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extraction of a complete AES key
from a network server

on another computer.

The targeted server used its key
solely to encrypt data using the
OpenSSL AES implementation
on a Pentium Ill."

All code included in paper.
Easily reproducible.
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Attack extracted the AES key
from timings of the server.

AES selectors (US NIST),
“Report on the development of

the Advanced Encryption Standard
(AES),” 2001

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,

depending on their arguments.



/papers.html
)05:

s successful
nplete AES key
rver

ter.

r used Its key
ata using the
lementation

n paper.

A

Attack extracted the AES key
from timings of the server.

AES selectors (US NIST),
“Report on the development of

the Advanced Encryption Standard
(AES),” 2001

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,

depending on their arguments.

“A general defense

timing attacks 1s t
each encryption ar
operation runs In 1
of time. ...

“Table lookup: no
timing attacks ...

“Multiplication/di
or variable shift /rc
most difficult to d



Attack extracted the AES key
from timings of the server.

AES selectors (US NIST),
“Report on the development of

the Advanced Encryption Standard
(AES),” 2001

“In some environments,

timing attacks can be effected
against operations that execute
in different amounts of time,
depending on their arguments.

“A general defense against

timing attacks Is to ensure that
each encryption and decryption
operation runs in the same amount
of time. ...

“Table lookup: not vulnerable to
timing attacks ...

“Multiplication /division /squaring
or variable shift /rotation:
most difficult to defend ...
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“A general defense against

timing attacks is to ensure that
each encryption and decryption
operation runs in the same amount
of time. ...

“Table lookup: not vulnerable to
timing attacks ...

“Multiplication /division /squaring
or variable shift/rotation:
most difficult to defend ...

“Rijndael and Serpent use only

Boolean operations, table lookups,
and fixed shifts/rotations. These
operations are the easiest to defend
against attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend against
power and timing attacks. ...
Rijndael appears to gain a

major speed advantage over its
competitors when such

protections are considered. . ..
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“Rijndael and Serpent use only

Boolean operations, table lookups,
and fixed shifts/rotations. These
operations are the easiest to defend
against attacks. ...

“Finalist profiles. ... The
operations used by Rijndael are
among the easiest to defend against
power and timing attacks. ...
Rijndael appears to gain a

major speed advantage over its
competitors when such

protections are considered. . ..

“NIST judged Rijndael to be the
best overall algorithm for the AES.

Rijndael appears to be a
consistently good performer . ..

Its key setup time Is excellent, and
its key agility 1s good. ...

Rijndael’s operations are among the
easiest to defend against power and
timing attacks. ... Finally,
Rijndael’s internal round structure
appears to have good potential to
benefit from instruction-level

parallelism.” (Emphasis added.)
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“NIST judged Rijndael to be the
best overall algorithm for the AES.

Rijndael appears to be a
consistently good performer . ..

Its key setup time is excellent, and
its key agility 1s good. ...

Rijndael’s operations are among the
easiest to defend against power and
timing attacks. ... Finally,
Rijndael’s internal round structure
appears to have good potential to
benefit from instruction-level

parallelism.” (Emphasis added.)

AES designers (Daemen, Rijmen),
"Resistance against implementation

attacks: a comparative study of the
AES proposals,” 1999:

“Table lookups: This instruction is
not susceptible to a timing
attack. ... Favorable: Algorithms

that use only logical operations,
table-lookups and fixed shifts, and
that are therefore relatively easy
to secure. The algorithms of this
group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”
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AES designers (Daemen, Rijmen),
"Resistance against implementation

attacks: a comparative study of the
AES proposals,” 1999:

“Table lookups: This instruction is
not susceptible to a timing
attack. ... Favorable: Algorithms

that use only logical operations,
table-lookups and fixed shifts, and
that are therefore relatively easy
to secure. The algorithms of this
group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

AES designers, 19
“should take into .

measures to be tal
these attacks.”

(Amazing change
Timing attacks are
for cryptographic «
Bruce Schneier, 2(
problem is that sic
are practical again
anything, so it did
into consideration.



AES designers (Daemen, Rijmen),
"Resistance against implementation
attacks: a comparative study of the

AES proposals,” 1999:

“Table lookups: This instruction is
not susceptible to a timing
attack. ... Favorable: Algorithms

that use only logical operations,
table-lookups and fixed shifts, and
that are therefore relatively easy
to secure. The algorithms of this
group are Crypton, DEAL,
Magenta, Rijndael and Serpent.”

AES designers, 1999: Speed reports

“should take into account the
measures to be taken to thwart
these attacks.”

(Amazing change of position, 2005:
Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The
problem is that side-channel attacks
are practical against pretty much
anything, so it didn't really enter
into consideration.” )
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AES designers, 1999: Speed reports

“should take into account the
measures to be taken to thwart
these attacks.”

(Amazing change of position, 2005:
Timing attacks are “irrelevant

for cryptographic design.”

Bruce Schneier, 2005: “The
problem is that side-channel attacks
are practical against pretty much
anything, so it didn't really enter
into consideration.” )

The problem in a nutshell:
Daemen, Rijmen, NIST were wrong.
Variable-index table lookup s
vulnerable to timing attacks.

AES does many lookups such as
table[k[3] "n[3]], taking time
that depends on k[3] "n[3],
leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.
without gigantic slowdowns.
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The problem in a nutshell:

Daemen, Rijmen, NIST were wrong.

Variable-index table lookup s
vulnerable to timing attacks.

AES does many lookups such as
table[k[3] "n[3]], taking time
that depends on k[3] "n[3],
leaking k[3].

It is extremely difficult

to avoid this leak

on Pentium, Athlon, etc.
without gigantic slowdowns.

Naive reaction:

“Oh, of course.

A table lookup takes more time
if it misses the cache.”

Mentioned by 1996 Kocher,
2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito
Suzaki Shigeri Miyauchi.
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Naive reaction:

“Oh, of course.

A table lookup takes more time
if it misses the cache.”

Mentioned by 1996 Kocher,

2000 Kelsey Schneier Wagner Hall.

Exploited (mostly for DES)

by 2002 Page, 2003 Tsunoo Saito
Suzaki Shigeri Miyauchi.

Naive reaction, continued:

“But this isn't hard to fix.
Eliminate cache misses by loading
all the AES tables into cache
before the AES encryption.”

Problem 1: Eliminating cache
misses Is actually much more
difficult than this, and is not
achieved by any existing
high-speed AES software.

Problem 2: Even in cache,
table-lookup time is variable.
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Naive reaction, continued:

“But this isn't hard to fix.
Eliminate cache misses by loading
all the AES tables into cache
before the AES encryption.”

Problem 1: Eliminating cache
misses Is actually much more
difficult than this, and is not

achieved by any existing
high-speed AES software.

Problem 2: Even in cache,
table-lookup time is variable.
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Naive reaction, continued:

“But this isn't hard to fix.
Eliminate cache misses by loading
all the AES tables into cache
before the AES encryption.”

Problem 1: Eliminating cache
misses Is actually much more
difficult than this, and is not
achieved by any existing
high-speed AES software.

Problem 2: Even in cache,
table-lookup time is variable.

Obstacles to writing code
that looks up a table entry

In time independent of index:

e Cache is faster than DRAM.

e |1 cache is faster than L2 cache.
e Cache associativity is limited.

e Code can be interrupted.

e Stores can interfere with loads.

e Cache-bank throughput is limited.

Perhaps there are more obstacles.
Most CPU designers fail to
adequately document CPU speed!
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Obstacles to writing code
that looks up a table entry

In time independent of index:

e Cache is faster than DRAM.

e L1 cache is faster than L2 cache.
e Cache associativity is limited.

e Code can be interrupted.

e Stores can interfere with loads.

e Cache-bank throughput is limited.

Perhaps there are more obstacles.
Most CPU designers fail to
adequately document CPU speed!
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Obstacles to writing code
that looks up a table entry

In time independent of index:

e Cache is faster than DRAM.

e L1 cache is faster than L2 cache.
e Cache associativity is limited.

e Code can be interrupted.

e Stores can interfere with loads.

e Cache-bank throughput is limited.

Perhaps there are more obstacles.
Most CPU designers fail to
adequately document CPU speed!

Cache associativity is limited

AES software uses several arrays:
tables, input, key, etc.

On (e.g.) Athlon, if array positions
overlap modulo 32768, accessing
two arrays can knock an entry In
another array out of cache.

Fix: squeeze variables into a
limited number of arrays;
reload tables before every AES call.
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tables, input, key, etc.

On (e.g.) Athlon, if array positions
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two arrays can knock an entry In
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limited number of arrays;
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Cache associativity is limited

AES software uses several arrays:
tables, input, key, etc.

On (e.g.) Athlon, if array positions
overlap modulo 32768, accessing
two arrays can knock an entry In
another array out of cache.

Fix: squeeze variables into a
limited number of arrays;

reload tables before every AES call.

Code can be interrupted

Another process can knock
an array entry out of cache.

Consider hyperthreading attacks
(2005 Osvik Shamir Tromer,
independently 2005 Percival).
But problem exists

even without hyperthreading.

Fix: put AES into operating-system
kernel, disabling interrupts. Kernel
call takes time; requires massive
code changes; but should work.
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Code can be interrupted

Another process can knock
an array entry out of cache.

Consider hyperthreading attacks
(2005 Osvik Shamir Tromer,
independently 2005 Percival).
But problem exists

even without hyperthreading.

Fix: put AES into operating-system
kernel, disabling interrupts. Kernel
call takes time; requires massive
code changes; but should work.

Stores can interfere with loads

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

Timing variation happens
even iIf all loads are from L1 cache!

Fix: compress AES tables; control
table positions modulo 4096.
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Timing variation happens
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Fix: compress AES tables; control
table positions modulo 4096.
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Stores can interfere with loads

On (e.g.) Pentium IlI,

load from L1 cache is
slightly slower if it involves
same cache line modulo 4096
as a recent store.

Timing variation happens
even iIf all loads are from L1 cache!

Fix: compress AES tables; control
table positions modulo 4096.

Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads
from L1 cache every cycle.
Exception: Second load
waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming
to ensure that two loads

never happen In the same cycle.
My AES software tries to do this.
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Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads
from L1 cache every cycle.
Exception: Second load
waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming
to ensure that two loads

never happen In the same cycle.
My AES software tries to do this.
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Cache-bank throughput is limited

On (e.g.) Athlon,

can perform two loads
from L1 cache every cycle.
Exception: Second load
waits for a cycle if loads

are from same cache “bank.”

Fix: very careful asm programming
to ensure that two loads

never happen In the same cycle.
My AES software tries to do this.

Do we want to keep AES?

Variable-index table lookups
are dangerous.

Clearly impossible to achieve
today’'s advertised AES speeds
with constant-time software.

| believe it's possible to
achieve tolerable speeds,
but it's extremely difficult,
and it's fragile: new CPUs
will allow more attacks.
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Do we want to keep AES?

Variable-index table lookups
are dangerous.

Clearly impossible to achieve
today’'s advertised AES speeds
with constant-time software.

| believe it's possible to
achieve tolerable speeds,
but it's extremely difficult,
and it's fragile: new CPUs
will allow more attacks.
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Do we want to keep AES?

Variable-index table lookups
are dangerous.

Clearly impossible to achieve
today’'s advertised AES speeds
with constant-time software.

| believe it's possible to
achieve tolerable speeds,
but it's extremely difficult,
and it's fragile: new CPUs
will allow more attacks.

Why not switch to a cipher
that avoids these problems?

2005 Schneier: “Pretty much
any encryption algorithm is
susceptible to timing attacks,
so choosing on that regard
doesn’'t make that much sense.”

But some fast ciphers are not
susceptible to timing attacks!

Can build fast cipher from xor,

add, constant-distance rotation.
Examples: TEA, Helix, Salsa20.



