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How fast is sorting?
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represented in binary.

Output: array of � numbers,

in increasing order,

represented in binary;

same multiset as input.

A machine is given the input

and computes the output.

How much time does it use?
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The answer depends on

how the machine works.

Possibility 1: The machine is a

“1-tape Turing machine

using selection sort.”

Specifically: The machine has

a 1-dimensional array

containing Θ( � ) “cells.”

Each cell stores Θ(lg � ) bits.
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(We believe that every
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can be simulated by a

1-tape Turing machine.

“Church-Turing thesis.”)
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is huge. Effect of polynomial

takes time to compute.

Some papers don’t put enough

effort into polynomial choice,

so they underestimate NFS speed.

Some papers make unjustified

optimal-polynomial extrapolations,

so they overestimate NFS speed.
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become the de-facto standard,

and will be tuned carefully.

How much speed will we gain?

Today it’s hard to say.

But we’ll find out!
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