Integer factorization: Exercise for the reader:
a progress report Find a nontrivial factor of

. 6366223796340423057152171586.
D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF DMS—-0140542

Alfred P. Sloan Foundation

n.

is at Chicago
|2
undation

Exercise for the reader:
Find a nontrivial factor of

6366223796340423057152171586.

Exercise for the re

Find a nontrivial f
636622379634042

Small prime factor

dre

easy to find.

Larger primes are

“El
SCa

Iptic-curve me
es surprisingly

(1987 Lenstra)

ECM has found a
(2005 Dodson; rat
~ 3 - 102 Opteror

www.loria.fr/ zimmern

Exercise for the reader: Exercise for the reader:
Find a nontrivial factor of Find a nontrivial factor of

6366223796340423057152171586. 6366223796340423057152171536.

Small prime factors
are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)
scales surprisingly well.
(1987 Lenstra)

ECM has found a prime ~ 2219,

(2005 Dodson; rather lucky;
~ 3 - 10'? Opteron cycles)

www.loria.fr/“zimmerma/records/p66

ader:

actor of
3057152171586.

Exercise for the reader:
Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors
are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)
scales surprisingly well.
(1987 Lenstra)

ECM has found a prime ~ 2219,

(2005 Dodson; rather lucky;
~ 3 - 10%? Opteron cycles)

www.loria.fr/“zimmerma/records/p66

For worst-case int
two very large prir
ECM does not sca
“number-field siev

(1988 Pollard, et -

Latest record: NF
two prime factors
of “RSA-200" cha
Bahr Boehm Franl
~ 5 - 1018 Opteror

How much more d
is it to find prime
of an integer n ~

www.loria.fr/ “zimmern

Exercise for the reader:
Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors
are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)
scales surprisingly well.
(1987 Lenstra)

ECM has found a prime ~ 2219,
(2005 Dodson; rather lucky;
~ 3 - 10 Opteron cycles)

www.loria.fr/“zimmerma/records/p66

For worst-case integers with
two very large prime factors,
ECM does not scale as well as
“number-field sieve” (NFS).
(1988 Pollard, et al.)

Latest record: NFS has found
two prime factors =y 2332

of “RSA-200" challenge. (2005
Bahr Boehm Franke Kleinjung;
~ 5 - 10'8 Opteron cycles)

How much more difficult
is it to find prime factors ~ 2°12
of an integer n ~ 210247

www.loria.fr/ “zimmerma/records/rsa200

ader:

actor of
3057152171586.

S

harder.

thod” (ECM)

well.

prime ~ 2219
her lucky:;
1 cycles)

1a/records/p66

For worst-case integers with
two very large prime factors,
ECM does not scale as well as
“number-field sieve” (NFS).
(1988 Pollard, et al.)

Latest record: NFS has found
two prime factors =y 2332

of “RSA-200" challenge. (2005
Bahr Boehm Franke Kleinjung;
~ 5 - 10'8 Opteron cycles)

How much more difficult
is it to find prime factors ~ 2°12

of an integer n ~ 210247

www.loria.fr/ “zimmerma/records/rsa200

NFS step 1: find :

NFS tries to facto
iInspecting values ¢

Select integer m ¢
find integers f5, f:
with n = fsm?® +
for various integer
(a —bm)(fsa° + f

Practically every c
will succeed in fac
Better speed from

(@ —bm)(fsa” + f

For worst-case integers with
two very large prime factors,
ECM does not scale as well as
“number-field sieve” (NFS).
(1988 Pollard, et al.)

Latest record: NFS has found
two prime factors =y 2332

of “RSA-200" challenge. (2005
Bahr Boehm Franke Kleinjung;
~ 5 - 10'8 Opteron cycles)

How much more difficult
is it to find prime factors ~ 2°12

of an integer n ~ 210247

www.loria.fr/ “zimmerma/records/rsa200

NFS step 1: find attractive m's

NFS tries to factor n by
inspecting values of a polynomial.

Select integer m € [n1/% nl/3];
find integers fs, fa,..., fo

with n = fsm> + fam* + - + fo;
for various integers a, b inspect
(a—bm)(fsa°+ faa®b+- -+ fob®).

Practically every choice of m
will succeed in factoring n.
Better speed from smaller values

(a—bm)(fsa5 + faa%b+- -+ fob®).

2gers with
ne factors,
le as well as
e" (NFS).
l.)

S has found
~ 2332

lenge. (2005
ke Kleinjung;

1 cycles)

ifficult

factors ~ 2°12
210247

a/records/rsa200

NFS step 1: find attractive m's

NFS tries to factor n by
inspecting values of a polynomial.

Select integer m € [n1/% nl/3];
find integers fs, fa,..., fo

with n = fsm> + fam* + - + fo;
for various integers a, b inspect

(a—bm)(fsa®+ faa®b+- -+ fob%)

Practically every choice of m
will succeed in factoring n.
Better speed from smaller values

(a—bm)(fsa®+ faa®b+- -+ fob%)

e.g. n = 3141592
Can choose m =
fs = 314, f4 = 15
fo =358, f1 =97

NFS succeeds in f.
by inspecting valu

(a — 10006)(314a’
for various integer

But NFS succeeds
using m = 1370, |
(a — 13706)(65a>
38a°b? + 377063

NFS step 1: find attractive m's

NFS tries to factor n by
inspecting values of a polynomial.

Select integer m € [n1/% nl/3];
find integers fs, fa,..., fo

with n = fsm> + fam* + - + fo;
for various integers a, b inspect

(a—bm)(fsa®+ faa®b+- -+ fob%)

Practically every choice of m
will succeed in factoring n.
Better speed from smaller values

(a—bm)(fsa5 + faa%b+- -+ fob®).

e.g. n = 314159265358979323:
Can choose m = 1000,

fs = 314, f4 = 159, f3 = 265,
fo =358, f1 =979, fo = 323.

NFS succeeds in factoring n
by inspecting values

(a — 10006)(314a> + - - - + 323b°)
for various integer pairs (a, b).

But NFS succeeds more quickly
using m = 1370, inspecting

(a — 13706)(65a> + 130a*b +
38a3b® + 377a°b3 + 127ab* 4 330°).

yttractive m's

r n by
f a polynomial.

E [n1/6’,n1/5];

fam®* + -+ fo;
s a, b Inspect

1a*b+- -+ fob?).

hoice of m
toring n.
smaller values

'4a4b+ R fob5).

e.g. n = 314159265358979323:
Can choose m = 1000,

fs = 314, f4 = 159, f3 = 265,
fo =358, f1 =979, fo = 323.

NFS succeeds in factoring n
by inspecting values

(a — 10006)(314a> + - - - + 323b°)
for various integer pairs (a, b).

But NFS succeeds more quickly
using m = 1370, inspecting
(a — 13706)(65a> + 130a*b +

38a3b® + 377a°b3 + 127ab* 4 330°).

NFS step 1: Cons

24 possible choice
Quickly identify, e

225 jttractive cane

Will choose one 7r

If la] < SR and |b
(a — bm)(fsa” +
u(m, S)R® where
(mS™1+5)(|f5S°

Attractive m, S: s
(1999 Murphy)

e.g. n = 314159265358979323:
Can choose m = 1000,

fs = 314, f4 = 159, f3 = 265,
fo =358, f1 =979, fo = 323.

NFS succeeds in factoring n
by inspecting values

(a — 10006)(314a> + - - - + 323b°)
for various integer pairs (a, b).

But NFS succeeds more quickly
using m = 1370, inspecting
(a — 13706)(65a> + 130a*b +

38a3b® + 377a°b3 + 127ab* 4 330°).

NFS step 1: Consider, e.g.,
24 possible choices of m.
Quickly identify, e.g.,

225 jttractive candidates.

Will choose one m in step 2.

If |a| < SR and |b| < S~IR then
(a—bm)(fsa + - + fob?)| <
u(m, S)R® where u(m, S) =

(mS 1 +5)(| £S5+ +[FoS7]).

Attractive m, S: small u(m, S).
(1999 Murphy)

05358979323:
1000,

9, f3 = 265,
9, fo = 323.

actoring n

s

> .- 4 3236°)
pairs (a, b).

more quickly
nspecting
+ 130a*b +

+ 127ab* 4 33b6°).

NFS step 1: Consider, e.g.,
24 possible choices of m.
Quickly identify, e.g.,

225 jttractive candidates.

Will choose one m in step 2.

If |a| < SR and |b| < S~IR then
(a —bm)(fsa + - + fob?)| <
u(m, S)R® where u(m, S) =

(mS 1 +5)(| £S5+ +[FoS 7))

Attractive m, S: small u(m, S).
(1999 Murphy)

Choosing one typi
produces u(m, 1)

Question: How mi
need to save facto
m, S with u(m, S

This has as much
chopping ~ 31g B

Searching for gooc
takes noticeable fr
total time of optir
(If not, consider m
End up with rathe

NFS step 1: Consider, e.g.,
24 possible choices of m.
Quickly identify, e.g.,

225 jttractive candidates.

Will choose one m in step 2.

If |a| < SR and |b| < S~IR then
(a—bm)(fsa + - - + fob?)| <
u(m, S)R® where u(m, S) =

(mS 1 +5)(|fsS° |+ +[FoS7]).

Attractive m, S: small u(m, S).
(1999 Murphy)

Choosing one typical m ~ nl/0

produces u(m, 1) ~ n2/°.

Question: How much time do we
need to save factor of B—to find

m, S with u(m, S) ~ B~ 1n2/07

This has as much impact as
chopping ~ 3lg B bits out of n.

Searching for good values of m
takes noticeable fraction of
total time of optimized NFS.
(If not, consider more m's!)
End up with rather large B.

der, e.g.,
s of m.

g.,
Jidates.

L In step 2.

| <SRt
-+ fob)
u(m,S) =

|+ 4 f0S57)).

nen
<

mall uw(m, S).

Choosing one typical m ~ nl/0

produces u(m, 1) ~ n2/°.

Question: How much time do we
need to save factor of B—to find

m, S with u(m, S) ~ B~ 1n2/07

This has as much impact as
chopping ~ 3lg B bits out of n.

Searching for good values of m
takes noticeable fraction of
total time of optimized NFS.
(If not, consider more m's!)
End up with rather large B.

Four answers:
Time B7-5to(1) to
m o 50.25n1/6
with u(m,1) ~ B
by searching conse

Time BoTo(1) by «
through m’s with

Time B*>to(l) to
with u(m, B%")
(1999 Murphy)

Time B3-5+o(1) by
controlling f3. (2(

cr.yp.to/talks.html#2

Choosing one typical m ~ nl/0

produces u(m, 1) ~ n2/°.

Question: How much time do we
need to save factor of B—to find

m, S with u(m, S) ~ B~ 1n2/07

This has as much impact as
chopping ~ 3lg B bits out of n.

Searching for good values of m
takes noticeable fraction of
total time of optimized NFS.
(If not, consider more m's!)
End up with rather large B.

Four answers:

Time B7-5t0(1) to find

m o 50.25n1/6

with u(m, 1) ~ B~ 1n2/6

by searching consecutive m's.
Time B%t°(1) by skipping
through m’'s with small f5, f4.

Time B*>1°(1) o find m ~ Blnl/®
with u(m, B%7) ~ B~1n2/6.
(1999 Murphy)

Time B3-5T0(1) by partly
controlling f3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

cal m &~ n1/6

~ n?/0

ich time do we

r of B—to find
) ~ B~1n?/07

Impact as
bits out of n.

I values of m
action of
nized NFS.
ore m's!)

r large B.

Four answers:

Time B7-5t0(1) to find

" o 50.25n1/6

with u(m, 1) ~ B~ 1n2/6

by searching consecutive m's.

Time B%t°(1) by skipping

through m’'s with small f5, f4.
Time B*5t°(1) to find m ~ Blnl/®
with u(m, B%7) ~ B~1n2/6.
(1999 Murphy)

Time B3-5T0(1) by partly
controlling f3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

New method uses
lattice-basis reduc
specifically integer

Many lower-level s
effectively choppin

a few more bits ol
approximate reduc
(e.g., 2004 Schnor
“PSLQ" (1999 Ba
“geometric’ ideas
(2004 Nguyen Ste

www.loria.fr/ “stehle/
www.loria.fr/“stehle/

Four answers:

Time B7-5to(1) to find

m o 50.25n1/6

with u(m, 1) ~ B—1n2/6

by searching consecutive m's.

Time B%t°(1) by skipping
through m’'s with small f5, f4.

Time B*%1°(1) o find m ~ Blnl/®
with u(m, B%7) ~ B~ 1n2/6.
(1999 Murphy)

Time B3-5T0(1) by partly
controlling f3. (2004 Bernstein)

cr.yp.to/talks.html#2004.11.15

New method uses 4-dimensional
lattice-basis reduction,
specifically integer-relation finding.

Many lower-level speedups,
effectively chopping

a few more bits out of n:
approximate reduction

(e.g., 2004 Schnorr),

“"PSLQ" (1999 Bailey Ferguson),
“geometric’ ideas

(2004 Nguyen Stehlé).

www.loria.fr/“stehle/LOWDIM.html
www.loria.fr/“stehle/FPLLL.html

find

~1,,2/6

cutive m'’s.

Kipping
small f5, f4.

find m ~ Blnl/6
~ B_1n2/6.

partly
)04 Bernstein)

004.11.15

New method uses 4-dimensional
lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,
effectively chopping

a few more bits out of n:
approximate reduction

(e.g., 2004 Schnorr),

“PSLQ" (1999 Bailey Ferguson),
“geometric’ ideas

(2004 Nguyen Stehlé).

www.loria.fr/“stehle/LOWDIM.html
www.loria.fr/ “stehle/FPLLL.html

NFS step 2: choo:

Previous step insp
Kept the attractiv
as measured by u

NFS step 2: Evall
of each attractive
Choose highest-m
for tactoring n.

Merit evaluation is
out is applied to f

More accurate tha
so selects better n

New method uses 4-dimensional
lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,
effectively chopping

a few more bits out of n:
approximate reduction

(e.g., 2004 Schnorr),

“PSLQ" (1999 Bailey Ferguson),
“geometric’ ideas

(2004 Nguyen Stehlé).

www.loria.fr/“stehle/LOWDIM.html
www.loria.fr/ “stehle/FPLLL.html

NFS step 2: choose one m

Previous step inspected many m's.
Kept the attractive m'’s,
as measured by u values.

NFS step 2: Evaluate merit
of each attractive m.
Choose highest-merit m
for tactoring n.

Merit evaluation is slower than u
out is applied to fewer m's.

More accurate than u
so selects better m.

4-dimensional

flon,

-relation finding.

peedups,

g
It of n:
tion

.r),

iley Ferguson),

hig).

LOWDIM.html
FPLLL.html

NFS step 2: choose one m

Previous step inspected many m's.

Kept the attractive m'’s,
as measured by u values.

NFS step 2: Evaluate merit
of each attractive m.
Choose highest-merit m
for tactoring n.

Merit evaluation is slower than u
out is applied to fewer m's.

More accurate than u
so selects better m.

Given H,m, fs, ..
Consider integer p
with 6 > 0 and gc
How many values
(@ — bm)(fsa> +
are in [—H, H]|?

1 bound Is quite ¢

Instead enumerate
count a’s for each
(Silverman, Contir

NFS step 2: choose one m

Previous step inspected many m's.

Kept the attractive m'’s,
as measured by u values.

NFS step 2: Evaluate merit
of each attractive m.
Choose highest-merit m
for tactoring n.

Merit evaluation is slower than u
out is applied to fewer m's.

More accurate than u
so selects better m.

Given H,m, fs, ..., fo:
Consider integer pairs (a, b)
with b6 > 0 and gcd{a, b} = 1.
How many values

(@ — bm)(fsa® + - -- + fob)
are in [—H, H]|?

1 bound Is quite crude.

Instead enumerate b's,
count a's for each b.
(Silverman, Contini, Lenstra)

e one m

ected many m's.

e m's,
values.

late merit
m.

rit m

> slower than u
wer m's.

n
1.

Given H,m, fs5, ..., fo:
Consider integer pairs (a, b)

with b6 > 0 and gcd{a, b} = 1.

How many values
(@ — bm)(fsa® + - -- + fob°)
are in [—H, H]|?

1 bound Is quite crude.

Instead enumerate b's,
count a's for each b.
(Silverman, Contini, Lenstra)

Faster (2004 Bern

Numerically appro
the area of

{(a,6) e R xR : -

Number of qualify
is extremely close
(3/m2)H?/® [aq
where

f(z) = (z —m)(/

Evaluate superellig
oy standard techn

vartition, use serie

cr.yp.to/talks.html#2

Given Hym, fs, ..., fo:
Consider integer pairs (a, b)

with b6 > 0 and gcd{a, b} = 1.

How many values
(@ — bm)(fsa” + - -- + fob)
are in [—H, H]|?

1 bound Is quite crude.

Instead enumerate b's,
count a's for each b.
(Silverman, Contini, Lenstra)

Faster (2004 Bernstein):

Numerically approximate
the area of

{(a,b) e RxR:---€[-H, H]}.

Number of qualifying pairs

Is extremely close to
(3/m2)H?/0 [%2, da/(f(z)?)!/®
where

f(z) = (z — m)(fsz> + - + fo).

Evaluate superelliptic integral
oy standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

-, fo:
airs (a, b)

d{a, b} = 1.

-+ fob)

rude.

*éfS,
b.
i, Lenstra)

Faster (2004 Bernstein):

Numerically approximate
the area of

{(a,b) e RxR:---€[-H, H]}.

Number of qualifying pairs
Is extremely close to
(3/m2)H?I® [%0, dz /(£ (z)?)/°

where

f(z) = (z —m)(fsz> + -+ fo).

Evaluate superelliptic integral
oy standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

Will see that NFS
fully factored valu

(@ — bm)(fsa’> +

Won't be able to |

with unknown prir

Merit of m =~ cha
(@ — bm)(fsa° +-
will be fully factor
Simplified definitic
“fully factored”: °

l.e., no prime divis

Faster (2004 Bernstein):

Numerically approximate
the area of

{(a,b) e RxR:---€[-H, H]}.

Number of qualifying pairs
Is extremely close to
(3/m2)HI® [%5, dz/(£(z)?)M/°

where

f(z) = (z — m)(fsz> + - + fo).

Evaluate superelliptic integral
oy standard techniques:

partition, use series expansions.

cr.yp.to/talks.html#2004.11.15

Will see that NFS needs
fully factored values

(@ — bm)(fsa + - - + fob°).

Won't be able to use values

with unknown prime divisors.

Merit of m ~ chance that

(@ — bm)(fsa> + - - - + fob)
will be fully factored.

Simplified definition of
“fully factored”: “249-smooth,”
l.e., no prime divisors > 240

stein):
Xximate

.- € |[—H, H]}.

Ing pairs
to

2/ (f(2)?)!/0

52° + - + fo).

tic Integral
ques:
S expansions.

004.11.15

Will see that NFS needs
fully factored values

(@ — bm)(fsa + - - + fob°).

Won't be able to use values
with unknown prime divisors.

Merit of m = chance that
(@ — bm)(fsa” + - - - + fob)
will be fully factored.

Simplified definition of

¢t240

“fully factored": -smooth,”

l.e., no prime divisors > 240

What i1s chance th
(@ — bm)(fsa> +
will be fully factor
given that it Is In

Try to account for
roots modulo sma
(Schroeppel, Mury

Can do this accur:
(2002 Bernstein)

cr.yp.to/papers.html#
cr.yp.to/psibound.htn

Will see that NFS needs
fully factored values

(@ — bm)(fsa + - - + fob°).

Won't be able to use values
with unknown prime divisors.

Merit of m = chance that
(@ — bm)(fsa> + - - - + fob)
will be fully factored.

Simplified definition of

“fully factored”: *“240

l.e., no prime divisors > 240

-smooth,”

What Is chance that

(@ — bm)(fsa> + - - - + fob°)
will be fully factored,

given that it is in [—H, H]|?

Try to account for
roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.
(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

needs
0g

Lt fob).

1se values
ne divisors.

nce that

ot fob?)
ed.

n of
t240

ors > 240

-smooth,”

What Is chance that

(@ — bm)(fsa> + - - - + fob°)
will be fully factored,

given that it is in [—H, H]|?

Try to account for
roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.
(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

NFS step 3: find ¢

Have integer m, p
f(z) = (z —m)(f

Consider values 6°
(@ — bm)(fsa> +

NFS step 3: Choo

For

wit

each pair (a, b

ith 6° f(a/b) € [-

find small prime d
of b0 f(a/b).

What Is chance that

(@ — bm)(fsa> + - - - + fob)
will be fully factored,

given that it is in [—H, H]|?

Try to account for
roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.
(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html

NFS step 3: find small primes

Have integer m, polynomial
f(z) = (z — m)(fsz> + --- + fo).

Consider values 6° f(a/b) =
(a —bm)(fsa® +--- + fob°).

NFS step 3: Choose H.

For

wit

each pair (a, b)

ith 6°f(a/b) € [-H, H],

find small prime divisors
of b0 f(a/b).

at

<t fob?)
ed,

|—H, H]|?

| primes.

hy, et al.)

tely.

psi

NFS step 3: find small primes

Have integer m, polynomial

f(z) = (x — m)(fsz> + --- + fo).

Consider values 6° f(a/b) =
(a —bm)(fsa® +--- + fob°).

NFS step 3: Choose H.
For each pair (a, b)

with 6° f(a/b) € [—H, H],
find small prime divisors
of b0 f(a/b).

Simplified definitic
< 212

(Serious misconce

“Sieving”: Consid
array of 21° conse
For each small prii
Mark a's with

b° f(a/b) divisible

Can jump quickly

these a's: they lie
arithmetic progres:

NFS step 3: find small primes Simplified definition of “small”:

< 212
Have integer m, polynomial — '
f(z) = (z —m)(fsz> + -+ fo). (Serious misconception: < 240))
Consider values 6° f(a/b) = “Sieving”: Consider one b,
(@ — bm)(fsa” + - - - + fob). array of 21° consecutive a's.
NFS step 3: Choose H. For each srr?all PHmME p.

Mark a's with

For each pair (a, b)

with 6° f(a/b) € [—H, H],
find small prime divisors Can jump quickly through

of b0 f(a/b). these a's: they lie in a few
arithmetic progressions mod p.

b° f(a/b) divisible by p.

small primes

olynomial

52° + -+ fo).

f(a/b) =
Lt fob).

se H.

)
~H, H],

VISOI'S

Simplified definition of “small”:
< 212,

(Serious misconception: < 240))

“Sieving”: Consider one b,
array of 21° consecutive a's.
For each small prime p:
Mark a’s with

b° f(a/b) divisible by p.

Can jump quickly through

these a's: they lie in a few
arithmetic progressions mod p.

Dramatically impr
adapting to CPU

Example:

For primes p € [21
each progression h
8 or 9 array entrie
Always mark 9 ent
often overflowing .
to eliminate branc

Simplified definition of “small”:
< 212,

(Serious misconception: < 240))

“Sieving”: Consider one b,
array of 21° consecutive a's.
For each small prime p:
Mark a’s with

b° f(a/b) divisible by p.

Can jump quickly through

these a's: they lie in a few
arithmetic progressions mod p.

Dramatically improve speed by
adapting to CPU architecture.

Example:

For primes p € [2%°/9,2%/8],
each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.

n of “small’:

otion: < 240))

ar one b,
cutive a’'s.
mne p:

by ».

through
in a few
sions mod .

Dramatically improve speed by
adapting to CPU architecture.

Example:

For primes p € [2%°/9,2%/8],
each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.

Generalize ° f(a/.
NFS can use 6° f(
for (a, b) in a dete
(1984 Davis Holdr
1993 Pollard)

Number of 6° f(a/
Is proportional to .
Can choose surpris
and compensate b

(1995 Bernstein)

cr.yp.to/papers.html#

Dramatically improve speed by Generalize 6° f(a/b):
adapting to CPU architecture. NFS can use 6° f(a/b)/q
for (a, b) in a determinant-q lattice.

(1984 Davis Holdridge,
1993 Pollard)

Example:
For primes p € [2%°/9,2%/8],
each progression has

8 or 9 array entries. Number of 6°f(a/b)/q in [—H, H]
Always mark 9 entries, Is proportional to q_2/3.

often overflowing array, Can choose surprisingly small H

to eliminate branch mispredictions. and compensate by using many g's.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

ove speed by
architecture.

°/9,21/8],

daS

S.

ries,

array,

h mispredictions.

Generalize 6° f(a/b):
NFS can use 6°f(a/b)/q

for (a, b) in a determinant-q lattice.

(1984 Davis Holdridge,
1993 Pollard)

Number of 6° f(a/b)/q in [—H, H]

Is proportional to q_2/3.

Can choose surprisingly small H

and compensate by using many g's.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

NFS step 4: early

Have many pairs (
For each 6° f(a/b)
small prime divisor
and not-yet-factor

NFS step 4: Choo
Discard all values

not-yet-factored p:

How to choose L7
Balance time for s
with time for step

Generalize 6° f(a/b): NFS step 4: early abort
NFS can use 6° f(a/b)/q

for (a, b) in a determinant-q lattice.
(1984 Davis Holdridge,

1993 Pollard)

Have many pairs (a, b).
For each 6°f(a/b), know
small prime divisors

and not-yet-factored part.

Number of 6° f(a/b)/q in [—H, H]

“2/3 NFS step 4: Choose L.

Discard all values 6° f(a/b) with
not-yet-factored parts above L.

Is proportional to g
Can choose surprisingly small H

and compensate by using many g's.
(1995 Bernstein) How to choose L? Answer:

Balance time for step 5
with time for step 3.

cr.yp.to/papers.html#mlnfs

h):
1/b)/q

rminant-q lattice.
idge,

8)/g in [-H, H
—2/3

singly small H

y using many g 's.

mlnfs

NFS step 4: early abort

Have many pairs (a, b).
For each 6°f(a/b), know
small prime divisors

and not-yet-factored part.

NFS step 4: Choose L.
Discard all values 6° f(a/b) with
not-yet-factored parts above L.

How to choose L? Answer:
Balance time for step 5
with time for step 3.

NFS step 5: fully

Have some pairs (
For each value 6°;
know small prime

not-yet-factored p:

NFS step 5: Ident
b° f(a/b) that are

Should replace “2
with slightly differ
not discussed in ti
(e.g. 1993 Copper

NFS step 4: early abort

Have many pairs (a, b).
For each 6°f(a/b), know
small prime divisors

and not-yet-factored part.

NFS step 4: Choose L.

Discard all values 6° f(a/b) with
not-yet-factored parts above L.

How to choose L? Answer:
Balance time for step 5
with time for step 3.

NFS step 5: fully factor

Have some pairs (a, b).
For each value 6°f(a/b):
know small prime divisors;
not-yet-factored part < L.

NFS step 5: ldentify values
b° f(a/b) that are 2*-smooth.

“240_smooth”

Should replace
with slightly different notions,

not discussed in this talk.
(e.g. 1993 Coppersmith)

abort

a,b).
know
'S

ed part.

se L.
b° f(a/b) with
arts above L.

Answer:
tep 5
3.

NFS step 5: fully factor

Have some pairs (a, b).
For each value 6° f(a/b):
know small prime divisors;

not-yet-factored part < L.

NFS step 5: ldentify values

b° f(a/b) that are 2*-smooth.

Should replace “24Y-smooth”

with slightly different notions,

not discussed in this talk.
(e.g. 1993 Coppersmith)

Assume that origir
are smooth with p
step 3 spends time

step b spends time

With proper balan
time roughly RT(.
to find one smoot|
(1982 Pomerance)

Want 12 as large :
to move from RT
But want 12 belov
and want 15 smal

sieving fits into L1

cr.yp.to/bib/entries.

NFS step 5: fully factor

Have some pairs (a, b).
For each value 6° f(a/b):
know small prime divisors;

not-yet-factored part < L.

NFS step 5: ldentify values

b° f(a/b) that are 2*-smooth.

Should replace “24Y-smooth”
with slightly different notions,
not discussed In this talk.
(e.g. 1993 Coppersmith)

Assume that original values

are smooth with probability 1/R;
step 3 spends time S per value;
step b spends time [per value.

With proper balance,

time roughly RT(S/T)12/40
to find one smooth value.
(1982 Pomerance)

Want 12 as large as possible
to move from RT towards RS.
But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

factor

a, b).
"(a/b):
divisors;
art < L.

ify values
:240

_smooth”

ent notions,
s talk.
smith)

-smooth.

Assume that original values

are smooth with probability 1/R;
step 3 spends time S per value;
step b spends time [per value.

With proper balance,

time roughly RT(S/T)12/40
to find one smooth value.
(1982 Pomerance)

Want 12 as large as possible
to move from RT towards RS.
But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

Traditional algoritl
For each pair (a, b
use ECM to find
dividing 6° f(a/b).
Complications sav:

rho,” more abort

Much faster to ha
a big batch of pail
(2000 Bernstein)

Save even more til
smoothness withol

primes. (2004 Fra
Morain Wirth)

Assume that original values

are smooth with probability 1/R;
step 3 spends time S per value;
step b spends time T per value.

With proper balance,

time roughly RT(S/T)12/40
to find one smooth value.
(1982 Pomerance)

Want 12 as large as possible
to move from RT towards RS.
But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

Traditional algorithm for step b:
For each pair (a, b) separately,
use ECM to find primes < 240
dividing 6° f(a/b).
Complications save time:

rho,” more aborts, et al.

Much faster to handle
a big batch of pairs (a, b).
(2000 Bernstein)

Save even more time by checking
smoothness without first finding
primes. (2004 Franke Kleinjung

Morain Wirth)

1al values
robability 1/R;

> S per value:

> [per value.

CE,
5/7—)12/40

1 value.

s possible
towards RS.

v 15,
so that
~cache.

html#1982/pomerance

Traditional algorithm for step b:
For each pair (a, b) separately,
use ECM to find primes < 240
dividing 6° f(a/b).
Complications save time:

rho,” more aborts, et al.

Much faster to handle
a big batch of pairs (a, b).
(2000 Bernstein)

Save even more time by checking
smoothness without first finding

primes. (2004 Franke Kleinjung
Morain Wirth)

Streamlined batch
(2004 Bernstein):

Multiply primes <
in pairs, pairs of p
to obtain their prc
Relies on fast disk
multiplication of h

Compute P mod 1
Relies on fast divis

Now a value v is <
(P mod v)zﬂglgv]

cr.yp.to/papers.html#

Traditional algorithm for step b:
For each pair (a, b) separately,
use ECM to find primes < 240
dividing 6° f(a/b).
Complications save time:

rho,” more aborts, et al.

Much faster to handle
a big batch of pairs (a, b).
(2000 Bernstein)

Save even more time by checking
smoothness without first finding

primes. (2004 Franke Kleinjung
Morain Wirth)

Streamlined batch algorithm
(2004 Bernstein):

Multiply primes < 249

in pairs, pairs of pairs, etc.,

to obtain their product P.
Relies on fast disk-based
multiplication of huge integers.

Compute P mod v for each value v.
Relies on fast division.

Now a value v is smooth iff
(P mod v)zﬂglgv] mod v = 0.

cr.yp.to/papers.html#smoothparts

nm for step 5:

) separately,
rimes < 240

> time:

s, et al.

ndle
s (a, b).

me by checking
it first finding
nke Kleinjung

Streamlined batch algorithm
(2004 Bernstein):

Multiply primes < 249

in pairs, pairs of pairs, etc.,

to obtain their product P.
Relies on fast disk-based
multiplication of huge integers.

Compute P mod v for each value v.

Relies on fast division.

Now a value v is smooth iff
(P mod v)zﬂglgv] mod v = 0.

cr.yp.to/papers.html#smoothparts

Many lower-level s

Compute P with °
~ 1.5 times faster

Compute P mod 1
“scaled remainder
~ 2.6 times faster

(2004 Bernstein, a
2003 Bostan Lecel

Reduce communic
(2004-2005 Berns

cr.yp.to/papers.html#
cr.yp.to/papers.html#4

Streamlined batch algorithm
(2004 Bernstein):

Multiply primes < 249

in pairs, pairs of pairs, etc.,

to obtain their product P.
Relies on fast disk-based
multiplication of huge integers.

Compute P mod v for each value v.

Relies on fast division.

Now a value v is smooth iff
(P mod v)zﬂglgv] mod v = 0.

cr.yp.to/papers.html#smoothparts

Many lower-level speedups.

Compute P with “FFT doubling”:
~ 1.5 times faster. (2004 Kramer)

Compute P mod v with
“scaled remainder tree":

~ 2.6 times faster.

(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)

Reduce communication costs.
(2004-2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

algorithm

:240

airs, etc.,

duct P.

-based
uge integers.

) for each value v.

1oNn.
mooth iff
mod v = 0.

'smoothparts

Many lower-level speedups.

Compute P with “FFT doubling”:
~ 1.5 times faster. (2004 Kramer)

Compute P mod v with
“scaled remainder tree":

~ 2.6 times faster.

(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)

Reduce communication costs.
(2004-2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Contrary to popul
properly designed

computers can drz
price-performance

Huge improvemen
(2001 Bernstein)

The batch algoritt
on today's badly ¢
(Pentium, PowerP
but will eventually

http://www.shal
cryptanalytic-hard

cr.yp.to/talks.html#Z
cr.yp.to/papers.html#

Many lower-level speedups.

Compute P with “FFT doubling”:
~ 1.5 times faster. (2004 Kramer)

Compute P mod v with
“scaled remainder tree":

~ 2.6 times faster.

(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)

Reduce communication costs.
(2004-2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Contrary to popular myth,
properly designed parallel
computers can dramatically improve

price-performance ratio.

Huge improvement for ECM etc.
(2001 Bernstein)

The batch algorithms are better
on today's badly designed CPUs
(Pentium, PowerPC, Athlon, etc.)
but will eventually be obsolete.

http://www.sharcs.org: new
cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

peedups.

'FFT doubling™:
. (2004 Kramer)

) with
tree” :

dapting
f Schost)

ation costs.
tein)

‘multapps
'scaledmod

Contrary to popular myth,

properly designed parallel
computers can dramatically improve
price-performance ratio.

Huge improvement for ECM etc.
(2001 Bernstein)

The batch algorithms are better
on today's badly designed CPUs
(Pentium, PowerPC, Athlon, etc.)
but will eventually be obsolete.

http://www.sharcs.org: new
cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

NFS step 6: lineat

Have some pairs (

with complete fac
of the values b° f(

NFS step 6: Find
of pairs (a, b) for
a — ba both have
Here a #m is at

Do this by finding
dependency amon;
Guaranteed to suc
if there are enougl

Contrary to popular myth,

properly designed parallel
computers can dramatically improve
price-performance ratio.

Huge improvement for ECM etc.
(2001 Bernstein)

The batch algorithms are better
on today's badly designed CPUs
(Pentium, PowerPC, Athlon, etc.)
but will eventually be obsolete.

http://www.sharcs.org: new
cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

NFS step 6: linear algebra

Have some pairs (a, b)
with complete factorizations

of the values 6° f(a/b).

NFS step 6: Find nonempty subset
of pairs (a, b) for which a — bm and
a — ba both have square product.
Here a % m is a root of f.

Do this by finding a linear
dependency among vectors mod 2.
Guaranteed to succeed

if there are enough vectors.

ar myth,

parallel

matically improve
ratio.

t for ECM etc.

ms are better
esigned CPUs

C, Athlon, etc.)
be obsolete.

"CS.0rg: new

ware workshop.

005.06.11-1
infscircuit

NFS step 6: linear algebra

Have some pairs (a, b)
with complete factorizations

of the values 6° f(a/b).

NFS step 6: Find nonempty subset
of pairs (a, b) for which a — bm and
a — ba both have square product.
Here a % m is a root of f.

Do this by finding a linear
dependency among vectors mod 2.
Guaranteed to succeed

if there are enough vectors.

Choose prime bou
to minimize total -
linear algebra and

Larger bound wou
of previous steps,

algebra would be
Reduce bound to |
algebra with previ

This balancing me
somewhat less img
speedups In partic

NFS step 6: linear algebra

Have some pairs (a, b)

with complete factorizations
of the values 6°f(a/b).

NFS step 6: Find nonempty subset
of pairs (a, b) for which a — bm and
a — ba both have square product.
Here a % m is a root of f.

Do this by finding a linear
dependency among vectors mod 2.
Guaranteed to succeed

if there are enough vectors.

Choose prime bound 24V

to minimize total time of

linear algebra and previous steps.

Larger bound would minimize time
of previous steps, but then linear

algebra would be a bottleneck.
Reduce bound to balance linear
algebra with previous steps.

This balancing means
somewhat less impact of

speedups In particular steps.

~algebra

a, b)

orizations
a/b).

nonempty subset
vhich a — bm and
square product.
oot of f.

a linear

r vectors mod 2.
ceed

) vectors.

Choose prime bound 24V

to minimize total time of
linear algebra and previous steps.

Larger bound would minimize time
of previous steps, but then linear

algebra would be a bottleneck.
Reduce bound to balance linear
algebra with previous steps.

This balancing means
somewhat less impact of
speedups In particular steps.

NFS step 7: squar

Have some pairs (
Product of a — bn

Product of a — box

NFS step 7: Use |
factor n, maybe n

Simplest method,

V[1(@ —ba), is n

Other methods in
waste of programr

Choose prime bound 24V

to minimize total time of
linear algebra and previous steps.

Larger bound would minimize time
of previous steps, but then linear

algebra would be a bottleneck.
Reduce bound to balance linear
algebra with previous steps.

This balancing means
somewhat less impact of
speedups In particular steps.

NFS step 7: square roots

Have some pairs (a, b).
Product of a — bm is square.

Product of a — ba is square.

NFS step 7: Use pairs to
factor n, maybe nontrivially.

Simplest method, computing
/| 1(@ — ba), is not a bottleneck.
Other methods in literature are a

waste of programmer time.

