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same multiset as input.

A machine Is given the Input
and computes the output.
How much time does it use?
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How fast is sorting?

Input: array of m numbers.
Each number In {1, 2, ... ,n2},
represented In binary.

Output: array of n numbers,
In Increasing order,
represented In binary:;

same multiset as input.

A machine Is given the Input
and computes the output.
How much time does it use?
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How fast is sorting? The answer depends on

how the machine works.
Input: array of m numbers.

Each number In {1, 2.... ,n2}, Possibility 1: The machine is a
represented In binary. “1-tape Turing machine

using selection sort.”
Output: array of n numbers, &

in increasing order, Specifically: The machine has
represented In binary; a 1-dimensional array
same multiset as input. containing ©(n) “cells.”

A machine Is given the Input Each cell stores ©(lgn) bits.

and computes the output. Input and output are
How much time does it use? stored in these cells.
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The answer depends on

how the machine works.

Possibility 1: The machine is a
“1-tape Turing machine
using selection sort.”

Specifically: The machine has
a 1-dimensional array
containing ©(n) “cells.”

Each cell stores ©(lgn) bits.

Input and output are
stored in these cells.
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The answer depends on

how the machine works.

Possibility 1: The machine is a
“1-tape Turing machine
using selection sort.”

Specifically: The machine has
a 1-dimensional array
containing ©(n) “cells.”

Each cell stores ©(lgn) bits.

Input and output are
stored in these cells.

The machine also has a
“head” moving through array.
Head contains ©(1) cells.

Head can see the cell at

Its current array position;
perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head
looks at each array position,
picks up the largest number,

moves it to the end of the array,

picks up the second largest,
etc.
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The machine also has a

“head” moving through array.
Head contains ©(1) cells.

Head can see the cell at

Its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the
moves It to t

argest number,

ne end of the array,

picks up the second largest,

etc.

Moving to adjacer
takes n°1) second

Moving a number
takes nlto(l) secc

Same for comparis

Total sorting time
n2+0(1) seconds.

Cost of machine:
n1t°(1) Euros
for n1to(1) cells.

Negligible extra cc



The machine also has a Moving to adjacent array position
“head” moving through array. takes n°1) seconds.

Head contains ©(1) cells. Moving a number to end of array

Head can see the cell at takes nlto(1) seconds.
Its current array position; Same for comparisons etc.

perform arithmetic etc.; . .
Total sorting time:

move to adjacent array position.
J y P n2°(1) seconds.

Selection sort: Head .
Cost of machine:

n1to(l) Euros
for n1to(1) cells.

Negligible extra cost for head.

looks at each array position,
picks up the largest number,

moves it to the end of the array,

picks up the second largest,
etc.
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Moving to adjacent array position
takes n°1) seconds.

Moving a number to end of array
takes n1t°(1) seconds.
Same for comparisons etc.

Total sorting time:
n2+0(1) seconds.

Cost of machine:
n1t°(1) Euros
for n1to(1) cells.

Negligible extra cost for head.

Possibility 2: The
“2-dimensional RA
using merge sort."

Machine has ©(n
In a 2-dimensional

O(4/n) rows, O(4

Machine also has .

Merge sort: Head
sorts first |n /2| n
sorts last [n/2]| n
merges the sorted



Moving to adjacent array position
takes n°1) seconds.

Moving a number to end of array
takes n1to(1) seconds.
Same for comparisons etc.

Total sorting time:
n2+0(1) seconds.

Cost of machine:
n1t°(1) Euros
for n1to(1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has ©(n) cells
in a 2-dimensional array:

O(4/n) rows, ©(4/n) columns.

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.
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Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has ©(n) cells
in a 2-dimensional array:

O(4/n) rows, ©(4/n) columns.

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.

Merging requires 7
to “random’ array

Average jump: n’

to adjacent array |
Each move takes 1

Total sorting time
nl-5to(1l) seconds.

Cost of machine:
nlto(l) Eyuros.



Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has ©(n) cells
in a 2-dimensional array:

O(4/n) rows, ©(4/n) columns.

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.

Merging requires ntT°() jumps
to “random’” array positions.

0.540(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°(1) seconds.

Total sorting time:
nl-5to(1) seconds.

Cost of machine: once again
nlto(l) Euros.
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Merging requires ntT°() jumps
to “random’” array positions.

0.540(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°1) seconds.

Total sorting time:
nl-5to(1) seconds.

Cost of machine: once again
nlto(l) Euros.
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Merging requires ntT°() jumps
to “random’” array positions.

0.5+0(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°1) seconds.

Total sorting time:
nl-5to(1l) seconds.

Cost of machine: once again
nlto(l) Euros.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”
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has ©(n) cells
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“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine

has ©(n) cells

in a 2-dimensional array.

Each cell in the array has

network
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11923456.
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112345609.

etc. O(lgn) bits.



Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine

has ©(n) cells

in a 2-dimensional array.

Each cell in the array has

network
cells In t
Each cel
network
cells in t

Machine

inks to the 2 adjacent
ne same column.

In the top row has
inks to the 2 adjacent

ne top row.

also has a CPU

attached to top-left cell.

Radix-2 sort: CPU

shuffles array using bit 0,
even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc. O(lgn) bits.
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Radix-2 sort: CPU

shuffles array using bit 0,
even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc. O(lgn) bits.
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Does not need to
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Total sorting time
nl1to(1) seconds.

Cost of machine:
n1to(l) Euros.



Radix-2 sort: CPU

shuffles array using bit 0,
even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc. O(lgn) bits.

CPU can read/write any cell by
sending request through network.
Does not need to wait for response
before sending next request.

CPU can read an entire row

of n0-5To(1) cells

0.5+0(1) seconds.

In n
Sends all requests,

then receives responses.

Total sorting time:
nl1to(1) seconds.

Cost of machine: once again
nlto(l) Euros.
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Does not need to wait for response
before sending next request.

CPU can read an entire row

of n0-57o(1) cells

0.5+0(1) seconds.

In n
Sends all requests,

then receives responses.

Total sorting time:
nl1to(1) seconds.
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CPU can read/write any cell by Possibility 4: The machine is a

sending request through network. “2-dimensional mesh

Does not need to wait for response using Schimmler sort.”
before sending next request. Machine has ©(n) cells
CPU can read an entire row in a 2-dimensional array:.
of n0-+o(1) cells Each cell has network links
in n0-5t°(1) seconds. to the 4 adjacent cells.

Sends all requests, |
Machine also has a CPU

then receives responses.
attached to top-left cell.

Total sorting time: CPU broadcasts instructions
1+o(1

n1to(l) seconds. to all of the cells, but

Cost of machine: once again cells do most of the processing.

nlto(1) Euros.
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Possibility 4: The machine is a
“2-dimensional mesh
using Schimmler sort.”

Machine has ©(n) cells
in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU
attached to top-left cell.
CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Schimmler sort:

Recursively sort qt
in parallel. Then f
Sort each column
Sort each row in
Sort each column

Sort each row in

With proper choic
eft-to-right /right-
for each row, can
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Possibility 4: The machine is a
“2-dimensional mesh

using Schimmler sort.”

Machine has ©(n) cells
in a 2-dimensional array.
Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU
attached to top-left cell.
CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Schimmler sort:

Recursively sort quadrants
in parallel. Then four steps:
Sort each column in parallel.
Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of
eft-to-right /right-to-left
for each row, can prove

that this sorts whole array.
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Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort eac
Sort eac
Sort eac
Sort eac

n row In parallel.

n row In parallel.

With proper choice of

for each

eft-to-right /right-to-left

row, can prove

that this sorts whole array.

To sort one row:

Sort each pair in
31415926+

n column in parallel.

n column in parallel.

13145926

Sort alternate pair
13145926+
11345296

Repeat.

Can prove that ro
when number of s
equals row length.



Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort eac
Sort eac
Sort eac
Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of

for each

eft-to-right /right-to-left

row, can prove

that this sorts whole array.

To sort one row:

Sort each pair in parallel.
31415926+

13145926

Sort alternate pairs in parallel.

13145926 +—
11345296

Repeat.

Can prove that row is sorted
when number of steps
equals row length.
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To sort one row:

Sort each pair in parallel.
31415926+
13145926

Sort alternate pairs in parallel.

13145926 +—
11345296

Repeat.

Can prove that row is sorted
when number of steps
equals row length.

Sort one row

0.5+0(1)

In n sSecont

All rows In paralle
n0-5+0(1) seconds.

Total sorting time
n0-5+t0(1) seconds.

Cost of machine:
n1to(l) Euros.



To sort one row: Sort one row

- in n9-512(1) seconds.
Sort each pair in parallel.
31415926+ All rows In parallel:
13145926 n0-5+0(1) seconds.
Sort alternate pairs in parallel. Total sorting time:
13145926+ n0-5+0(1) seconds.
11345296 Cost of machine: once again
Repeat. n1to(l) Euros.

Can prove that row is sorted
when number of steps
equals row length.




yarallel.
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Sort one row

0.5+0(1)

n n seconds.

All rows In parallel:
n0-5+0(1) seconds.

Total sorting time:
n0-5+t0(1) seconds.

Cost of machine: once again
nlto(l) Euros.
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Sort one row Some philosophical notes

in n9-512(1) seconds. . .

1-tape Turing machines,
All rows in parallel: RAMs, 2-dimensional meshes
n0-5+0(1) seconds. compute the same functions.
Total sorting time: Prove this by proving that
n0-5+0(1) seconds. each machine can simulate

. . computations on the others.
Cost of machine: once again

n1to(l) Euros. (We believe that every
reasonable model of computation

can be simulated by a
1-tape Turing machine.
“Church-Turing thesis.”)
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Some philosophical notes
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Prove this by proving that
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1-tape Turing machine.
“Church-Turing thesis.”)
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Some philosophical notes

1-tape Turing machines,
RAMSs, 2-dimensional meshes
compute the same functions.

Prove this by proving that
each machine can simulate
computations on the others.

(We believe that every

reasonable model of computation
can be simulated by a

1-tape Turing machine.
“Church-Turing thesis.”)

1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that
simulations are polynomial.

(Is this true for every
reasonable model of computation?
Consider quantum computers.)
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1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that
simulations are polynomial.

(Is this true for every
reasonable model of computation?
Consider quantum computers.)
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1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that
simulations are polynomial.

(Is this true for every
reasonable model of computation?
Consider quantum computers.)

1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in time nlto(l)
Too locall

Example: 2-dimensional RAM

cannot sort in time n0-o(1)

Too sequentiall
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1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in time nlto(l)
Too locall

Example: 2-dimensional RAM

cannot sort in time n0-2o(1)

Too sequentiall
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1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in time nlto(l)
Too locall

Example: 2-dimensional RAM

cannot sort in time n0-5o(1)

Too sequentiall

o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, for large n,

having a huge memory
waiting for a single CPU
is a silly machine design.
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o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, for large n,

having a huge memory
waiting for a single CPU
is a silly machine design.
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o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, for large n,

having a huge memory
waiting for a single CPU
is a silly machine design.

Myth:
Parallel computation cannot
improve price-performance ratio;

p parallel computers
may reduce time by factor p
but increase cost by factor p.

Reality: Can often convert
a large serial computer
into » small parallel cells,
so cost does not

increase by factor p.
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Myth: Myth: Designing a new machine

Parallel computation cannot cannot produce more than a
improve price-performance ratio; small constant-factor improvement
p parallel computers compared to, e.g., a Pentium.
may reduce time by factor p What matters is special-purpose
but increase cost by factor . streamlining, such as reducing

. Instruction-decoding costs.
Reality: Can often convert &

a large serial computer Reality: In 1997, DES Cracker
into p small parallel cells, was 1000 times faster than a
so cost does not set of Pentiums at the same price.

increase by factor . What matters is parallelism.
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Myth: Designing a new machine
cannot produce more than a
small constant-factor improvement

compared to, e.g., a Pentium.
What matters is special-purpose
streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker
was 1000 times faster than a

set of Pentiums at the same price.
What matters is parallelism.

Future computers
massively parallel |

Computer designel
today's RAM-style
just as we laugh a
a 1-tape Turing m

Algorithm experts
today's dominant
algorithm analysis,
count CPU “operz
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Myth: Designing a new machine Future computers will be
cannot produce more than a massively parallel meshes.

small constant-factor improvement . .
Computer designers will laugh at

compared to, e.g., a Pentium. today’s RAM-style machines,

What matters is special-purpose .
just as we laugh at

streamlining, such as reducing

_ _ _ a 1-tape Turing machine.
instruction-decoding costs.

| Algorithm experts will laugh at
Reality: In 1997, DES Cracker

_ today’'s dominant style of
was 1000 times faster than a

algorithm analysis, where we

set of Pentiums at the same price. y C
P count CPU “operations” and

What matters is parallelism. .
view memory access as free.
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Future computers will be
massively parallel meshes.

Computer designers will laugh at
today's RAM-style machines,
just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at
today's dominant style of

algorithm analysis, where we
count CPU “operations” and
view memory access as free.

Brute-force searches

For each 128-bit AES key &
define H(k) = AES,(0).

Typical known-plaintext attack:
given H(k); want to find k.

Cryptanalyst builds machine with
p parallel AES circuits,

each guessing n keys,

for a total of pn keys.

Time: n AES evaluations.
Cost: » AES circuits.

Success chance: pn /2128,
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Brute-force searches

For each 128-bit AES key £
define H(k) = AESL(0).

Typical known-plaintext attack:
given H(k); want to find k.

Cryptanalyst builds machine with
p parallel AES circuits,

each guessing n keys,

for a total of pn keys.

Time: n AES evaluations.
Cost: » AES circuits.

Success chance: pn /2128,

Cryptanalyst is act

attacking many Al
Wants to find k1,
given H(k1), H(k

Rivest's “time-mel
using distinguishec
merges these com,

For any 128-bit r:
H(r), H(H(r)), ..
finding string that
with 30 zero bits.
Call that string Z|




Brute-force searches

For each 128-bit AES key £
define H(k) = AESL(0).

Typical known-plaintext attack:
given H(k); want to find k.

Cryptanalyst builds machine with
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each guessing n keys,

for a total of pn keys.

Time: n AES evaluations.
Cost: » AES circuits.

Success chance: pn /2128,

Cryptanalyst is actually
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Wants to find k1, ko, . ..
given H(k1), H(k2), .. ..

Rivest's “time-memory tradeoff
using distinguished points”
merges these computations.

For any 128-bit r: Compute
H(r), H(H(r)), ... until
finding string that begins
with 30 zero bits.

Call that string Z(7).
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in an array in RAM.

Compute each Z(H(k;));
look up Z(H(k;)) in the array.

If Z(H(k;)) = Z(rg),
check whether H(k;) matches
any of H(r;), H(H(rj)),....

Details: avoid infinite loops;
handle multiple collisions.
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Given H(k1), H(k2), ..., H(kp):

Choose random 71,79, ..., Tp.
Store Z(r1), Z(712), ..., Z(Tp)
in an array in RAM.

Compute each Z(H(k;));

look up Z(H(k;)) in the array.

If Z(H(k;)) = Z(rg),
check whether H(k;) matches
any of H(r;), H(H(rj)),....

Details: avoid infinite loops;
handle multiple collisions.

Heuristic analysis: Computing

Z(r1),Z(r2), ..., Z(Tp)
involves ~ 23V outputs of H.

If any of the inputs match k1
then we'll find k1.
Chance ~ 230p /2128

Same for ko, k3, . . ..
Total chance =5 230p? /2128
of finding at least one key.

On a serial computer,
~ 231y AES evaluations.
Cost: =~ 128p bits of memory.
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Heuristic analysis: Computing

Z(r1),Z(r2), ..., Z(Tp)
involves ~ 23V outputs of H.

If any of the inputs match k1
then we'll find k1.
Chance ~ 230p /2128

Same for ko, k3, . . ..
Total chance =z 230p? /2128
of finding at least one key.

On a serial computer,
~ 231y AES evaluations.
Cost: =~ 128p bits of memory.

Much better: Massive parallelism.

Compute all Z values in parallel,
using p AES circuits.
Use Schimmler sort to find

collisions Z(H(k;)) = Z(r5).

Time: ~ 231 AES evaluations,
plus ~ 8,/p Schimmler steps.
About p times faster than serial.

Cost: » AES circuits,

plus network links.

Maybe 100 times more expensive
than serial. Can reduce the 100.
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Much better: Massive parallelism.

Compute all Z values in parallel,
using o AES circuits.

Use Schimmler sort to find
collisions Z(H(k;)) = Z(r5).

231 AES evaluations.

Time: &
plus ~ 8,/p Schimmler steps.

About p times faster than serial.

Cost: » AES circuits,

plus network links.

Maybe 100 times more expensive
than serial. Can reduce the 100.

Sieving

The “number-field sieve” (NFS)

is today's fastest method
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Sieving

The “number-field sieve” (NFS)

is today's fastest method
to factor a big RSA key n.

Most important NFS bottleneck:

find small prime divisors

ofz,z+1,x+2

1000002

1000003:

1000004
1000005:
1000006:

..... T+ Y.
. divisible by 2 3
divisible by 2 2
divisible by 3 5
divisible by 2 7

Conventional sieving/ TWINKLE
(e.g. 2000 Silverman,
2000 Lenstra Shamir):

Generate pairs (2, 1000002),
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Use distribution sort

to sort by second component.

y1to(l) pairs.

Sorting time ylto(1).
machine cost y1To(1),
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Conventional sieving/ TWINKLE
(e.g. 2000 Silverman,
2000 Lenstra Shamir):

Generate pairs (2, 1000002),
(2,1000004), (2,1000006), ...,
(3,1000002), (3,1000005), ...,
etc.

Use distribution sort

to sort by second component.

y1o1) pairs.
Sorting time ylto(1).
machine cost ylto(l),

For same machine cost,
achieve much higher speed
by massive parallelism.

e.g. Schimmler sort:
sorting time y0->to(1).

machine cost y1To(1),

This drastically reduces

overall NFS time

for sufficiently large n.
(2001 Bernstein)



g/ TWINKLE

an,
nir):

1000002),
000006), .. .,
000005), ...,

rt
component.

1).

(1)

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time y

O.5+o(1);

machine cost ylto(l),

This @

overal

rastically reduces
NFS time

for sufficiently large n.

(2001

Bernstein)

Can do even bette
low-memory small
algorithms, such a

elliptic-curve meth

Time only y0+o(1)

machine cost y1 T

This further reduc
overall NFS time

for sufficiently larg
(2001 Bernstein)

Can also save time
bottleneck, “linear

ess important. (2
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by massive parallelism.

e.g. Schimmler sort:

sorting time y
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Can do even better with
low-memory small-divisor
algorithms, such as the
elliptic-curve method (ECM).
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Time only y
machine cost y

This further reduces
overall NFS time

for sufficiently large n.
(2001 Bernstein)
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NFS price-performance ratio is Switching from RAM to a
exp((B+0(1)) </ (log n)(log log n)?) massively parallel machine

assuming standard conjectures. produces gigantic NFS speedups
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Switching from RAM to a
massively parallel machine
produces gigantic NFS speedups
for sutficiently large n.

Improvement from conventional
RAM factorization, 8 = 2.85. . .,
to best machine, 5 =1.97.. .
corresponds to multiplying
number of digits of n

by 3.009. .. + o(1).
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As always, o(1) is asymptotic.

Situation for small n
Is much less clear.

How expensive Is It to

factor 1024-bit RSA keys?
We still don't know.

Can now find many papers
making wild predictions.

None of the predictions

can be taken seriously!

NFS speed is complicated.

Example: NFS factors n

using an auxiliary polynomial.
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NFS speed is complicated.

Example: NFS factors n

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don't put enough

effort into polynomial choice,

so they underestimate NFS

speed.

Some papers make unjustified

optimal-polynomial extrapo
so they overestimate NFS s

ations,
heed.

At a lower leve
massively paral

, today's
el computers

are much less streamlined

than today's Pentiums.

Computer market will evolve.

Massive parallelism will

become the de-facto standard,

and will be tuned carefully.

How much speed will we gain?

Today it's hard to say.
But we'll find out!



