Integer factorization
D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF DMS-0140542

Alfred P. Sloan Foundation

Sieving ¢ and 611 + ¢ for small c:

22

222

Ooo~NOOTPh~WNOR

12122

16(2222

3

33

5

5

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

N

is at Chicago
|2

undation

Sieving ¢ and 611 + ¢ for small c:

Ooo~NOOTPA~WNOR

16|2222

33

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

Have complete fac
c(611 + ¢) for som

14 - 625 = 213054
64 - 675 = 203352
75 - 686 = 213152

14 - 64 - 75 - 625 - ¢
— 28345574 — (24

gcd{14 - 64 - 75 —
= 47.

611 =47 -13.

Sieving ¢ and 611 + ¢ for small c:

Ooco~NOOTPh~WNOR

16|2222

33

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

Have complete factorization of
c(611 + ¢) for some c's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 - 64 -75 - 625 - 675 - 686

_ 28345874 _ (24325472)2.
gcd{14 - 64 - 75 — 24325472 611}
— 47,

611 =47 -13.

+ ¢ for small c: Have complete factorization of Given n and parar
2 33 c(611 + ¢) for some c's. 1. Use powers of
3 & 14 - 625 = 21305471 sieve cand n 4 ¢
22 7 G7E _ 7623E270
; 04- 675 21315273' 2. Look for nonen
75686 = 2°3-5°7°. .
, : with ¢(n + ¢) com
333 14 -64 - 75 - 625 - 675 - 686 and with []c(n +
C
NP 7 _ 28345874 _ (24325472)2.
5555 i as 3. Compute gcd{:s
. gcd{14 - 64 - 75 — 2*3°5%7°, 611} where z = [Jc—
2 —= 47, C
33 5 7
611 =47 -13.

Have complete factorization of
c(611 + ¢) for some c's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 - 64 -75 - 625 - 675 - 686

_ 28345874 _ (24325472)2.
gcd{14 - 64 - 75 — 24325472 611}
— 47,

611 =47 -13.

Given n and parameter y:

1. Use powers of primes < y to

sieve ¢ and n+cfor1§c§y2.

2. Look for nonempty set of ¢'s

with ¢(n + ¢) completely factored

3. Compute gcd{z, n}

where £ =

and with | |¢(n + ¢) square.
C

"y

c(n + c).

torization of
e C'S.

575 - 686
325472)2.

24325%72,611}

Given n and parameter y:

1. Use powers of primes < y to

sieve ¢ and n+cfor1§c§y2.

2. Look for nonempty set of ¢'s

with ¢(n + ¢) completely factored

3. Compute gcd{z, n}

where £ =

and with | |c(n + ¢) square.
C

"y

c(n + c).

This is the Q siev

Same principles:
Continued-fracti
(Lehmer, Powers,
Brillhart, Morrison
Linear sieve (Sch
Quadratic sieve (
Number-field sie

(Pollard, Buhler, L
Pomerance, Adlen

Given n and parameter y:

1. Use powers of primes < y to

sieve ¢ and n+cfor1§c§y2.

2. Look for nonempty set of ¢'s

wit

n ¢(n + ¢) completely factored

dN@

with [|c(n + ¢) square.
C

3. Compute gcd{z, n}

where £ =

c(n + c).

C —
C C

This is the Q sieve.

Same principles:
Continued-fraction method
(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).
Quadratic sieve (Pomerance).
Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).

neter y:

orimes < y to
for]l <c¢< y2.

\pty set of ¢'s
pletely factored
c) square.

C, T}

\/ C c(n + c).

This is the Q sieve.

Same principles:
Continued-fraction method
(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).

Sieving speed

Handle sieving in -
sieve {n +1,...,1
sieve {n +y+1,.

sieve {n + 2y + 1,
etc.

Sieving {n +1,n
using primes p < 1
means finding, for
cc{n+1n+2,
which p’'s divide n

This is the Q sieve.

Same principles:
Continued-fraction method
(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).

Sieving speed

Handle sieving in y pieces:
sieve {n +1,...,n+ y};

sieve {n +y+1,...,n+ 2y},
sieve {n +2y+1,...,n+ 3y};
etc.

Sieving {n+1,n+2,...,n+ y}
using primes p < y

means finding, for each
ce{n+1,n+2,...,n+y},
which p's divide n + c.

n method

).

roeppel).

Pomerance).

Ve
enstra,
1an).

Sieving speed

Handle sieving in y pieces:
sieve {n +1,..., n+ Y}

sieve {n +y+1,..., n + 2y},
sieve {n +2y+1,..., n + 3y};
etc.

Sieving {n+1,n+2,..., n—+yt
using primes p < y

means finding, for each
ce{n+1,n+2, ..., n—+ vy},
which p's divide n + c.

Consider all pairs
where n +cis an

Easy to generate
sorted by second ¢
(612,2), (614, 2),
(620, 2), (612, 3),
(615,5), (620,5),

Sieving means listi
sorted by first con
(612,2), (612, 3),
(615, 3), (615, 5),
(618, 2), (618, 3),

Sieving speed

Handle sieving in y pieces:
sieve {n +1,..., n+ Y}

sieve {n +y+1,..., n + 2y},
sieve {n+2y+1,..., n + 3y };
etc.

Sieving {n+1,n+2,..., n—+yt
using primes p < y

means finding, for each
ce{n+1,n+2, ..., n—+ vy},
which p's divide n + c.

Consider all pairs (n + ¢, p)
where n + ¢ is a multiple of p.

Easy to generate pairs

sorted by second component:
(612,2), (614,2), (616, 2), (618, 2),
(620, 2), (612, 3), (615, 3), (618, 3),
(615,5), (620,5), (616, 7).

Sieving means listing pairs
sorted by first component:
(612,2), (612, 3), (614, 2),
(615, 3), (615,5), (616, 2), (616,7),
(618, 2), (618, 3), (620, 2), (620,5).

) pleces:

Consider all pairs (n + ¢, p)
where n + ¢ is a multiple of p.

Easy to generate pairs
sorted by second component:

(612,2), (614,2), (616,2), (618, 2),
(620, 2), (612,3), (615, 3), (618, 3),

(615, 5), (620,5), (616, 7).

Sieving means listing pairs
sorted by first component:
(612,2), (612, 3), (614, 2),

(615, 3), (615,5), (616, 2), (616, 7),
(618, 2), (618, 3), (620, 2), (620,5).

There are ylto(1)

involving {n + 1,7

Sieving {n+1,n
takes y11°(1) seco
on RAM costing y

2-dimensional mes
is much faster: y°
on machine costin

Can do even bette
on machine costin
using “elliptic-cun

Consider all pairs (n + ¢, p)
where n + ¢ is a multiple of p.

Easy to generate pairs
sorted by second component:

(612,2), (614,2), (616,2), (618, 2),
(620, 2), (612,3), (615, 3), (618, 3),

(615, 5), (620,5), (616, 7).

Sieving means listing pairs
sorted by first component:
(612,2), (612, 3), (614, 2),

(615, 3), (615,5), (616, 2), (616, 7),
(618, 2), (618,3), (620,2), (620,5).

There are y11°(1) pairs
involving {n +1,n+2,..., n-—+1yt.

Sieving {n+1,n+2,..., n+y}
takes y11°(1) seconds
on RAM costing y17°() dollars.

2-dimensional mesh computer
is much faster: y0-21°(1) seconds
on machine costing y1T°() dollars.

Can do even better: y°(1) seconds
on machine costing yHo(l) dollars,

using “elliptic-curve method.”

(n + ¢, p)
wultiple of p.

)alrs

omponent:

(616, 2), (618, 2),
(615, 3), (618, 3),

(616,7).

ng pairs
ponent:
(614,2),

(616, 2), (616, 7),
(620, 2), (620, 5).

There are y1 (1) pairs

involving {n +1,n+2,..., n-—+1yt.

Sieving{n+1,n+2,...,n+ vy}
takes y11°(1) seconds
on RAM costing y17°(1) dollars.

2-dimensional mesh computer
is much faster: y0-21°(1) seconds
on machine costing y1T°() dollars.

Can do even better: y°1) seconds
on machine costing yHo(l) dollars,
using “elliptic-curve method.”

Square-finding spe

Start from factore

ci(n+c1) =1 |,
c2(n+c) =1 |,z
etc.

Want to find fq, f
such that

(c1(n + 1)1 (e
IS a square.

In other words:
_‘p 71,]‘161(79)+fz«'32(7j

Nas even exponent

There are y11o1) pairs Square-finding speed
involving {n +1,n+2,...,n+ y}.

Start from factored c(n + ¢)’s:

Sieving{n+1,n+2,...,n+ vy} ci1(n+c1) = p'pel(p),

takes yHO(l) seconds co(n +cp) = > pez(P),

on RAM costing y17°(1) dollars. etc.

2-dimensional mesh computer Want to find f1, fo, ...

IS much faster: y0'5+°(1) seconds such that

on machine costing yHO(l) dollars. (c1(n + cl))fl(cz(n 1 Cz))fz .
Can do even better: y°(1) seconds '> & squdre.

on machine costing yHo(l) dollars, In other words:

using “elliptic-curve method.” . pfie1(p)+faea(p)+-

Nas even exponents.

nds
1+0(1) dollars.

h computer
5+0(1) seconds

o y1to(1) dollars.

r: yo(l) seconds
o ylto(l) dollars,
/e method.”

Square-finding speed

Start from factored c(n + ¢)’s:

ci(n+c1) =11, pe1(P),
co(n + c2) =[], p%2(P),
etcC.

Want to find fq, fo, ...
such that

(c1(n + 1)1 (co(n +)2 -

IS a square.

In other words:
_‘p pf1e1(P)+f262(P)+"'

Nas even exponents.

In other words:
f1(e1(2), e1(3), e
+ f2(e2(2), e2(3),

+ ... s even.

e.g. given

14 - 625 = 213054
64 - 675 = 203352
75 - 686 = 213152
find f1, fo, f3 suck
f1(1,0,4,1) + fof
—+ f3(1, 1,2, 3) IS ¢

Square-finding speed

Start from factored c(n + ¢)’s:

ci(n+c1) =1 |, pe1(P),
co(n + c2) =[], p%2(P),
etcC.

Want to find fq, fo, ...
such that

(c1(n + 1)1 (co(n +)2 -

IS a square.

In other words:
_‘p pf1e1(P)+f262(P)+"'

Nas even exponents.

In other words:

fi(e1(2),e1(3), e1(5),...)
+ f2(e2(2), e2(3), e2(5), - .

+ ... |s even.

e.g. given

14 - 625 = 21305471

64 - 675 = 20335270,

75 - 686 = 21315273.

find f1, fo, f3 such that
f1(1,0,4,1) + £»(6,3,2,0)
+ f3(1,1,2,3) is even.

)

d ¢(n + ¢)'s:

€1 (P) ,
€2 (P) ,

In other words:

f1(e1(2),e1(3), e1(5),...)
+ f2(6.2(2), e2(3),e2(5), ..

e.g. given

14 - 625 = 21305471

64 - 675 = 20335270,

75 - 686 = 21315273.

find f1, fo, f3 such that
f1(1,0,4,1) + f2(6,3,2,0)
+ f3(1,1,2,3) is even.

)

This is linear alget

finding kernel of a

y37°(1) seconds
using Gaussian elit

y21o(1) seconds
using Wiedemann'

Again exploit para
y1.5+o(

on a 2-dimensiona

1) seconds

costing y1t°(1) da

In other words:

fi(e1(2),e1(3), e1(5),...)
+ f2(e2(2), e2(3), e2(5). - -

+ ... |s even.

e.g. given

14 - 625 = 21305471

64 - 675 = 20335270,

75 - 686 = 21315273.

find f1, fo, f3 such that
f1(1,0,4,1) + f»(6,3,2,0)
+ f3(1,1,2,3) is even.

)

This 1s
finding

inear algebra mod 2:

kernel of a matrix.

y37°(1) seconds

using Gaussian elimination.

y21o(1) seconds

using Wiedemann's method.

Again exploit parallelism:

Y

1.5+0(

1) seconds

on a 2-dimensional mesh

costing y1 (1) dollars.

This 1s
finding

kernel of a matrix.

y37°(1) seconds

using Gaussian elimination.

y21o(1) seconds

using Wiedemann's method.

Again exploit parallelism:

Y

1.5+0(

1) seconds

on a 2-dimensional mesh

costing y1 (1) dollars.

inear algebra mod 2:

How big is y?

Positive integers <
have ~ u™ % chanc
of completely fact
iInto primes < v,

where u = (log z)

Very crude approx
but in right ballpa

(Try numerical ex;
count products of
use fancy analytic

This 1s
finding

kernel of a matrix.

y37°(1) seconds

using Gaussian elimination.

y21o(1) seconds

using Wiedemann's method.

Again exploit parallelism:

Y

1.5+0(

1) seconds

on a 2-dimensional mesh

costing y1 (1) dollars.

inear algebra mod 2:

How big is y?

Positive integers < z
have ~ u~ " chance

of completely factoring
iInto primes < v,

where u = (logz)/ log y.

Very crude approximation
but in right ballpark.

(Try numerical experiments;
count products of primes;
use fancy analytic theorems.)

yra mod 2:

matrix.

mination.

s method.

llelism:

mesh

llars.

How big is y?

Positive integers < z
have ~ u~ " chance

of completely factoring
iInto primes < v,

where u = (logz)/ log y.

Very crude approximation
but in right ballpark.

(Try numerical experiments;
count products of primes;
use fancy analytic theorems.)

For logy ~ +/(1/:

Positive integers <
have ~ 1/y chanc
of completely fact
Into primes < y.

Presumably the in
I(n+1),2(n+2
have ~ y complet
thus produce a sq
often factor n.

How big is y?

Positive integers < z
have ~ u~ " chance

of completely factoring
iInto primes < v,

where u = (logz)/ log y.

Very crude approximation
but in right ballpark.

(Try numerical experiments;
count products of primes;
use fancy analytic theorems.)

For logy ~ 1/(1/2) log n log log n:
Positive integers < y?(n + y°)
have ~ 1/y chance

of completely factoring

Into primes < y.

Presumably the integers
1(n+1),2(n+2),....9%(n+ v%)
have ~ y complete factorizations;
thus produce a square;

often factor n.

oring

/logy.

Imation
rk.

yeriments;
primes;
theorems.)

For logy ~ 1/(1/2) log n log log n:
Positive integers < y?(n + y°)
have ~ 1/y chance

of completely factoring

Into primes < y.

Presumably the integers
1(n+1),2(n+2),....9%(n+ y%)
have ~ y complete factorizations;
thus produce a square;

often factor n.

So we believe that
Q-sieve price-perfc
is ¢ + o(1) power

exp(+1/log n log log
for some constant

Continued-fractior
linear sieve, quadr.
smaller power.

Use integers arour

Number-field sieve

exp(</ (log n)(log
Use even smaller |

For logy ~ 1/(1/2) log n log log n:
Positive integers < y?(n + y°)
have ~ 1/y chance

of completely factoring

Into primes < y.

Presumably the integers
1(n+1),2(n+2),....9%(n+ y%)
have ~ y complete factorizations;
thus produce a square;

often factor n.

So we believe that
Q-sieve price-performance ratio
is ¢+ o(1) power of

exp(+/lognloglogn),
for some constant c.

Continued-fraction method,
linear sieve, quadratic sieve:
smaller power.

Use integers around +/n.

Number-field sieve: power of

exp(3/ (log n)(log log n)?).
Use even smaller integers.

) log n log log n: So we believe that Discrete logarithm

/ 2 2 o . _ "

_y(n + y*°) Q sieve irlce perfo:cmance ratio Can use the same
e | is ¢+ o(1) power o to compute k give
oring exp(+/lognloglogn),

“Index-calculus m¢
for some constant c.

Exponential in log

tegers Continued-fraction method, .

5 5 | _ o to compute discref
.Y (n + YY) linear sieve, quadratic sieve: .

o by collisions, kang
> factorizations; smaller power.
1are; Use integers around /n. Subexponential in

| | to use index calcu
Number-field sieve: power of

exp(3/ (log n)(log log n)?).
Use even smaller integers.

Can cryptanalyze

So we believe that
Q-sieve price-performance ratio
is ¢+ o(1) power of

exp(+/lognloglogn),
for some constant c.

Continued-fraction method,
linear sieve, quadratic sieve:
smaller power.

Use integers around +/n.

Number-field sieve: power of

exp(3/ (log n)(log log n)?).
Use even smaller integers.

Discrete logarithms

Can use the same techniques

to compute £ given 3% mod n.

“Index-calculus methods.”

Exponential in logn

to compute discrete logarithm

by collisions, kangaroos, etc.

Subexponential in
to use Index calcu
Can cryptanalyze

logn
us.

arger n.

yrmance ratio

' method,
tic sieve:

d /n.

: power of

log n)?).
ntegers.

Discrete logarithms

Can use the same techniques

to compute £ given 3% mod n.

“Index-calculus methods.”

Exponential in logn

to compute discrete logarithm

by collisions, kangaroos, etc.

Subexponential in
to use Index calcu
Can cryptanalyze

logn
us.

arger n.

Collisions, kangarc
work for elliptic cL
SO we can cryptan
small elliptic curve

We don't know an
Index calculus doe
work for elliptic cL

Diffie-Hellman spe
use elliptic curves.
Signature-verificat

still use RSA/Rabi

Discrete logarithms

Can use the same techniques

to compute £ given 3% mod n.

“Index-calculus methods.”

Exponential in logn
to compute discrete logarithm
by collisions, kangaroos, etc.

Subexponential in logn
to use index calculus.

Can cryptanalyze larger n.

Collisions, kangaroos, etc.
work for elliptic curves,
so we can cryptanalyze
small elliptic curves.

We don’'t know anything better.
Index calculus doesn't
work for elliptic curves.

Diffie-Hellman speed records

use elliptic curves.
Signature-verification speed records
still use RSA /Rabin variants.

