
Cache-timing attacks on AES

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.



Cache-timing attacks on AES

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.

Attack extracted the AES key

from timings of the server.

AES selectors (US NIST),

“Report on the development of

the Advanced Encryption Standard

(AES),” 2001:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.



http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.

Attack extracted the AES key

from timings of the server.

AES selectors (US NIST),

“Report on the development of

the Advanced Encryption Standard

(AES),” 2001:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.



http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.

Attack extracted the AES key

from timings of the server.

AES selectors (US NIST),

“Report on the development of

the Advanced Encryption Standard

(AES),” 2001:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same amount

of time. � � �

“Table lookup: not vulnerable to

timing attacks � � �

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend � � �



Attack extracted the AES key

from timings of the server.

AES selectors (US NIST),

“Report on the development of

the Advanced Encryption Standard

(AES),” 2001:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same amount

of time. � � �

“Table lookup: not vulnerable to

timing attacks � � �

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend � � �



Attack extracted the AES key

from timings of the server.

AES selectors (US NIST),

“Report on the development of

the Advanced Encryption Standard

(AES),” 2001:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same amount

of time. � � �

“Table lookup: not vulnerable to

timing attacks � � �

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend � � �

“Rijndael and Serpent use only

Boolean operations, table lookups,

and fixed shifts/rotations. These

operations are the easiest to defend

against attacks. � � �

“Finalist profiles. � � � The

operations used by Rijndael are

among the easiest to defend against

power and timing attacks. � � �

Rijndael appears to gain a

major speed advantage over its

competitors when such

protections are considered. � � �



“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same amount

of time. � � �

“Table lookup: not vulnerable to

timing attacks � � �

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend � � �

“Rijndael and Serpent use only

Boolean operations, table lookups,

and fixed shifts/rotations. These

operations are the easiest to defend

against attacks. � � �

“Finalist profiles. � � � The

operations used by Rijndael are

among the easiest to defend against

power and timing attacks. � � �

Rijndael appears to gain a

major speed advantage over its

competitors when such

protections are considered. � � �



“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same amount

of time. � � �

“Table lookup: not vulnerable to

timing attacks � � �

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend � � �

“Rijndael and Serpent use only

Boolean operations, table lookups,

and fixed shifts/rotations. These

operations are the easiest to defend

against attacks. � � �

“Finalist profiles. � � � The

operations used by Rijndael are

among the easiest to defend against

power and timing attacks. � � �

Rijndael appears to gain a

major speed advantage over its

competitors when such

protections are considered. � � �

“NIST judged Rijndael to be the

best overall algorithm for the AES.

Rijndael appears to be a

consistently good performer � � �

Its key setup time is excellent, and

its key agility is good. � � �

Rijndael’s operations are among the

easiest to defend against power and

timing attacks. � � � Finally,

Rijndael’s internal round structure

appears to have good potential to

benefit from instruction-level

parallelism.” (Emphasis added.)



“Rijndael and Serpent use only

Boolean operations, table lookups,

and fixed shifts/rotations. These

operations are the easiest to defend

against attacks. � � �

“Finalist profiles. � � � The

operations used by Rijndael are

among the easiest to defend against

power and timing attacks. � � �

Rijndael appears to gain a

major speed advantage over its

competitors when such

protections are considered. � � �

“NIST judged Rijndael to be the

best overall algorithm for the AES.

Rijndael appears to be a

consistently good performer � � �

Its key setup time is excellent, and

its key agility is good. � � �

Rijndael’s operations are among the

easiest to defend against power and

timing attacks. � � � Finally,

Rijndael’s internal round structure

appears to have good potential to

benefit from instruction-level

parallelism.” (Emphasis added.)



“Rijndael and Serpent use only

Boolean operations, table lookups,

and fixed shifts/rotations. These

operations are the easiest to defend

against attacks. � � �

“Finalist profiles. � � � The

operations used by Rijndael are

among the easiest to defend against

power and timing attacks. � � �

Rijndael appears to gain a

major speed advantage over its

competitors when such

protections are considered. � � �

“NIST judged Rijndael to be the

best overall algorithm for the AES.

Rijndael appears to be a

consistently good performer � � �

Its key setup time is excellent, and

its key agility is good. � � �

Rijndael’s operations are among the

easiest to defend against power and

timing attacks. � � � Finally,

Rijndael’s internal round structure

appears to have good potential to

benefit from instruction-level

parallelism.” (Emphasis added.)

AES designers (Daemen, Rijmen),

“Resistance against implementation

attacks: a comparative study of the

AES proposals,” 1999:

“Table lookups: This instruction is

not susceptible to a timing

attack. � � � Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts, and

that are therefore relatively easy

to secure. The algorithms of this

group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”



“NIST judged Rijndael to be the

best overall algorithm for the AES.

Rijndael appears to be a

consistently good performer � � �

Its key setup time is excellent, and

its key agility is good. � � �

Rijndael’s operations are among the

easiest to defend against power and

timing attacks. � � � Finally,

Rijndael’s internal round structure

appears to have good potential to

benefit from instruction-level

parallelism.” (Emphasis added.)

AES designers (Daemen, Rijmen),

“Resistance against implementation

attacks: a comparative study of the

AES proposals,” 1999:

“Table lookups: This instruction is

not susceptible to a timing

attack. � � � Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts, and

that are therefore relatively easy

to secure. The algorithms of this

group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”



“NIST judged Rijndael to be the

best overall algorithm for the AES.

Rijndael appears to be a

consistently good performer � � �

Its key setup time is excellent, and

its key agility is good. � � �

Rijndael’s operations are among the

easiest to defend against power and

timing attacks. � � � Finally,

Rijndael’s internal round structure

appears to have good potential to

benefit from instruction-level

parallelism.” (Emphasis added.)

AES designers (Daemen, Rijmen),

“Resistance against implementation

attacks: a comparative study of the

AES proposals,” 1999:

“Table lookups: This instruction is

not susceptible to a timing

attack. � � � Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts, and

that are therefore relatively easy

to secure. The algorithms of this

group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”

AES designers, 1999: Speed reports

“should take into account the

measures to be taken to thwart

these attacks.”

(Amazing change of position, 2005:

Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The

problem is that side-channel attacks

are practical against pretty much

anything, so it didn’t really enter

into consideration.”)



AES designers (Daemen, Rijmen),

“Resistance against implementation

attacks: a comparative study of the

AES proposals,” 1999:

“Table lookups: This instruction is

not susceptible to a timing

attack. � � � Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts, and

that are therefore relatively easy

to secure. The algorithms of this

group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”

AES designers, 1999: Speed reports

“should take into account the

measures to be taken to thwart

these attacks.”

(Amazing change of position, 2005:

Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The

problem is that side-channel attacks

are practical against pretty much

anything, so it didn’t really enter

into consideration.”)



AES designers (Daemen, Rijmen),

“Resistance against implementation

attacks: a comparative study of the

AES proposals,” 1999:

“Table lookups: This instruction is

not susceptible to a timing

attack. � � � Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts, and

that are therefore relatively easy

to secure. The algorithms of this

group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”

AES designers, 1999: Speed reports

“should take into account the

measures to be taken to thwart

these attacks.”

(Amazing change of position, 2005:

Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The

problem is that side-channel attacks

are practical against pretty much

anything, so it didn’t really enter

into consideration.”)

The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup is

vulnerable to timing attacks.

AES does many lookups such as

table[k[3]^n[3]], taking time

that depends on k[3]^n[3],

leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.

without gigantic slowdowns.



AES designers, 1999: Speed reports

“should take into account the

measures to be taken to thwart

these attacks.”

(Amazing change of position, 2005:

Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The

problem is that side-channel attacks

are practical against pretty much

anything, so it didn’t really enter

into consideration.”)

The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup is

vulnerable to timing attacks.

AES does many lookups such as

table[k[3]^n[3]], taking time

that depends on k[3]^n[3],

leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.

without gigantic slowdowns.



AES designers, 1999: Speed reports

“should take into account the

measures to be taken to thwart

these attacks.”

(Amazing change of position, 2005:

Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The

problem is that side-channel attacks

are practical against pretty much

anything, so it didn’t really enter

into consideration.”)

The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup is

vulnerable to timing attacks.

AES does many lookups such as

table[k[3]^n[3]], taking time

that depends on k[3]^n[3],

leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.

without gigantic slowdowns.

Naive reaction:

“Oh, of course.

A table lookup takes more time

if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito

Suzaki Shigeri Miyauchi.



The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup is

vulnerable to timing attacks.

AES does many lookups such as

table[k[3]^n[3]], taking time

that depends on k[3]^n[3],

leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.

without gigantic slowdowns.

Naive reaction:

“Oh, of course.

A table lookup takes more time

if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito

Suzaki Shigeri Miyauchi.



The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup is

vulnerable to timing attacks.

AES does many lookups such as

table[k[3]^n[3]], taking time

that depends on k[3]^n[3],

leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.

without gigantic slowdowns.

Naive reaction:

“Oh, of course.

A table lookup takes more time

if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito

Suzaki Shigeri Miyauchi.

Naive reaction, continued:

“But this isn’t hard to fix.

Eliminate cache misses by loading

all the AES tables into cache

before the AES encryption.”

Problem 1: Eliminating cache

misses is actually much more

difficult than this, and is not

achieved by any existing

high-speed AES software.

Problem 2: Even in cache,

table-lookup time is variable.



Naive reaction:

“Oh, of course.

A table lookup takes more time

if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito

Suzaki Shigeri Miyauchi.

Naive reaction, continued:

“But this isn’t hard to fix.

Eliminate cache misses by loading

all the AES tables into cache

before the AES encryption.”

Problem 1: Eliminating cache

misses is actually much more

difficult than this, and is not

achieved by any existing

high-speed AES software.

Problem 2: Even in cache,

table-lookup time is variable.



Naive reaction:

“Oh, of course.

A table lookup takes more time

if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito

Suzaki Shigeri Miyauchi.

Naive reaction, continued:

“But this isn’t hard to fix.

Eliminate cache misses by loading

all the AES tables into cache

before the AES encryption.”

Problem 1: Eliminating cache

misses is actually much more

difficult than this, and is not

achieved by any existing

high-speed AES software.

Problem 2: Even in cache,

table-lookup time is variable.

Obstacles to writing code

that looks up a table entry

in time independent of index:

� Cache is faster than DRAM.
� L1 cache is faster than L2 cache.
� Cache associativity is limited.
� Code can be interrupted.
� Stores can interfere with loads.
� Cache-bank throughput is limited.

Perhaps there are more obstacles.

Most CPU designers fail to

adequately document CPU speed!



Naive reaction, continued:

“But this isn’t hard to fix.

Eliminate cache misses by loading

all the AES tables into cache

before the AES encryption.”

Problem 1: Eliminating cache

misses is actually much more

difficult than this, and is not

achieved by any existing

high-speed AES software.

Problem 2: Even in cache,

table-lookup time is variable.

Obstacles to writing code

that looks up a table entry

in time independent of index:

� Cache is faster than DRAM.
� L1 cache is faster than L2 cache.
� Cache associativity is limited.
� Code can be interrupted.
� Stores can interfere with loads.
� Cache-bank throughput is limited.

Perhaps there are more obstacles.

Most CPU designers fail to

adequately document CPU speed!



Naive reaction, continued:

“But this isn’t hard to fix.

Eliminate cache misses by loading

all the AES tables into cache

before the AES encryption.”

Problem 1: Eliminating cache

misses is actually much more

difficult than this, and is not

achieved by any existing

high-speed AES software.

Problem 2: Even in cache,

table-lookup time is variable.

Obstacles to writing code

that looks up a table entry

in time independent of index:

� Cache is faster than DRAM.
� L1 cache is faster than L2 cache.
� Cache associativity is limited.
� Code can be interrupted.
� Stores can interfere with loads.
� Cache-bank throughput is limited.

Perhaps there are more obstacles.

Most CPU designers fail to

adequately document CPU speed!

Cache associativity is limited

AES software uses several arrays:

tables, input, key, etc.

On (e.g.) Athlon, if array positions

overlap modulo 32768, accessing

two arrays can knock an entry in

another array out of cache.

Fix: squeeze variables into a

limited number of arrays;

reload tables before every AES call.



Obstacles to writing code

that looks up a table entry

in time independent of index:

� Cache is faster than DRAM.
� L1 cache is faster than L2 cache.
� Cache associativity is limited.
� Code can be interrupted.
� Stores can interfere with loads.
� Cache-bank throughput is limited.

Perhaps there are more obstacles.

Most CPU designers fail to

adequately document CPU speed!

Cache associativity is limited

AES software uses several arrays:

tables, input, key, etc.

On (e.g.) Athlon, if array positions

overlap modulo 32768, accessing

two arrays can knock an entry in

another array out of cache.

Fix: squeeze variables into a

limited number of arrays;

reload tables before every AES call.



Obstacles to writing code

that looks up a table entry

in time independent of index:

� Cache is faster than DRAM.
� L1 cache is faster than L2 cache.
� Cache associativity is limited.
� Code can be interrupted.
� Stores can interfere with loads.
� Cache-bank throughput is limited.

Perhaps there are more obstacles.

Most CPU designers fail to

adequately document CPU speed!

Cache associativity is limited

AES software uses several arrays:

tables, input, key, etc.

On (e.g.) Athlon, if array positions

overlap modulo 32768, accessing

two arrays can knock an entry in

another array out of cache.

Fix: squeeze variables into a

limited number of arrays;

reload tables before every AES call.

Code can be interrupted

Another process can knock

an array entry out of cache.

Consider hyperthreading attacks

(2005 Osvik Shamir Tromer,

independently 2005 Percival).

But problem exists

even without hyperthreading.

Fix: put AES into operating-system

kernel, disabling interrupts. Kernel

call takes time; requires massive

code changes; but should work.



Cache associativity is limited

AES software uses several arrays:

tables, input, key, etc.

On (e.g.) Athlon, if array positions

overlap modulo 32768, accessing

two arrays can knock an entry in

another array out of cache.

Fix: squeeze variables into a

limited number of arrays;

reload tables before every AES call.

Code can be interrupted

Another process can knock

an array entry out of cache.

Consider hyperthreading attacks

(2005 Osvik Shamir Tromer,

independently 2005 Percival).

But problem exists

even without hyperthreading.

Fix: put AES into operating-system

kernel, disabling interrupts. Kernel

call takes time; requires massive

code changes; but should work.



Cache associativity is limited

AES software uses several arrays:

tables, input, key, etc.

On (e.g.) Athlon, if array positions

overlap modulo 32768, accessing

two arrays can knock an entry in

another array out of cache.

Fix: squeeze variables into a

limited number of arrays;

reload tables before every AES call.

Code can be interrupted

Another process can knock

an array entry out of cache.

Consider hyperthreading attacks

(2005 Osvik Shamir Tromer,

independently 2005 Percival).

But problem exists

even without hyperthreading.

Fix: put AES into operating-system

kernel, disabling interrupts. Kernel

call takes time; requires massive

code changes; but should work.

Stores can interfere with loads

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

Timing variation happens

even if all loads are from L1 cache!

Fix: compress AES tables; control

table positions modulo 4096.



Code can be interrupted

Another process can knock

an array entry out of cache.

Consider hyperthreading attacks

(2005 Osvik Shamir Tromer,

independently 2005 Percival).

But problem exists

even without hyperthreading.

Fix: put AES into operating-system

kernel, disabling interrupts. Kernel

call takes time; requires massive

code changes; but should work.

Stores can interfere with loads

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

Timing variation happens

even if all loads are from L1 cache!

Fix: compress AES tables; control

table positions modulo 4096.



Code can be interrupted

Another process can knock

an array entry out of cache.

Consider hyperthreading attacks

(2005 Osvik Shamir Tromer,

independently 2005 Percival).

But problem exists

even without hyperthreading.

Fix: put AES into operating-system

kernel, disabling interrupts. Kernel

call takes time; requires massive

code changes; but should work.

Stores can interfere with loads

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

Timing variation happens

even if all loads are from L1 cache!

Fix: compress AES tables; control

table positions modulo 4096.

Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming

to ensure that two loads

never happen in the same cycle.

My AES software tries to do this.



Stores can interfere with loads

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

Timing variation happens

even if all loads are from L1 cache!

Fix: compress AES tables; control

table positions modulo 4096.

Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming

to ensure that two loads

never happen in the same cycle.

My AES software tries to do this.



Stores can interfere with loads

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

Timing variation happens

even if all loads are from L1 cache!

Fix: compress AES tables; control

table positions modulo 4096.

Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming

to ensure that two loads

never happen in the same cycle.

My AES software tries to do this.

Do we want to keep AES?

Variable-index table lookups

are dangerous.

Clearly impossible to achieve

today’s advertised AES speeds

with constant-time software.

I believe it’s possible to

achieve tolerable speeds,

but it’s extremely difficult,

and it’s fragile: new CPUs

will allow more attacks.



Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming

to ensure that two loads

never happen in the same cycle.

My AES software tries to do this.

Do we want to keep AES?

Variable-index table lookups

are dangerous.

Clearly impossible to achieve

today’s advertised AES speeds

with constant-time software.

I believe it’s possible to

achieve tolerable speeds,

but it’s extremely difficult,

and it’s fragile: new CPUs

will allow more attacks.



Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming

to ensure that two loads

never happen in the same cycle.

My AES software tries to do this.

Do we want to keep AES?

Variable-index table lookups

are dangerous.

Clearly impossible to achieve

today’s advertised AES speeds

with constant-time software.

I believe it’s possible to

achieve tolerable speeds,

but it’s extremely difficult,

and it’s fragile: new CPUs

will allow more attacks.

Why not switch to a cipher

that avoids these problems?

2005 Schneier: “Pretty much

any encryption algorithm is

susceptible to timing attacks,

so choosing on that regard

doesn’t make that much sense.”

But some fast ciphers are not

susceptible to timing attacks!

Can build fast cipher from xor,

add, constant-distance rotation.

Examples: TEA, Helix, Salsa20.



Do we want to keep AES?

Variable-index table lookups

are dangerous.

Clearly impossible to achieve

today’s advertised AES speeds

with constant-time software.

I believe it’s possible to

achieve tolerable speeds,

but it’s extremely difficult,

and it’s fragile: new CPUs

will allow more attacks.

Why not switch to a cipher

that avoids these problems?

2005 Schneier: “Pretty much

any encryption algorithm is

susceptible to timing attacks,

so choosing on that regard

doesn’t make that much sense.”

But some fast ciphers are not

susceptible to timing attacks!

Can build fast cipher from xor,

add, constant-distance rotation.

Examples: TEA, Helix, Salsa20.


