) =

exp \/< (C+1)22C+0(1) ) log n log log n.

Increasing ¢ past 1

increases number of 2's but
reduces linear-algebra cost.

So linear algebra never dominates
when y Is chosen properly.



Improving smoothness chances

Smoothness chance of #(n + 2)
degrades as 1 grows.
Smaller for 7 ~ y? than for i ~ y.

Crude analysis: 2(n + 1) grows.
~ yn it 1 =~ y;
~ yln if i & y°.

More careful analysis:

n + 1 doesn’'t degrade, but

1 Is always smooth for 2 < v,

only 30% chance for i ~ y°.

Can we select congruences
to avoid this degradation?



Choose g, square of large prime.

Choose a “g-sublattice” of 7's:
arithmetic progression of 7's
where g divides each i(n + 1).
e.g. progression ¢ — (n mod q),
2g — (n mod q), 3¢ — (n mod q),
etc.

Check smoothness of
generalized congruence i(n +1)/q
for 2's in this sublattice.

e.g. check whether 2, (n +1)/q are
smooth for 2 = ¢ — (n mod q) etc.

Try many large ¢g’s.
Rare for 2's to overlap.



e.g. n = 314159265358979323:

Original Q sieve:

1T n+1

1  314159265358979324
2 314159265358979325
3  314159265358979326

Use 9972-sublattice,
1 € 802458 + 994009Z.

i (n+1)/997°
802458 316052737309
1796467 316052737310
2790476 316052737311



Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+q—(n mod q)

q

(g—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!
For g ~ nl/2 have
1 (nt1i)/grn
so smoothness chance Is roughly
(w/2)"%/2(u/2) /% = 2% [u®,

2% times larger than before.

1/2 oy /2



Even larger improvements

from changing polynomial 2(n + 1).

“Quadratic sieve” (QS) uses
2 —n with 1 & /n;
have 32 — n ~ nl/2+o(1),

much smaller than n.
"MPQS" improves o(1)

using sublattices: (1> —n)/q.
But still ~ nl/2.

“Number-field sieve” (NFS)
achieves nl).




Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of 2(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611,14 - 64 - 75 — 4410000}
— 47.



The Q(+/14) sieve

factors 611 as follows:

Form a square

as product of (7 4 255)(z + v/147)
for several pairs (2, 7):

(—11 + 3 -25)(—11 + 31/14)

(3 4+ 25)(3 + 1/14)
= (112 — 161/14)?.
Compute

s=(—11+3-25)-(3+25),
t =112 — 16 - 25,
gcd{61l,s —t} = 13.



Why does this work?

Answer: Have ring morphism

Z[v/14] — Z/611, /14 — 25,
since 25% = 14 in Z/611.

Apply ring morphism to square:
(—11+3-25)(—11+ 3 - 25)
(3 4+ 25)(3 + 25)
= (112 — 16 - 25)? in Z/611.

i.e. s> =1t%in Z/611.

Unsurprising to find factor.



Diagram of ring morphisms:

Qlz] =M Q[vI] = Q(vVIA)
A A
Z[a] = 71y/13)
/14325
Y
Z /611

Z|x| uses polynomial arithmetic on
{102 + 11z + - 1 all 4y, € Z};
Z[\/14] uses R arithmetic on

{’io +414/14 : 10,11 € Z};

Z/611 uses arithmetic mod 611 on
{0,1,..., 610}.



Generalize from (z° — 14, 25)
to (f, m) with irred f € Z|z],
m e Z, f(m) € nZ.

Write d = deg f,
f=faz®+ -+ fiz' + foz.

Can take fy = 1 for simplicity,
out larger f; allows

petter parameter selection.

Pick a € C, root of f.
Then fyo is a root of

monic g = £41f(z/f,) € Zla]



o+ 11 + r2a2 +
Qla) =«¢ -+ rd_lad_l:

A

" algebraic integers

°=1 nQ@
10 +z'1fda +
Z(fgo] =< - +1y f5 Ta®h
10, .- ., Zd—l cZ



Build square in Q(a) from
congruences (2 — jm)(z — ja)
with 1Z + 7Z = Z and 5 > 0.

Could replace © — 7z by
higher-deg irred in Z[z];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[ (i j)es(z —3m)(@ — jor)
in Q(a); now what?



(2 — gm) (i — ja) f3
Is a square in O,
ring of integers of Q(a).

Multiply by g'(fga)?,
putting square root into Z|fal:
compute 7 with 72 = ¢'(fya)?:
[1(2 — 3m)(i — ja) f3.

Then apply the ring morphism
@ : Z|fyal — Z/n taking

fqa to fym. Compute gcd{n,
p(r) — g'(fam)[ 1(z — 3m)fa}-
In Z/n have p(r)* =
g'(fam)?[1(z — ym)*fy.



How to find square product
of congruences (2 — 7m)(1 — ja)?

Start with congruences for,
e.g., y° pairs (4, 7).

Look for y-smooth congruences:
y-smooth 2 — 9m and

y-smooth fynorm(z — ja) =
fai® + -+ foj®* = 7% f(2/7).

Find enough smooth congruences.
Perform linear algebra on

exponent vectors mod 2.



Exponent vectors have

many “rational’ components,
many “algebraic’ components,
a few “character’ components.

One rational component
for each prime p < y.
Value ordy(z — 3m).

One rational component for —1.
Value 0 if 2 — 9m > 0,
value 1 if 2 — 9m < 0.

If | |(z — 7m) is a square
then vectors add to 0
In rational components.



One algebraic component
for each pair (p, r) such that
D IS a prime < y;

fa & pZ; disc f ¢ pZ;

r € Fp; f(r)=0in Fy.

Value 0 if 1 — jr ¢ pZ;
otherwise ord,(5¢f(i/7)).

This Is the same as

the valuation of 7 — j&

at the prime pO + (fga — fq1)O.
Recall that 1Z + 9Z = Z,

so no higher-degree primes.



One character component
for each pair (p, r) with
» In a short range above y.

Value 0 if 2 — gr is a
square in Fy, else 1.

If | |(z — 7¢) is a square
then vectors add to 0

in algebraic components
and character components.



Conversely, consider vectors
adding to 0 in all components.

| |(z — gm) must be a square.

Is | |(z — 7o) a square?

Ideal | |(z — 7a)O must be
square outside f,disc f.

What about primes in f;disc 7
Even if ideal is square,

IS square root principal?

Even if ideal is generated

by square of element,

does square equal | |(z — ja)7



Obstruction group is small,
conjecturally very small.
“(f4 disc f)-Selmer group.”

A few characters
suffice to generate dual,

forcing | |(2 — 7o)
to be a square.

Can be quite sloppy here;
easy to redo linear algebra
with more characters if
non-square Is encountered.



Sublattices

Consider a sublattice

of pairs (2, 7) where

g divides 72£(i/7).
Assume squarish lattice.
(2 — gm)3*f(2/7)
expands by factor g(@+1)/2
before division by q.

Number of sublattice elements
within any particular bound

on (i — ym)3*f(i/5)
is proportional to g—(¢—1)/(d+1)



Compared to just using g = 1,
conjecturally obtain y#/(d+1)+0o(1)
times as many congruences

by using sublattices for

all y-smooth integers g < y2.

Separately consider
1 —jm and 3%f(i/7)/q
for more precise analysis.

Limit congruences accordingly,
Increasing smoothness chances.



Multiple number fields

Assume that f + z — m € Z|[x]
Is also Irred.

Pick 8 € C, root of f +x — m.
Two congruences for (2, 7):
(2—gm)(1—Ja); (1—3m)(1—10).
Expand exponent vectors to
handle both Q(a) and Q(8).

Merge smoothness tests
by testing 1 — 3m first,
aborting if 2 — 7m not smooth.

Can use many number fields:
f +2(x —m) etc.



