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“Degree 1 + 5 monic” NFS
tries to factor n

using an auxiliary polynomial
(z —m)(z> + faz* + - + fo)
with n = m> + fam* + - + fo.

(Various generalizations:
miz — mo; fsx>; et al.)

NFS succeeds for practically

all choices of polynomials.

NFS speed depends heavily
on choice of polynomial.
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How NFS uses a polynomial

Given m, f4, ..., fo:

For each small irred g € Z|z],
consider image of g iIn
Zlz]/(x —m) ~Z,

and image of g in

Z[z]/(z> + faz* + - + fo).

Factor some of these images:
e.g., the 2*0-smooth images.

Use factorizations to find
interesting multiplicative relations.
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How NFS uses a polynomial
Given m, f4, ..., fo:

For each small irred g € Z|z],
consider image of g iIn
Zlz]/(x —m) ~Z,

and image of g in

Z[z]/(z> + faz* + - + fo).

Factor some of these images:
e.g., the 2*0-smooth images.

Use factorizations to find

interesting multiplicative relations.
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How NFS uses a polynomial

Given m, f4, ..., fo:

For each small irred g € Z|z],
consider image of g iIn
Zlz]/(x —m) ~Z,

and image of g in

Z[z]/(z> + faz* + - + fo).

Factor some of these images:
e.g., the 2*0-smooth images.

Use factorizations to find
interesting multiplicative relations.

What is a “small” g7

Traditional definition: e.g.,

a — bz with 1 < a <230, |p| <230

Much better definition: e.g.,
a — bz with 1 < a <240 |p| < 240,
‘(a — bm)(a5 + -+ fob5)‘ < 2300

Smaller product of g images,
as measured by norm

(@ —bm)(a> + - - + fob°),
is more likely to be factored.

s @ — bz + cz? useful? Maybe!
But this talk will focus on a — bz.
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What is a “small” g7

Traditional definition: e.g.,

a — bz with 1 < a <230, |p| <230

Much better definition: e.g.,

a — bz with 1 < a < 2% |p| < 240

(@ — bm)(a® + - - + fob®)| < 230,

Smaller product of g images,
as measured by norm
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What is a “small” g7

Traditional definition: e.g.,

a — bz with 1 < a <230, |p| <230

Much better definition: e.g.,

a — bz with 1 < a < 2% |p| < 240

(@ — bm)(a® + - - + fob®)| < 230,

Smaller product of g images,
as measured by norm

(@ —bm)(a> + - + fob°),
is more likely to be factored.

s @ — bz + cz? useful? Maybe!
But this talk will focus on a — bz.

Polynomial merit
Given m, f4,..., fo, H, v:

How many irreds a —bx € Z[z] have
(a—bm)(a>+ -+ fob)| < H?
How many < H and y-smooth?

Want fast, accurate estimates.

Analytic number theory gives
crude asymptotic conjectures.
Want something more explicit.
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Polynomial merit

Given m, f4,..., fo, H, v:

How many irreds a —bx € Z[z] have
(a—bm)(a>+ -+ fob°)| < H?
How many < H and y-smooth?

Want fast, accurate estimates.

Analytic number theory gives
crude asymptotic conjectures.
Want something more explicit.

Use answers to estimate
total time for NFS.

Given n,

consider many polynomials
and select polynomial with
smallest (estimated) NFS time.

Trying all possible polynomials
becomes a bottleneck

as M Increases.

Use faster estimates (e.g.,
“want small coefficient sum™)
as preliminary filters.
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Use answers to estimate
total time for NFS.

Given n,
consider many polynomials
and select polynomial with

smallest (estimated) NFS time.

Trying all possible polynomials
becomes a bottleneck

as M Increases.

Use faster estimates (e.g.,
“want small coefficient sum")
as preliminary filters.

Number of a — bz € Z|z]

with a > 0, gcd{a, b} =1,
(a—bm)(a’+- -+ fob°) € [—H, H]
Is extremely close to

(3/m2)H2® [%_ da/(f(z)2)1/®

where
f(z) = (z —m)( +--- + fo).

Evaluate superelliptic integral

oy standard techniques:
partition, use series expansions.
Not much slower than AGM etc.
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with a > 0, gcd{a, b} =1,
(a—bm)(a’+- -+ fob°) € [—H, H]
Is extremely close to

(3/m2)H2® [%_ da/(f(z)2)1/®

where
f(z) = (z —m)( +--- + fo).

Evaluate superelliptic integral

oy standard techniques:
partition, use series expansions.
Not much slower than AGM etc.
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Number of a — bz € Z|z]
with @ > 0, gcd{a, b} =1,

(a—bm)(a>+-- -+ fob°) € [—H, H]

Is extremely close to
(3/m*)H?/® [ dz/(f(z)*)M/°

where

f(z) = (z —m)(z® + - + fo).

Evaluate superelliptic integral
oy standard techniques:

partition, use series expansions.

Not much slower than AGM etc.

What is smoothness chance of
(a —bm)(a® + - - + fob°)?

Can estimate accurately

by sampling random a — bz,
but this takes time
comparable to 1/chance.

Faster: Image of random a — bz In
Z[z]/(z — m) x Z[z]/(z> + - - )
has similar smoothness chance to
random i1deal with same
distribution at oo.
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What is smoothness chance of
(a —bm)(a® + - - + fob°)?

Can estimate accurately

by sampling random a — bz,
but this takes time
comparable to 1/chance.

Faster: Image of random a — bz In
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has similar smoothness chance to
random i1deal with same
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Enumerate small prime ideals to
write down Dirichlet series
for smooth ideals.

Replace 2,3,5,7,11, ... with
slightly larger real numbers
2=118%83=112 5=111 .
to convert Dirichlet series
Into power series.

Compute (log H)/(log 1.1) coeffs
of this power series

to see = distribution of

smooth ideals.
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Enumerate small prime ideals to
write down Dirichlet series
for smooth ideals.

Replace 2,3,5,7,11, ... with
slightly larger real numbers

2=11%3=1.112 5=111" .

to convert Dirichlet series
Into power series.

Compute (log H)/(log 1.1) coeffs
of this power series

to see = distribution of

smooth ideals.

Can adapt methoc
e.g., 230_smooth L
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Enumerate small prime ideals to Can adapt method to handle,

write down Dirichlet series e.g., 230_smooth below 2390
for smooth ideals. times one prime in [230, 249].
Replace 2,3,5,7,11, ... with Can work with series over
slightly larger real numbers Z|class group}

2=11% 3=112 5=1.11" . to separate ideal classes,

to convert Dirichlet series but not worthwhile:

into power series. all classes end up with

Compute (log H)/(log 1.1) coeffs same distribution.

of this power series
to see =~ distribution of
smooth ideals.




