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c(611 + ¢) for som

14 - 625 = 213054
64 - 675 = 203352
75 - 686 = 213152

14 - 64 - 75 - 625 - ¢
— 28345574 — (24

gcd{14 - 64 - 75 —
= 47.

611 =47 -13.
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Have complete factorization of
c(611 + ¢) for some c's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 - 64 -75 - 625 - 675 - 686

_ 28345874 _ (24325472)2.
gcd{14 - 64 - 75 — 24325472 611}
— 47,

611 =47 -13.
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Have complete factorization of
c(611 + ¢) for some c's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 - 64 -75 - 625 - 675 - 686

_ 28345874 _ (24325472)2.
gcd{14 - 64 - 75 — 24325472 611}
— 47,

611 =47 -13.

Given n and parameter y:

1. Use powers of primes < y to

sieve ¢ and n+cfor1§c§y2.

2. Look for nonempty set of ¢'s

with ¢(n + ¢) completely factored
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Given n and parameter y:

1. Use powers of primes < y to

sieve ¢ and n+cfor1§c§y2.

2. Look for nonempty set of ¢'s

wit

n ¢(n + ¢) completely factored
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with [ |c(n + ¢) square.
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3. Compute gcd{z, n}

where £ =

c(n + c).

C —
C C

This is the Q sieve.

Same principles:
Continued-fraction method
(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).
Quadratic sieve (Pomerance).
Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).
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This is the Q sieve.

Same principles:
Continued-fraction method
(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).

Sieving speed

Handle sieving in -
sieve {n +1,...,1
sieve {n +y+1,.

sieve {n + 2y + 1,
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Sieving {n +1,n
using primes p < 1
means finding, for
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which p’'s divide n



This is the Q sieve.

Same principles:
Continued-fraction method
(Lehmer, Powers,

Brillhart, Morrison).

Linear sieve (Schroeppel).

Quadratic sieve (Pomerance).

Number-field sieve
(Pollard, Buhler, Lenstra,
Pomerance, Adleman).

Sieving speed

Handle sieving in y pieces:
sieve {n +1,...,n+ y};

sieve {n +y+1,...,n+ 2y},
sieve {n +2y+1,...,n+ 3y};
etc.

Sieving {n+1,n+2,...,n+ y}
using primes p < y

means finding, for each
ce{n+1,n+2,...,n+y},
which p's divide n + c.
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sieve {n +1,..., n+ Y}

sieve {n +y+1,..., n + 2y},
sieve {n +2y+1,..., n + 3y};
etc.
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Sieving speed

Handle sieving in y pieces:
sieve {n +1,..., n+ Y}

sieve {n +y+1,..., n + 2y},
sieve {n+2y+1,..., n + 3y };
etc.

Sieving {n+1,n+2,..., n—+yt
using primes p < y

means finding, for each
ce{n+1,n+2, ..., n—+ vy},
which p's divide n + c.

Consider all pairs (n + ¢, p)
where n + ¢ is a multiple of p.

Easy to generate pairs

sorted by second component:
(612,2), (614,2), (616, 2), (618, 2),
(620, 2), (612, 3), (615, 3), (618, 3),
(615,5), (620,5), (616, 7).

Sieving means listing pairs
sorted by first component:
(612,2), (612, 3), (614, 2),
(615, 3), (615,5), (616, 2), (616,7),
(618, 2), (618, 3), (620, 2), (620,5).
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Consider all pairs (n + ¢, p)
where n + ¢ is a multiple of p.

Easy to generate pairs
sorted by second component:

(612,2), (614,2), (616,2), (618, 2),
(620, 2), (612,3), (615, 3), (618, 3),

(615, 5), (620,5), (616, 7).

Sieving means listing pairs
sorted by first component:
(612,2), (612, 3), (614, 2),

(615, 3), (615,5), (616, 2), (616, 7),
(618, 2), (618, 3), (620, 2), (620,5).

There are ylto(1)

involving {n + 1,7

Sieving {n+1,n
takes y11°(1) seco
on RAM costing y

2-dimensional mes
is much faster: y°
on machine costin

Can do even bette
on machine costin
using “elliptic-cun



Consider all pairs (n + ¢, p)
where n + ¢ is a multiple of p.

Easy to generate pairs
sorted by second component:

(612,2), (614,2), (616,2), (618, 2),
(620, 2), (612,3), (615, 3), (618, 3),

(615, 5), (620,5), (616, 7).

Sieving means listing pairs
sorted by first component:
(612,2), (612, 3), (614, 2),

(615, 3), (615,5), (616, 2), (616, 7),
(618, 2), (618,3), (620,2), (620,5).

There are y11°(1) pairs
involving {n +1,n+2,..., n-—+1yt.

Sieving {n+1,n+2,..., n+y}
takes y11°(1) seconds
on RAM costing y17°() dollars.

2-dimensional mesh computer
is much faster: y0-21°(1) seconds
on machine costing y1T°() dollars.

Can do even better: y°(1) seconds
on machine costing yHo(l) dollars,

using “elliptic-curve method.”
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2-dimensional mesh computer
is much faster: y0-21°(1) seconds
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There are y11o1) pairs Square-finding speed
involving {n +1,n+2,...,n+ y}.

Start from factored c(n + ¢)’s:

Sieving{n+1,n+2,...,n+ vy} ci1(n+c1) = p'pel(p),

takes yHO(l) seconds co(n +cp) = > pez(P),

on RAM costing y17°(1) dollars. etc.

2-dimensional mesh computer Want to find f1, fo, ...

IS much faster: y0'5+°(1) seconds such that

on machine costing yHO(l) dollars. (c1(n + cl))fl(cz(n 1 Cz))fz .
Can do even better: y°(1) seconds '> & squdre.

on machine costing yHo(l) dollars, In other words:

using “elliptic-curve method.” . pfie1(p)+faea(p)+-

Nas even exponents.
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Square-finding speed

Start from factored c(n + ¢)’s:

ci(n+c1) =11, pe1(P),
co(n + c2) =[], p%2(P),
etcC.

Want to find fq, fo, ...
such that

(c1(n + 1)1 (co(n + )2 -

IS a square.

In other words:
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Square-finding speed

Start from factored c(n + ¢)’s:

ci(n+c1) =1 |, pe1(P),
co(n + c2) =[], p%2(P),
etcC.

Want to find fq, fo, ...
such that

(c1(n + 1)1 (co(n + )2 -

IS a square.

In other words:
_‘p pf1e1(P)+f262(P)+"'

Nas even exponents.

In other words:

fi(e1(2),e1(3), e1(5),...)
+ f2(e2(2), e2(3), e2(5), - .

+ ... |s even.

e.g. given

14 - 625 = 21305471

64 - 675 = 20335270,

75 - 686 = 21315273.

find f1, fo, f3 such that
f1(1,0,4,1) + £»(6,3,2,0)
+ f3(1,1,2,3) is even.

)
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In other words:

f1(e1(2),e1(3), e1(5),...)
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e.g. given

14 - 625 = 21305471

64 - 675 = 20335270,

75 - 686 = 21315273.

find f1, fo, f3 such that
f1(1,0,4,1) + f2(6,3,2,0)
+ f3(1,1,2,3) is even.
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In other words:

fi(e1(2),e1(3), e1(5),...)
+ f2(e2(2), e2(3), e2(5). - -

+ ... |s even.

e.g. given

14 - 625 = 21305471

64 - 675 = 20335270,

75 - 686 = 21315273.

find f1, fo, f3 such that
f1(1,0,4,1) + f»(6,3,2,0)
+ f3(1,1,2,3) is even.
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This 1s
finding

kernel of a matrix.

y37°(1) seconds

using Gaussian elimination.

y21o(1) seconds

using Wiedemann's method.

Again exploit parallelism:

Y

1.5+0(

1) seconds

on a 2-dimensional mesh

costing y1 (1) dollars.

inear algebra mod 2:

How big is y?

Positive integers < z
have ~ u~ " chance

of completely factoring
iInto primes < v,

where u = (logz)/ log y.

Very crude approximation
but in right ballpark.

(Try numerical experiments;
count products of primes;
use fancy analytic theorems.)
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where u = (logz)/ log y.
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(Try numerical experiments;
count products of primes;
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How big is y?

Positive integers < z
have ~ u~ " chance

of completely factoring
iInto primes < v,

where u = (logz)/ log y.

Very crude approximation
but in right ballpark.

(Try numerical experiments;
count products of primes;
use fancy analytic theorems.)

For logy ~ 1/(1/2) log n log log n:
Positive integers < y?(n + y°)
have ~ 1/y chance

of completely factoring

Into primes < y.

Presumably the integers
1(n+1),2(n+2),....9%(n+ v%)
have ~ y complete factorizations;
thus produce a square;

often factor n.
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For logy ~ 1/(1/2) log n log log n:
Positive integers < y?(n + y°)
have ~ 1/y chance

of completely factoring

Into primes < y.

Presumably the integers
1(n+1),2(n+2),....9%(n+ y%)
have ~ y complete factorizations;
thus produce a square;

often factor n.

So we believe that
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For logy ~ 1/(1/2) log n log log n:
Positive integers < y?(n + y°)
have ~ 1/y chance

of completely factoring

Into primes < y.

Presumably the integers
1(n+1),2(n+2),....9%(n+ y%)
have ~ y complete factorizations;
thus produce a square;

often factor n.

So we believe that
Q-sieve price-performance ratio
is ¢+ o(1) power of

exp(+/lognloglogn),
for some constant c.

Continued-fraction method,
linear sieve, quadratic sieve:
smaller power.

Use integers around +/n.

Number-field sieve: power of

exp( 3/ (log n)(log log n)?).
Use even smaller integers.
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So we believe that
Q-sieve price-performance ratio
is ¢+ o(1) power of

exp(+/lognloglogn),
for some constant c.

Continued-fraction method,
linear sieve, quadratic sieve:
smaller power.

Use integers around +/n.

Number-field sieve: power of

exp( 3/ (log n)(log log n)?).
Use even smaller integers.

Discrete logarithms

Can use the same techniques

to compute £ given 3% mod n.

“Index-calculus methods.”

Exponential in logn

to compute discrete logarithm

by collisions, kangaroos, etc.
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Discrete logarithms

Can use the same techniques

to compute £ given 3% mod n.

“Index-calculus methods.”

Exponential in logn
to compute discrete logarithm
by collisions, kangaroos, etc.

Subexponential in logn
to use index calculus.

Can cryptanalyze larger n.

Collisions, kangaroos, etc.
work for elliptic curves,
so we can cryptanalyze
small elliptic curves.

We don’'t know anything better.
Index calculus doesn't
work for elliptic curves.

Diffie-Hellman speed records

use elliptic curves.
Signature-verification speed records
still use RSA /Rabin variants.



