Cache-timing attacks on AES http://cr.yp.to/papers.html

D. J. Bernstein #cachetiming, 2005:

Thanks to This paper reports successful

University of lllinois at Chicago
NSF CCR-9983950
Alfred P. Sloan Foundation

extraction of a complete AES key
from a network server

on another computer.

The targeted server used its key
solely to encrypt data using the
OpenSSL AES implementation
on a Pentium Ill."

All code included in paper.
Easily reproducible.




cks on AES

is at Chicago
0

undation

http://cr.yp.to/papers.html
#cachetiming, 200b:

“This paper reports successful

extraction of a complete AES key

from a network se
on another compu

rver

ter.

The targeted server used its key

solely to encrypt c

ata using the

OpenSSL AES im
on a Pentium I[II."

All code included

blementation

In paper.

Easily reproducible.

Attack extracted t
from timings of th

AES selectors (US
"Report on the de
the Advanced Enc
(AES),” 2001

“In some environn
timing attacks car
against operations
in different amoun
depending on thei



http://cr.yp.to/papers.html
#cachetiming, 200b:

“This paper reports successful

extraction of a complete AES key

from a network se
on another compu

rver

ter.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES im
on a Pentium [II.”

All code included

blementation

In paper.

Easily reproducible.

Attack extracted the AES key
from timings of the server.

AES selectors (US NIST),
“Report on the development of

the Advanced Encryption Standard
(AES),” 2001

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,

depending on their arguments.



/papers.html
)05:

s successful
nplete AES key
rver

ter.

r used Its key
ata using the
lementation

n paper.

A

Attack extracted the AES key
from timings of the server.

AES selectors (US NIST),
“Report on the development of

the Advanced Encryption Standard
(AES),” 2001

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,

depending on their arguments.

“A general defense

timing attacks 1s t
each encryption ar
operation runs In 1
of time. ...

“Table lookup: no
timing attacks ...

“Multiplication/di
or variable shift /rc
most difficult to d



Attack extracted the AES key
from timings of the server.

AES selectors (US NIST),
“Report on the development of

the Advanced Encryption Standard
(AES),” 2001

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,
depending on their arguments.

“A general defense against

timing attacks Is to ensure that
each encryption and decryption
operation runs in the same amount
of time. ...

“Table lookup: not vulnerable to
timing attacks ...

“Multiplication /division /squaring
or variable shift /rotation:
most difficult to defend ...



he AES key
€ Server.

NIST),

velopment of
ryption Standard

1ents,

 be effected
that execute
ts of time,

rarguments.

“A general defense against

timing attacks is to ensure that
each encryption and decryption
operation runs in the same amount
of time. ...

“Table lookup: not vulnerable to
timing attacks ...

“Multiplication /division /squaring
or variable shift /rotation:
most difficult to defend ...

“Rijndael and Sery
Boolean operation
and fixed shifts/ro
operations are the
against attacks. ..

“Finalist profiles. .
operations used by
among the easiest
power and timing
Rijndael appears t
major speed advar
competitors when
protections are col



“A general defense against

timing attacks is to ensure that
each encryption and decryption
operation runs in the same amount
of time. ...

“Table lookup: not vulnerable to
timing attacks ...

“Multiplication /division /squaring
or variable shift/rotation:
most difficult to defend ...

“Rijndael and Serpent use only

Boolean operations, table lookups,
and fixed shifts/rotations. These
operations are the easiest to defend
against attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend against
power and timing attacks. ...
Rijndael appears to gain a

major speed advantage over its
competitors when such

protections are considered. . ..



> against

o ensure that

'd decryption

-he same amount

t vulnerable to

vision /squaring
tation:
efend . ..

“Rijndael and Serpent use only

Boolean operations, table lookups,
and fixed shifts/rotations. These
operations are the easiest to defend
against attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend against
power and timing attacks. ...
Rijndael appears to gain a

major speed advantage over its
competitors when such

protections are considered. . ..

"NIST judged Rijr
best overall algorit

Rijndael appears t
consistently good

lts key setup time
its key agility 1s gc
Rijndael’s operatic
easiest to defend :
timing attacks. ..
Rijndael’s internal
appears to have g
benefit from instru
parallelism.” (Emj



“Rijndael and Serpent use only

Boolean operations, table lookups,
and fixed shifts/rotations. These
operations are the easiest to defend
against attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend against
power and timing attacks. ...
Rijndael appears to gain a

major speed advantage over its
competitors when such

protections are considered. . ..

“NIST judged Rijndael to be the
best overall algorithm for the AES.

Rijndael appears to be a
consistently good performer . ..

Its key setup time Is excellent, and
its key agility 1s good. ...

Rijndael’s operations are among the
easiest to defend against power and
timing attacks. ... Finally,
Rijndael’s internal round structure
appears to have good potential to
benefit from instruction-level

parallelism.” (Emphasis added.)



ent use only

s, table lookups,
tations. These
easiest to defend

. The

 Rijndael are

to defend against
attacks. ...

0 gain a

itage over Its
such

1sidered. . ..

“NIST judged Rijndael to be the
best overall algorithm for the AES.

Rijndael appears to be a
consistently good performer . ..

Its key setup time Is excellent, and
its key agility 1s good. ...

Rijndael’s operations are among the
easiest to defend against power and
timing attacks. ... Finally,
Rijndael’s internal round structure
appears to have good potential to
benefit from instruction-level

parallelism.” (Emphasis added.)

AES designers (D:
"Resistance agains
attacks: a compar
AES proposals,” 1

“Table lookups: T
not susceptible to
attack. ... Favora
that use only logic
table-lookups and
that are therefore
to secure. The alg
group are Crypton
Magenta, Rijndael



“NIST judged Rijndael to be the
best overall algorithm for the AES.

Rijndael appears to be a
consistently good performer . ..

Its key setup time is excellent, and
its key agility 1s good. ...

Rijndael’s operations are among the
easiest to defend against power and
timing attacks. ... Finally,
Rijndael’s internal round structure
appears to have good potential to
benefit from instruction-level

parallelism.” (Emphasis added.)

AES designers (Daemen, Rijmen),
"Resistance against implementation

attacks: a comparative study of the
AES proposals,” 1999:

“Table lookups: This instruction is
not susceptible to a timing
attack. ... Favorable: Algorithms

that use only logical operations,
table-lookups and fixed shifts, and
that are therefore relatively easy
to secure. The algorithms of this
group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”



\dael to be the
hm for the AES.
0 be a

performer . ..

is excellent, and
od. ...

ns are among the
)gainst power and
- Finally,

round structure
bod potential to
iction-level

bhasis added.)

AES designers (Daemen, Rijmen),
"Resistance against implementation

attacks: a comparative study of the
AES proposals,” 1999:

“Table lookups: This instruction is
not susceptible to a timing
attack. ... Favorable: Algorithms

that use only logical operations,
table-lookups and fixed shifts, and
that are therefore relatively easy
to secure. The algorithms of this
group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

AES designers, 19
“should take into .

measures to be tal
these attacks.”

(Amazing change
Timing attacks are
for cryptographic «
Bruce Schneier, 2(
problem is that sic
are practical again
anything, so it did
into consideration.



AES designers (Daemen, Rijmen),
"Resistance against implementation
attacks: a comparative study of the

AES proposals,” 1999:

“Table lookups: This instruction is
not susceptible to a timing
attack. ... Favorable: Algorithms

that use only logical operations,
table-lookups and fixed shifts, and
that are therefore relatively easy
to secure. The algorithms of this
group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

AES designers, 1999: Speed reports

“should take into account the
measures to be taken to thwart
these attacks.”

(Amazing change of position, 2005:
Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The
problem is that side-channel attacks
are practical against pretty much
anything, so it didn't really enter
into consideration.” )



xemen, Rijmen),
t Implementation

ative study of the
999:.

his Instruction is
a timing
ble: Algorithms

al operations,
fixed shifts, and
relatively easy
orithms of this
, DEAL,

and Serpent.”

AES designers, 1999: Speed reports

“should take into account the
measures to be taken to thwart
these attacks.”

(Amazing change of position, 2005:
Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The
problem is that side-channel attacks
are practical against pretty much
anything, so it didn't really enter
into consideration.” )

The problem in a
Daemen, Rijmen,
Variable-index tab
vulnerable to timit

AES does many lo
table[k[3] "n[3_
that depends on k
leaking k[3].

It is extremely diff
to avoid this leak

on Pentium, Athlc
without gigantic s



AES designers, 1999: Speed reports

“should take into account the
measures to be taken to thwart
these attacks.”

(Amazing change of position, 2005:
Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The
problem is that side-channel attacks
are practical against pretty much
anything, so it didn't really enter
into consideration.” )

The problem in a nutshell:
Daemen, Rijmen, NIST were wrong.
Variable-index table lookup s
vulnerable to timing attacks.

AES does many lookups such as
table[k[3] "n[3]], taking time
that depends on k[3] "n[3],
leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.
without gigantic slowdowns.



00: Speed reports
account the
ken to thwart

of position, 2005:
> “Irrelevant
Jesign.”

)05: “The
le-channel attacks
st pretty much
n't really enter

")

The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup is
vulnerable to timing attacks.

AES does many lookups such as
table[k[3] "n[3]], taking time
that depends on k[3] "n[3],
leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.
without gigantic slowdowns.

Naive reaction:
“Oh, of course.
A table lookup tal
if it misses the cac

Mentioned by 199
2000 Kelsey Schne

Exploited (mostly
by 2002 Page, 20C
Suzaki Shigeri Miy



The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup s
vulnerable to timing attacks.

AES does many lookups such as
table[k[3] "n[3]], taking time
that depends on k[3] "n[3],
leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.
without gigantic slowdowns.

Naive reaction:

“Oh, of course.

A table lookup takes more time
if it misses the cache.”

Mentioned by 1996 Kocher,
2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito
Suzaki Shigeri Miyauchi.



nutshell:

NIST were wrong.

le lookup s
g attacks.

okups such as
| ], taking time
[3]1"n[3],

Icult

n, etc.
lowdowns.

Naive reaction:

“Oh, of course.

A table lookup takes more time
if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito
Suzaki Shigeri Miyauchi.

Naive reaction, co
“But this isn't har
Eliminate cache m
all the AES tables
before the AES en

Problem 1: Elimin
misses Is actually |
difficult than this,

achieved by any e
high-speed AES sc

Problem 2: Even i
table-lookup time



Naive reaction:

“Oh, of course.

A table lookup takes more time
if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito
Suzaki Shigeri Miyauchi.

Naive reaction, continued:

“But this isn't hard to fix.
Eliminate cache misses by loading
all the AES tables into cache
before the AES encryption.”

Problem 1: Eliminating cache
misses Is actually much more
difficult than this, and is not
achieved by any existing
high-speed AES software.

Problem 2: Even in cache,
table-lookup time is variable.



(es more time
he.”

0 Kocher,

ler Wagner Hall.

for DES)
)3 Tsunoo Saito
rauchi.

Naive reaction, continued:

“But this isn't hard to fix.
Eliminate cache misses by loading
all the AES tables into cache
before the AES encryption.”

Problem 1: Eliminating cache
misses Is actually much more
difficult than this, and is not

achieved by any existing
high-speed AES software.

Problem 2: Even in cache,
table-lookup time is variable.

Obstacles to
that looks u

WrItIT

D a ta

In time independel

e Cache is faster t

e L1 cache is faste

e Cache associativ

e Code can be int

e Stores can

Interf

e Cache-bank thrc

Perhaps there are

Most CPU c

adequately c

esigne

ocum



Naive reaction, continued:

“But this isn't hard to fix.
Eliminate cache misses by loading
all the AES tables into cache
before the AES encryption.”

Problem 1: Eliminating cache
misses Is actually much more
difficult than this, and is not
achieved by any existing
high-speed AES software.

Problem 2: Even in cache,
table-lookup time is variable.

Obstacles to writing code
that looks up a table entry

In time independent of index:

e Cache is faster than DRAM.

e |1 cache is faster than L2 cache.
e Cache associativity is limited.

e Code can be interrupted.

e Stores can interfere with loads.

e Cache-bank throughput is limited.

Perhaps there are more obstacles.
Most CPU designers fail to
adequately document CPU speed!




ntinued:
d to fix.
Isses by loading

Into cache
cryption.”

ating cache
much more
and Is not
asting
ftware.

n cache,
IS variable.

Obstacles to writing code
that looks up a table entry

In time independent of index:

e Cache is faster than DRAM.

e L1 cache is faster than L2 cache.
e Cache associativity is limited.

e Code can be interrupted.

e Stores can interfere with loads.

e Cache-bank throughput is limited.

Perhaps there are more obstacles.
Most CPU designers fail to
adequately document CPU speed!

Cache associativit

AES software uses
tables, input, key,

On (e.g.) Athlon,
overlap modulo 32
two arrays can knc
another array out

Fix: squeeze varia
limited number of
reload tables befor



Obstacles to writing code
that looks up a table entry

In time independent of index:

e Cache is faster than DRAM.

e L1 cache is faster than L2 cache.
e Cache associativity is limited.

e Code can be interrupted.

e Stores can interfere with loads.

e Cache-bank throughput is limited.

Perhaps there are more obstacles.
Most CPU designers fail to
adequately document CPU speed!

Cache associativity is limited

AES software uses several arrays:
tables, input, key, etc.

On (e.g.) Athlon, if array positions
overlap modulo 32768, accessing
two arrays can knock an entry In
another array out of cache.

Fix: squeeze variables into a
limited number of arrays;
reload tables before every AES call.



g code
ble entry
1t of index:

han DRAM.

r than L2 cache.
ity is limited.
errupted.

ere with loads.

ughput 1s limited.

more obstacles.

rs fail to
ent CPU speed!

Cache associativity is limited

AES software uses several arrays:
tables, input, key, etc.

On (e.g.) Athlon, if array positions
overlap modulo 32768, accessing
two arrays can knock an entry In
another array out of cache.

Fix: squeeze variables into a
limited number of arrays;

reload tables before every AES call.

Code can be interi

Another process c:
an array entry out

Consider hyperthr
(2005 Osvik Sham
independently 200
But problem exist:
even without hype

Fix: put AES into
kernel, disabling ir
call takes time; re
code changes; but



Cache associativity is limited

AES software uses several arrays:
tables, input, key, etc.

On (e.g.) Athlon, if array positions
overlap modulo 32768, accessing
two arrays can knock an entry In
another array out of cache.

Fix: squeeze variables into a
limited number of arrays;

reload tables before every AES call.

Code can be interrupted

Another process can knock
an array entry out of cache.

Consider hyperthreading attacks
(2005 Osvik Shamir Tromer,
independently 2005 Percival).
But problem exists

even without hyperthreading.

Fix: put AES into operating-system
kernel, disabling interrupts. Kernel
call takes time; requires massive
code changes; but should work.



/ Is limited

several arrays:
etc.

if array positions
763, accessing
ck an entry In
of cache.

bles Into a
arrays;

e every AES call.

Code can be interrupted

Another process can knock
an array entry out of cache.

Consider hyperthreading attacks
(2005 Osvik Shamir Tromer,
independently 2005 Percival).
But problem exists

even without hyperthreading.

Fix: put AES into operating-system
kernel, disabling interrupts. Kernel
call takes time; requires massive
code changes; but should work.

Stores can interfer

On (e.g.) Pentium
load from L1 cach
slightly slower if it
same cache line m
as a recent store.

Timing variation F
even if all loads ar

Fix: compress AE!
table positions mo



Code can be interrupted

Another process can knock
an array entry out of cache.

Consider hyperthreading attacks
(2005 Osvik Shamir Tromer,
independently 2005 Percival).
But problem exists

even without hyperthreading.

Fix: put AES into operating-system
kernel, disabling interrupts. Kernel
call takes time; requires massive
code changes; but should work.

Stores can interfere with loads

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

Timing variation happens
even iIf all loads are from L1 cache!

Fix: compress AES tables; control
table positions modulo 4096.



‘upted

an knock
of cache.

rading attacks
1ir Tromer,

5 Percival).

5

rthreading.

operating-system
terrupts. Kernel
Juires massive
should work.

Stores can interfere with loads

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

Timing variation happens
even iIf all loads are from L1 cache!

Fix: compress AES tables; control
table positions modulo 4096.

Cache-bank throu

On (e.g.) Athlon,

can perform two I
from L1 cache eve
Exception: Seconc
waits for a cycle if
are from same cac

Fix: very careful a
to ensure that twc
never happen in tt

My AES software



Stores can interfere with loads

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

Timing variation happens
even iIf all loads are from L1 cache!

Fix: compress AES tables; control
table positions modulo 4096.

Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads
from L1 cache every cycle.
Exception: Second load
waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming
to ensure that two loads

never happen In the same cycle.
My AES software tries to do this.



e with loads

[
e lIs
Involves

odulo 4096

appens
e from L1 cache!

5> tables: control
dulo 4096.

Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads
from L1 cache every cycle.
Exception: Second load
waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming
to ensure that two loads

never happen In the same cycle.
My AES software tries to do this.

Do we want to ke

Variable-index tab
are dangerous.

Clearly impossible
today's advertised
with constant-time

| believe It's possil
achieve tolerable s
but It's extremely
and it's fragile: ne
will allow more att



Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads
from L1 cache every cycle.
Exception: Second load
waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming
to ensure that two loads

never happen In the same cycle.
My AES software tries to do this.

Do we want to keep AES?

Variable-index table lookups
are dangerous.

Clearly impossible to achieve
today’'s advertised AES speeds
with constant-time software.

| believe it's possible to
achieve tolerable speeds,
but it's extremely difficult,
and it's fragile: new CPUs
will allow more attacks.



hput Is limited

bads

ry cycle.
| load

loads

he "

hank.”

sm programming

 loads

1e same cycle.

tries

to do this.

Do we want to keep AES?

Variable-index table lookups
are dangerous.

Clearly impossible to achieve
today’'s advertised AES speeds
with constant-time software.

| believe it's possible to
achieve tolerable speeds,
but it's extremely difficult,
and it's fragile: new CPUs
will allow more attacks.

Why not switch tc
that avoids these |

2005 Schneier: “F
any encryption alg
susceptible to timi
so choosing on th:
doesn't make that

But some fast cipl
susceptible to timi

Can build fast cipl

add, constant-dist.
Examples: TEA, I



Do we want to keep AES?

Variable-index table lookups
are dangerous.

Clearly impossible to achieve
today’'s advertised AES speeds
with constant-time software.

| believe it's possible to
achieve tolerable speeds,
but it's extremely difficult,
and it's fragile: new CPUs
will allow more attacks.

Why not switch to a cipher
that avoids these problems?

2005 Schneier: “Pretty much
any encryption algorithm is
susceptible to timing attacks,
so choosing on that regard
doesn’'t make that much sense.”

But some fast ciphers are not
susceptible to timing attacks!

Can build fast cipher from xor,

add, constant-distance rotation.
Examples: TEA, Helix, Salsa20.



