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Exercise for the reader: Exercise for the reader:
Find a nontrivial factor of Find a nontrivial factor of
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Exercise for the reader:
Find a nontrivial factor of

6366223796340423057152171586.

Small prime factors
are easy to find.

Larger primes are harder.

“Elliptic-curve method” (ECM)
scales surprisingly well.
(1987 Lenstra)

ECM has found a prime ~ 2219,
(2005 Dodson; rather lucky;
~ 3 - 10 Opteron cycles)
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For worst-case integers with
two very large prime factors,
ECM does not scale as well as
“number-field sieve” (NFS).
(1988 Pollard, et al.)

Latest record: NFS has found
two prime factors =y 2332

of “RSA-200" challenge. (2005
Bahr Boehm Franke Kleinjung;
~ 5 - 10'8 Opteron cycles)

How much more difficult
is it to find prime factors ~ 2°12
of an integer n ~ 210247

www.loria.fr/ “zimmerma/records/rsa200



ader:

actor of
3057152171586.

S

harder.

thod” (ECM)

well.

prime ~ 2219
her lucky:;
1 cycles)

1a/records/p66

For worst-case integers with
two very large prime factors,
ECM does not scale as well as
“number-field sieve” (NFS).
(1988 Pollard, et al.)

Latest record: NFS has found
two prime factors =y 2332

of “RSA-200" challenge. (2005
Bahr Boehm Franke Kleinjung;
~ 5 - 10'8 Opteron cycles)

How much more difficult
is it to find prime factors ~ 2°12

of an integer n ~ 210247

www.loria.fr/ “zimmerma/records/rsa200

NFS step 1: find :

NFS tries to facto
iInspecting values ¢

Select integer m ¢
find integers f5, f:
with n = fsm?® +
for various integer
(a —bm)(fsa° + f

Practically every c
will succeed in fac
Better speed from

(@ —bm)(fsa” + f



For worst-case integers with
two very large prime factors,
ECM does not scale as well as
“number-field sieve” (NFS).
(1988 Pollard, et al.)

Latest record: NFS has found
two prime factors =y 2332

of “RSA-200" challenge. (2005
Bahr Boehm Franke Kleinjung;
~ 5 - 10'8 Opteron cycles)

How much more difficult
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of an integer n ~ 210247
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NFS step 1: find attractive m's

NFS tries to factor n by
inspecting values of a polynomial.

Select integer m € [n1/% nl/3];
find integers fs, fa,..., fo

with n = fsm> + fam* + - + fo;
for various integers a, b inspect
(a—bm)(fsa°+ faa®b+- -+ fob®).

Practically every choice of m
will succeed in factoring n.
Better speed from smaller values

(a—bm)(fsa5 + faa%b+- -+ fob®).
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NFS step 1: find attractive m's

NFS tries to factor n by
inspecting values of a polynomial.

Select integer m € [n1/% nl/3];
find integers fs, fa,..., fo

with n = fsm> + fam* + - + fo;
for various integers a, b inspect

(a—bm)(fsa®+ faa®b+- -+ fob%)

Practically every choice of m
will succeed in factoring n.
Better speed from smaller values

(a—bm)(fsa®+ faa®b+- -+ fob%)

e.g. n = 3141592
Can choose m =
fs = 314, f4 = 15
fo =358, f1 =97

NFS succeeds in f.
by inspecting valu

(a — 10006)(314a’
for various integer

But NFS succeeds
using m = 1370, |
(a — 13706)(65a>
38a°b? + 377063



NFS step 1: find attractive m's

NFS tries to factor n by
inspecting values of a polynomial.

Select integer m € [n1/% nl/3];
find integers fs, fa,..., fo

with n = fsm> + fam* + - + fo;
for various integers a, b inspect

(a—bm)(fsa®+ faa®b+- -+ fob%)

Practically every choice of m
will succeed in factoring n.
Better speed from smaller values

(a—bm)(fsa5 + faa%b+- -+ fob®).

e.g. n = 314159265358979323:
Can choose m = 1000,

fs = 314, f4 = 159, f3 = 265,
fo =358, f1 =979, fo = 323.

NFS succeeds in factoring n
by inspecting values

(a — 10006)(314a> + - - - + 323b°)
for various integer pairs (a, b).

But NFS succeeds more quickly
using m = 1370, inspecting

(a — 13706)(65a> + 130a*b +
38a3b® + 377a°b3 + 127ab* 4 330°).
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NFS succeeds in factoring n
by inspecting values

(a — 10006)(314a> + - - - + 323b°)
for various integer pairs (a, b).

But NFS succeeds more quickly
using m = 1370, inspecting
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e.g. n = 314159265358979323:
Can choose m = 1000,

fs = 314, f4 = 159, f3 = 265,
fo =358, f1 =979, fo = 323.

NFS succeeds in factoring n
by inspecting values

(a — 10006)(314a> + - - - + 323b°)
for various integer pairs (a, b).

But NFS succeeds more quickly
using m = 1370, inspecting
(a — 13706)(65a> + 130a*b +

38a3b® + 377a°b3 + 127ab* 4 330°).

NFS step 1: Consider, e.g.,
24 possible choices of m.
Quickly identify, e.g.,

225 jttractive candidates.

Will choose one m in step 2.

If |a| < SR and |b| < S~IR then
(a—bm)(fsa + - + fob?)| <
u(m, S)R® where u(m, S) =

(mS 1 +5)(| £S5+ +[FoS7]).

Attractive m, S: small u(m, S).
(1999 Murphy)
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NFS step 1: Consider, e.g.,
24 possible choices of m.
Quickly identify, e.g.,

225 jttractive candidates.

Will choose one m in step 2.

If |a| < SR and |b| < S~IR then
(a—bm)(fsa + - - + fob?)| <
u(m, S)R® where u(m, S) =

(mS 1 +5)(|fsS° |+ +[FoS7]).

Attractive m, S: small u(m, S).
(1999 Murphy)

Choosing one typical m ~ nl/0

produces u(m, 1) ~ n2/°.

Question: How much time do we
need to save factor of B—to find

m, S with u(m, S) ~ B~ 1n2/07

This has as much impact as
chopping ~ 3lg B bits out of n.

Searching for good values of m
takes noticeable fraction of
total time of optimized NFS.
(If not, consider more m's!)
End up with rather large B.



der, e.g.,
s of m.

g.,
Jidates.

L In step 2.

| <SRt
-+ fob)
u(m,S) =

|+ 4 f0S57)).

nen
<

mall uw(m, S).

Choosing one typical m ~ nl/0

produces u(m, 1) ~ n2/°.

Question: How much time do we
need to save factor of B—to find

m, S with u(m, S) ~ B~ 1n2/07

This has as much impact as
chopping ~ 3lg B bits out of n.

Searching for good values of m
takes noticeable fraction of
total time of optimized NFS.
(If not, consider more m's!)
End up with rather large B.

Four answers:
Time B7-5to(1) to
m o 50.25n1/6
with u(m,1) ~ B
by searching conse

Time BoTo(1) by «
through m’s with

Time B*>to(l) to
with u(m, B%")
(1999 Murphy)

Time B3-5+o(1) by
controlling f3. (2(

cr.yp.to/talks.html#2



Choosing one typical m ~ nl/0

produces u(m, 1) ~ n2/°.

Question: How much time do we
need to save factor of B—to find

m, S with u(m, S) ~ B~ 1n2/07

This has as much impact as
chopping ~ 3lg B bits out of n.

Searching for good values of m
takes noticeable fraction of
total time of optimized NFS.
(If not, consider more m's!)
End up with rather large B.

Four answers:

Time B7-5t0(1) to find

m o 50.25n1/6

with u(m, 1) ~ B~ 1n2/6

by searching consecutive m's.
Time B%t°(1) by skipping
through m’'s with small f5, f4.

Time B*>1°(1) o find m ~ Blnl/®
with u(m, B%7) ~ B~1n2/6.
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Time B3-5T0(1) by partly
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New method uses 4-dimensional
lattice-basis reduction,
specifically integer-relation finding.

Many lower-level speedups,
effectively chopping

a few more bits out of n:
approximate reduction

(e.g., 2004 Schnorr),

“"PSLQ" (1999 Bailey Ferguson),
“geometric’ ideas

(2004 Nguyen Stehlé).
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New method uses 4-dimensional
lattice-basis reduction,

specifically integer-relation finding.

Many lower-level speedups,
effectively chopping

a few more bits out of n:
approximate reduction

(e.g., 2004 Schnorr),

“PSLQ" (1999 Bailey Ferguson),
“geometric’ ideas
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NFS step 2: choose one m

Previous step inspected many m's.
Kept the attractive m'’s,
as measured by u values.

NFS step 2: Evaluate merit
of each attractive m.
Choose highest-merit m
for tactoring n.

Merit evaluation is slower than u
out is applied to fewer m's.

More accurate than u
so selects better m.
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Previous step inspected many m's.

Kept the attractive m'’s,
as measured by u values.

NFS step 2: Evaluate merit
of each attractive m.
Choose highest-merit m
for tactoring n.

Merit evaluation is slower than u
out is applied to fewer m's.

More accurate than u
so selects better m.

Given H,m, fs, ..
Consider integer p
with 6 > 0 and gc
How many values
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are in [—H, H]|?
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Instead enumerate
count a’s for each
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NFS step 2: choose one m

Previous step inspected many m's.

Kept the attractive m'’s,
as measured by u values.

NFS step 2: Evaluate merit
of each attractive m.
Choose highest-merit m
for tactoring n.

Merit evaluation is slower than u
out is applied to fewer m's.

More accurate than u
so selects better m.

Given H,m, fs, ..., fo:
Consider integer pairs (a, b)
with b6 > 0 and gcd{a, b} = 1.
How many values

(@ — bm)(fsa® + - -- + fob)
are in [—H, H]|?

1 bound Is quite crude.

Instead enumerate b's,
count a's for each b.
(Silverman, Contini, Lenstra)
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Given Hym, fs, ..., fo:
Consider integer pairs (a, b)

with b6 > 0 and gcd{a, b} = 1.

How many values
(@ — bm)(fsa” + - -- + fob)
are in [—H, H]|?

1 bound Is quite crude.

Instead enumerate b's,
count a's for each b.
(Silverman, Contini, Lenstra)

Faster (2004 Bernstein):

Numerically approximate
the area of

{(a,b) e RxR:---€[-H, H]}.

Number of qualifying pairs

Is extremely close to
(3/m2)H?/0 [%2, da/(f(z)?)!/®
where

f(z) = (z — m)(fsz> + - + fo).

Evaluate superelliptic integral
oy standard techniques:

partition, use series expansions.
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Numerically approximate
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{(a,b) e RxR:---€[-H, H]}.

Number of qualifying pairs
Is extremely close to
(3/m2)HI® [%5, dz/(£(z)?)M/°

where

f(z) = (z — m)(fsz> + - + fo).

Evaluate superelliptic integral
oy standard techniques:
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Will see that NFS needs
fully factored values

(@ — bm)(fsa + - - + fob°).

Won't be able to use values

with unknown prime divisors.

Merit of m ~ chance that

(@ — bm)(fsa> + - - - + fob)
will be fully factored.

Simplified definition of
“fully factored”: “249-smooth,”
l.e., no prime divisors > 240



stein):
Xximate

.- € |[—H, H]}.

Ing pairs
to

2/ (f(2)?)!/0

52° + - + fo).

tic Integral
ques:
S expansions.

004.11.15

Will see that NFS needs
fully factored values

(@ — bm)(fsa + - - + fob°).

Won't be able to use values
with unknown prime divisors.

Merit of m = chance that
(@ — bm)(fsa” + - - - + fob)
will be fully factored.

Simplified definition of

¢t240

“fully factored": -smooth,”

l.e., no prime divisors > 240
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Try to account for
roots modulo sma
(Schroeppel, Mury

Can do this accur:
(2002 Bernstein)
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Will see that NFS needs
fully factored values

(@ — bm)(fsa + - - + fob°).

Won't be able to use values
with unknown prime divisors.

Merit of m = chance that
(@ — bm)(fsa> + - - - + fob)
will be fully factored.

Simplified definition of

“fully factored”: *“240

l.e., no prime divisors > 240

-smooth,”

What Is chance that

(@ — bm)(fsa> + - - - + fob°)
will be fully factored,

given that it is in [—H, H]|?

Try to account for
roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.
(2002 Bernstein)

cr.yp.to/papers.html#psi
cr.yp.to/psibound.html
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What Is chance that

(@ — bm)(fsa> + - - - + fob)
will be fully factored,

given that it is in [—H, H]|?

Try to account for
roots modulo small primes.

(Schroeppel, Murphy, et al.)

Can do this accurately.
(2002 Bernstein)
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NFS step 3: find small primes

Have integer m, polynomial
f(z) = (z — m)(fsz> + --- + fo).

Consider values 6° f(a/b) =
(a —bm)(fsa® +--- + fob°).

NFS step 3: Choose H.

For

wit

each pair (a, b)

ith 6°f(a/b) € [-H, H],

find small prime divisors
of b0 f(a/b).
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NFS step 3: find small primes

Have integer m, polynomial

f(z) = (x — m)(fsz> + --- + fo).

Consider values 6° f(a/b) =
(a —bm)(fsa® +--- + fob°).

NFS step 3: Choose H.
For each pair (a, b)

with 6° f(a/b) € [—H, H],
find small prime divisors
of b0 f(a/b).
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NFS step 3: find small primes Simplified definition of “small”:

< 212
Have integer m, polynomial — '
f(z) = (z —m)(fsz> + -+ fo). (Serious misconception: < 240))
Consider values 6° f(a/b) = “Sieving”: Consider one b,
(@ — bm)(fsa” + - - - + fob). array of 21° consecutive a's.
NFS step 3: Choose H. For each srr?all PHmME p.

Mark a's with

For each pair (a, b)

with 6° f(a/b) € [—H, H],
find small prime divisors Can jump quickly through

of b0 f(a/b). these a's: they lie in a few
arithmetic progressions mod p.

b° f(a/b) divisible by p.
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Simplified definition of “small”:
< 212,

(Serious misconception: < 240))

“Sieving”: Consider one b,
array of 21° consecutive a's.
For each small prime p:
Mark a’s with

b° f(a/b) divisible by p.

Can jump quickly through

these a's: they lie in a few
arithmetic progressions mod p.

Dramatically improve speed by
adapting to CPU architecture.

Example:

For primes p € [2%°/9,2%/8],
each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.
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Example:

For primes p € [2%°/9,2%/8],
each progression has

8 or 9 array entries.

Always mark 9 entries,

often overflowing array,

to eliminate branch mispredictions.
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Dramatically improve speed by Generalize 6° f(a/b):
adapting to CPU architecture. NFS can use 6° f(a/b)/q
for (a, b) in a determinant-q lattice.

(1984 Davis Holdridge,
1993 Pollard)

Example:
For primes p € [2%°/9,2%/8],
each progression has

8 or 9 array entries. Number of 6°f(a/b)/q in [—H, H]
Always mark 9 entries, Is proportional to q_2/3.

often overflowing array, Can choose surprisingly small H

to eliminate branch mispredictions. and compensate by using many g's.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs
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Generalize 6° f(a/b):
NFS can use 6°f(a/b)/q

for (a, b) in a determinant-q lattice.

(1984 Davis Holdridge,
1993 Pollard)

Number of 6° f(a/b)/q in [—H, H]

Is proportional to q_2/3.

Can choose surprisingly small H

and compensate by using many g's.

(1995 Bernstein)

cr.yp.to/papers.html#mlnfs

NFS step 4: early

Have many pairs (
For each 6° f(a/b)
small prime divisor
and not-yet-factor
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Discard all values

not-yet-factored p:

How to choose L7
Balance time for s
with time for step



Generalize 6° f(a/b): NFS step 4: early abort
NFS can use 6° f(a/b)/q

for (a, b) in a determinant-q lattice.
(1984 Davis Holdridge,

1993 Pollard)

Have many pairs (a, b).
For each 6°f(a/b), know
small prime divisors

and not-yet-factored part.

Number of 6° f(a/b)/q in [—H, H]

“2/3 NFS step 4: Choose L.

Discard all values 6° f(a/b) with
not-yet-factored parts above L.

Is proportional to g
Can choose surprisingly small H

and compensate by using many g's.
(1995 Bernstein) How to choose L? Answer:

Balance time for step 5
with time for step 3.

cr.yp.to/papers.html#mlnfs
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NFS step 4: early abort

Have many pairs (a, b).
For each 6°f(a/b), know
small prime divisors

and not-yet-factored part.

NFS step 4: Choose L.
Discard all values 6° f(a/b) with
not-yet-factored parts above L.

How to choose L? Answer:
Balance time for step 5
with time for step 3.

NFS step 5: fully

Have some pairs (
For each value 6°;
know small prime

not-yet-factored p:

NFS step 5: Ident
b° f(a/b) that are

Should replace “2
with slightly differ
not discussed in ti
(e.g. 1993 Copper



NFS step 4: early abort

Have many pairs (a, b).
For each 6°f(a/b), know
small prime divisors

and not-yet-factored part.

NFS step 4: Choose L.

Discard all values 6° f(a/b) with
not-yet-factored parts above L.

How to choose L? Answer:
Balance time for step 5
with time for step 3.

NFS step 5: fully factor

Have some pairs (a, b).
For each value 6°f(a/b):
know small prime divisors;
not-yet-factored part < L.

NFS step 5: ldentify values
b° f(a/b) that are 2*-smooth.

“240_smooth”

Should replace
with slightly different notions,

not discussed in this talk.
(e.g. 1993 Coppersmith)
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NFS step 5: fully factor

Have some pairs (a, b).
For each value 6° f(a/b):
know small prime divisors;

not-yet-factored part < L.

NFS step 5: ldentify values

b° f(a/b) that are 2*-smooth.

Should replace “24Y-smooth”

with slightly different notions,

not discussed in this talk.
(e.g. 1993 Coppersmith)

Assume that origir
are smooth with p
step 3 spends time

step b spends time

With proper balan
time roughly RT(.
to find one smoot|
(1982 Pomerance)

Want 12 as large :
to move from RT
But want 12 belov
and want 15 smal

sieving fits into L1
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NFS step 5: fully factor

Have some pairs (a, b).
For each value 6° f(a/b):
know small prime divisors;

not-yet-factored part < L.

NFS step 5: ldentify values

b° f(a/b) that are 2*-smooth.

Should replace “24Y-smooth”
with slightly different notions,
not discussed In this talk.
(e.g. 1993 Coppersmith)

Assume that original values

are smooth with probability 1/R;
step 3 spends time S per value;
step b spends time [ per value.

With proper balance,

time roughly RT(S/T)12/40
to find one smooth value.
(1982 Pomerance)

Want 12 as large as possible
to move from RT towards RS.
But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance
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Assume that original values

are smooth with probability 1/R;
step 3 spends time S per value;
step b spends time [ per value.

With proper balance,

time roughly RT(S/T)12/40
to find one smooth value.
(1982 Pomerance)

Want 12 as large as possible
to move from RT towards RS.
But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.
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Assume that original values

are smooth with probability 1/R;
step 3 spends time S per value;
step b spends time T per value.

With proper balance,

time roughly RT(S/T)12/40
to find one smooth value.
(1982 Pomerance)

Want 12 as large as possible
to move from RT towards RS.
But want 12 below 15,

and want 15 small so that

sieving fits into L1 cache.

cr.yp.to/bib/entries.html#1982/pomerance

Traditional algorithm for step b:
For each pair (a, b) separately,
use ECM to find primes < 240
dividing 6° f(a/b).
Complications save time:

rho,” more aborts, et al.

Much faster to handle
a big batch of pairs (a, b).
(2000 Bernstein)

Save even more time by checking
smoothness without first finding
primes. (2004 Franke Kleinjung

Morain Wirth)
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Traditional algorithm for step b:
For each pair (a, b) separately,
use ECM to find primes < 240
dividing 6° f(a/b).
Complications save time:

rho,” more aborts, et al.

Much faster to handle
a big batch of pairs (a, b).
(2000 Bernstein)

Save even more time by checking
smoothness without first finding

primes. (2004 Franke Kleinjung
Morain Wirth)

Streamlined batch
(2004 Bernstein):

Multiply primes <
in pairs, pairs of p
to obtain their prc
Relies on fast disk
multiplication of h

Compute P mod 1
Relies on fast divis

Now a value v is <
(P mod v)zﬂglgv]

cr.yp.to/papers.html#



Traditional algorithm for step b:
For each pair (a, b) separately,
use ECM to find primes < 240
dividing 6° f(a/b).
Complications save time:

rho,” more aborts, et al.

Much faster to handle
a big batch of pairs (a, b).
(2000 Bernstein)

Save even more time by checking
smoothness without first finding

primes. (2004 Franke Kleinjung
Morain Wirth)

Streamlined batch algorithm
(2004 Bernstein):

Multiply primes < 249

in pairs, pairs of pairs, etc.,

to obtain their product P.
Relies on fast disk-based
multiplication of huge integers.

Compute P mod v for each value v.
Relies on fast division.

Now a value v is smooth iff
(P mod v)zﬂglgv] mod v = 0.

cr.yp.to/papers.html#smoothparts
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Streamlined batch algorithm
(2004 Bernstein):

Multiply primes < 249

in pairs, pairs of pairs, etc.,

to obtain their product P.
Relies on fast disk-based
multiplication of huge integers.

Compute P mod v for each value v.

Relies on fast division.

Now a value v is smooth iff
(P mod v)zﬂglgv] mod v = 0.

cr.yp.to/papers.html#smoothparts

Many lower-level s

Compute P with °
~ 1.5 times faster

Compute P mod 1
“scaled remainder
~ 2.6 times faster

(2004 Bernstein, a
2003 Bostan Lecel
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Streamlined batch algorithm
(2004 Bernstein):

Multiply primes < 249

in pairs, pairs of pairs, etc.,

to obtain their product P.
Relies on fast disk-based
multiplication of huge integers.

Compute P mod v for each value v.

Relies on fast division.

Now a value v is smooth iff
(P mod v)zﬂglgv] mod v = 0.

cr.yp.to/papers.html#smoothparts

Many lower-level speedups.

Compute P with “FFT doubling”:
~ 1.5 times faster. (2004 Kramer)

Compute P mod v with
“scaled remainder tree":

~ 2.6 times faster.

(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)

Reduce communication costs.
(2004-2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod
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Many lower-level speedups.

Compute P with “FFT doubling”:
~ 1.5 times faster. (2004 Kramer)

Compute P mod v with
“scaled remainder tree":

~ 2.6 times faster.

(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)

Reduce communication costs.
(2004-2005 Bernstein)
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Many lower-level speedups.

Compute P with “FFT doubling”:
~ 1.5 times faster. (2004 Kramer)

Compute P mod v with
“scaled remainder tree":

~ 2.6 times faster.

(2004 Bernstein, adapting
2003 Bostan Lecerf Schost)

Reduce communication costs.
(2004-2005 Bernstein)

cr.yp.to/papers.html#multapps
cr.yp.to/papers.html#scaledmod

Contrary to popular myth,
properly designed parallel
computers can dramatically improve

price-performance ratio.

Huge improvement for ECM etc.
(2001 Bernstein)

The batch algorithms are better
on today's badly designed CPUs
(Pentium, PowerPC, Athlon, etc.)
but will eventually be obsolete.

http://www.sharcs.org: new
cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit
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Contrary to popular myth,

properly designed parallel
computers can dramatically improve
price-performance ratio.

Huge improvement for ECM etc.
(2001 Bernstein)

The batch algorithms are better
on today's badly designed CPUs
(Pentium, PowerPC, Athlon, etc.)
but will eventually be obsolete.

http://www.sharcs.org: new
cryptanalytic-hardware workshop.
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Contrary to popular myth,

properly designed parallel
computers can dramatically improve
price-performance ratio.

Huge improvement for ECM etc.
(2001 Bernstein)

The batch algorithms are better
on today's badly designed CPUs
(Pentium, PowerPC, Athlon, etc.)
but will eventually be obsolete.

http://www.sharcs.org: new
cryptanalytic-hardware workshop.

cr.yp.to/talks.html#2005.06.11-1
cr.yp.to/papers.html#nfscircuit

NFS step 6: linear algebra

Have some pairs (a, b)
with complete factorizations

of the values 6° f(a/b).

NFS step 6: Find nonempty subset
of pairs (a, b) for which a — bm and
a — ba both have square product.
Here a % m is a root of f.

Do this by finding a linear
dependency among vectors mod 2.
Guaranteed to succeed

if there are enough vectors.
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NFS step 6: linear algebra

Have some pairs (a, b)
with complete factorizations

of the values 6° f(a/b).

NFS step 6: Find nonempty subset
of pairs (a, b) for which a — bm and
a — ba both have square product.
Here a % m is a root of f.

Do this by finding a linear
dependency among vectors mod 2.
Guaranteed to succeed

if there are enough vectors.

Choose prime bou
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NFS step 6: linear algebra

Have some pairs (a, b)

with complete factorizations
of the values 6°f(a/b).

NFS step 6: Find nonempty subset
of pairs (a, b) for which a — bm and
a — ba both have square product.
Here a % m is a root of f.

Do this by finding a linear
dependency among vectors mod 2.
Guaranteed to succeed

if there are enough vectors.

Choose prime bound 24V

to minimize total time of

linear algebra and previous steps.

Larger bound would minimize time
of previous steps, but then linear

algebra would be a bottleneck.
Reduce bound to balance linear
algebra with previous steps.

This balancing means
somewhat less impact of

speedups In particular steps.
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Choose prime bound 24V

to minimize total time of
linear algebra and previous steps.

Larger bound would minimize time
of previous steps, but then linear

algebra would be a bottleneck.
Reduce bound to balance linear
algebra with previous steps.

This balancing means
somewhat less impact of
speedups In particular steps.

NFS step 7: squar

Have some pairs (
Product of a — bn

Product of a — box

NFS step 7: Use |
factor n, maybe n

Simplest method,
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Choose prime bound 24V

to minimize total time of
linear algebra and previous steps.

Larger bound would minimize time
of previous steps, but then linear

algebra would be a bottleneck.
Reduce bound to balance linear
algebra with previous steps.

This balancing means
somewhat less impact of
speedups In particular steps.

NFS step 7: square roots

Have some pairs (a, b).
Product of a — bm is square.

Product of a — ba is square.

NFS step 7: Use pairs to
factor n, maybe nontrivially.

Simplest method, computing
/| 1(@ — ba), is not a bottleneck.
Other methods in literature are a

waste of programmer time.



