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Sieving small integers i > 0

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.



Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.



Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd
�

611; 14 � 64 � 75� 24325472
	

= 47.

611 = 47 � 13.



Why did this find a factor of 611?

Was it just blind luck:

gcdf611; randomg = 47?

No.

By construction 611 divides s2
� t

2

where s = 14 � 64 � 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s� t or s + t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s� t

and the other divided s + t.



Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

quickly find nonempty subsequence

with sum 0 mod 2.



This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n + 1) = 25315071;

4(n + 4) = 22335270;

15(n + 15) = 21315173;

49(n + 49) = 24325172;

64(n + 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.



Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

1. Try to completely factor i(n+i)

for i 2
�

1; 2; 3; : : : ; y2
	

into products of primes � y.

2. Look for nonempty set of i’s

with i(n + i) completely factored

and with
Q

i

i(n + i) square.

3. Compute gcdfn; s� tg where

s =
Q

i

i and t =
r

Q

i

i(n + i).



How large does y have to be

for this to find a square?

Let’s aim for number of

completely factored congruences

to exceed length of each vector,

guaranteeing a square.

(This is somewhat pessimistic;

smaller numbers usually work.)

Vector length � y=log y.

Will there be > y=log y

completely factored congruences

out of y2 congruences?



What’s chance of random i(n + i)

being y-smooth, i.e., completely

factored into primes � y?

Consider, e.g., y = bn

1=10

.

Uniform random integer in [1; y2]

has y-smoothness chance � 0:306;

uniform random integer in [1; n]

has chance � 2:77 � 10�11.

Plausible conjecture:

y-smoothness chance of i(n + i)

is � 8:5 � 10�12.

Find � 8:5 � 10�12
y

2

fully factored congruences.



If n � 2340 and y = bn

1=10

 then

8:5 � 10�12
y

2
> 3y=log y, and

approximations seem fairly close,

so conjecturally the Q sieve

will find a square.

Find many independent squares

with negligible extra effort.

If gcd turns out to be 1,

try the next square.

Conjecturally always works:

splits odd n into

prime-power factors.



How about y � n

1=u

for larger u?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u

�u.

Plausible conjecture:

Q sieve succeeds

with y = bn

1=u



for all n � u

(1+o(1))u2
;

here o(1) is as u!1.



How about letting u grow with n?

Given n, try sequence of y’s

in geometric progression

until Q sieve works;

e.g., increasing powers of 2.

Plausible conjecture: final y 2

exp
q

�

1
2 + o(1)

�

logn log logn,

u 2

p

(2 + o(1))logn= log logn.

Cost of Q sieve is a power of y,

hence subexponential in n.



More generally, if y 2

exp
q

�

1
2
 + o(1)

�

logn log logn,

conjectured y-smoothness chance

is 1=y
+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y

2 with y


+1+o(1) =

exp

r

�

(
+1)2+o(1)
2


�

logn log logn.

Increasing 
 past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.



Improving smoothness chances

Smoothness chance of i(n + i)

degrades as i grows.

Smaller for i � y

2 than for i � y.

Crude analysis: i(n + i) grows.

� yn if i � y;

� y

2
n if i � y

2.

More careful analysis:

n + i doesn’t degrade, but

i is always smooth for i � y,

only 30% chance for i � y

2.

Can we select congruences

to avoid this degradation?



Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n + i).

e.g. progression q � (n mod q),

2q � (n mod q), 3q � (n mod q),

etc.

Check smoothness of

generalized congruence i(n + i)=q

for i’s in this sublattice.

e.g. check whether i; (n + i)=q are

smooth for i = q � (n mod q) etc.

Try many large q’s.

Rare for i’s to overlap.



e.g. n = 314159265358979323:

Original Q sieve:

i n + i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i 2 802458 + 994009Z:

i (n + i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311



Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q�(n mod q))
n+q�(n mod q)

q

between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q � n

1=2 have

i � (n + i)=q � n

1=2
� y

u=2

so smoothness chance is roughly

(u=2)�u=2(u=2)�u=2 = 2u=uu,

2u times larger than before.



Even larger improvements

from changing polynomial i(n+ i).

“Quadratic sieve” (QS) uses

i

2
� n with i �

p

n;

have i

2
� n � n

1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 � n)=q.

But still � n

1=2.

“Number-field sieve” (NFS)

achieves no(1).



Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i + 611j)

for several pairs (i; j):

14(625) � 64(675) � 75(686)

= 44100002.

gcdf611; 14 � 64 � 75� 4410000g

= 47.



The Q(
p

14) sieve

factors 611 as follows:

Form a square

as product of (i + 25j)(i +
p

14j)

for several pairs (i; j):

(�11 + 3 � 25)(�11 + 3
p

14)

� (3 + 25)(3 +
p

14)

= (112� 16
p

14)2.

Compute

s = (�11 + 3 � 25) � (3 + 25),

t = 112� 16 � 25,

gcdf611; s� tg = 13.



Why does this work?

Answer: Have ring morphism

Z[
p

14] ! Z=611,
p

14 7! 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(�11 + 3 � 25)(�11 + 3 � 25)

� (3 + 25)(3 + 25)

= (112� 16 � 25)2 in Z=611.

i.e. s

2 = t

2 in Z=611.

Unsurprising to find factor.



Diagram of ring morphisms:

Q[x]
x7!

p

14 // Q[
p

14] = Q(
p

14)

Z[x]

OO

x7!

p

14 // Z[
p

14]

OO

p

147!25
��

Z=611

Z[x] uses polynomial arithmetic on
�

i0x
0 + i1x

1 + � � � : all i
m

2 Z
	

;

Z[
p

14] uses R arithmetic on
�

i0 + i1

p

14 : i0; i1 2 Z
	

;

Z=611 uses arithmetic mod 611 on

f0; 1; : : : ; 610g.



Generalize from (x2
� 14; 25)

to (f;m) with irred f 2 Z[x],

m 2 Z, f(m) 2 nZ.

Write d = deg f ,

f = f

d

x

d + � � �+ f1x
1 + f0x

0.

Can take f

d

= 1 for simplicity,

but larger f
d

allows

better parameter selection.

Pick � 2 C, root of f .

Then f

d

� is a root of

monic g = f

d�1
d

f(x=f
d

) 2 Z[x].



Q(�) =

8

>

<

>

:

r0 + r1� + r2�
2 +

� � �+ r

d�1�
d�1:

r0; : : : ; r
d�1 2 Q

9

>

=

>

;

O =

�

algebraic integers
in Q(�)

�

OO

Z[f
d

�] =

8

<

:

i0 + i1f
d

� +

� � �+ i

d�1f
d�1
d

�

d�1:

i0; : : : ; i
d�1 2 Z

9

=

;

OO

f

d

�7!f

d

m

��
Z=n = f0; 1; : : : ; n� 1g



Build square in Q(�) from

congruences (i� jm)(i� j�)

with iZ + jZ = Z and j > 0.

Could replace i� jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a square
Q

(i;j)2S(i� jm)(i� j�)

in Q(�); now what?



Q

(i� jm)(i� j�)f2
d

is a square in O,

ring of integers of Q(�).

Multiply by g

0(f
d

�)2,

putting square root into Z[f
d

�]:

compute r with r

2 = g

0(f
d

�)2�
Q

(i� jm)(i� j�)f2
d

.

Then apply the ring morphism

' : Z[f
d

�] ! Z=n taking

f

d

� to f

d

m. Compute gcdfn;

'(r)� g

0(f
d

m)
Q

(i� jm)f
d

g.

In Z=n have '(r)2 =

g

0(f
d

m)2
Q

(i� jm)2f2
d

.



How to find square product

of congruences (i� jm)(i� j�)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i� jm and

y-smooth f

d

norm(i� j�) =

f

d

i

d + � � �+ f0j
d = j

d

f(i=j).

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.



Exponent vectors have

many “rational” components,

many “algebraic” components,

a few “character” components.

One rational component

for each prime p � y.

Value ord
p

(i� jm).

One rational component for �1.

Value 0 if i� jm > 0,

value 1 if i� jm < 0.

If
Q

(i� jm) is a square

then vectors add to 0

in rational components.



One algebraic component

for each pair (p; r) such that

p is a prime � y;

f

d

=2 pZ; disc f =2 pZ;

r 2 F
p

; f(r) = 0 in F
p

.

Value 0 if i� jr =2 pZ;

otherwise ord
p

(jdf(i=j)).

This is the same as

the valuation of i� j�

at the prime pO + (f
d

�� f

d

r)O.

Recall that iZ + jZ = Z,

so no higher-degree primes.



One character component

for each pair (p; r) with

p in a short range above y.

Value 0 if i� jr is a

square in F
p

, else 1.

If
Q

(i� j�) is a square

then vectors add to 0

in algebraic components

and character components.



Conversely, consider vectors

adding to 0 in all components.
Q

(i� jm) must be a square.

Is
Q

(i� j�) a square?

Ideal
Q

(i� j�)O must be

square outside f

d

disc f .

What about primes in f

d

disc f?

Even if ideal is square,

is square root principal?

Even if ideal is generated

by square of element,

does square equal
Q

(i� j�)?



Obstruction group is small,

conjecturally very small.

“(f
d

disc f)-Selmer group.”

A few characters

suffice to generate dual,

forcing
Q

(i� j�)

to be a square.

Can be quite sloppy here;

easy to redo linear algebra

with more characters if

non-square is encountered.



Sublattices

Consider a sublattice

of pairs (i; j) where

q divides jdf(i=j).

Assume squarish lattice.

(i� jm)jdf(i=j)

expands by factor q(d+1)=2

before division by q.

Number of sublattice elements

within any particular bound

on (i� jm)jdf(i=j)

is proportional to q

�(d�1)=(d+1).



Compared to just using q = 1,

conjecturally obtain y

4=(d+1)+o(1)

times as many congruences

by using sublattices for

all y-smooth integers q � y

2.

Separately consider

i� jm and j

d

f(i=j)=q

for more precise analysis.

Limit congruences accordingly,

increasing smoothness chances.



Multiple number fields

Assume that f + x�m 2 Z[x]

is also irred.

Pick � 2 C, root of f + x�m.

Two congruences for (i; j):

(i� jm)(i� j�); (i� jm)(i� j�).

Expand exponent vectors to

handle both Q(�) and Q(�).

Merge smoothness tests

by testing i� jm first,

aborting if i� jm not smooth.

Can use many number fields:

f + 2(x�m) etc.


