The power of How fast is sorting?

arallel computation
P P Input: array of n numbers.

D. J. Bernstein Each number In {1, 2, ... ,n2},
Thanks to: represented in binary.
University of lllinois at Chicago Output: array of n numbers,
NSF CCR-9983950 In increasing order,

Alfred P. Sloan Foundation represented in binary;

same multiset as input.

A machine Is given the Input
and computes the output.
How much time does it use?

on

is at Chicago
0
undation

How fast is sorting?

Input: array of m numbers.
Each number In {1, 2, ... ,n2},
represented In binary.

Output: array of n numbers,
In Increasing order,
represented In binary:;

same multiset as input.

A machine Is given the Input
and computes the output.
How much time does it use?

The answer depen

how the machine \

Possibility 1: The
"1-tape Turing m:
using selection sor

Specifically: The r
a 1-dimensional ar
containing ©(n) *
Each cell stores ©

Input and output :
stored in these cel

How fast is sorting? The answer depends on

how the machine works.
Input: array of m numbers.

Each number In {1, 2.... ,n2}, Possibility 1: The machine is a
represented In binary. “1-tape Turing machine

using selection sort.”
Output: array of n numbers, &

in increasing order, Specifically: The machine has
represented In binary; a 1-dimensional array
same multiset as input. containing ©(n) “cells.”

A machine Is given the Input Each cell stores ©(lgn) bits.

and computes the output. Input and output are
How much time does it use? stored in these cells.

7

> L]

numbers.
1,2,...,n%},
ary.

1 numbers,

ry;
nput.

1 the Input
output.
oes it use?

The answer depends on

how the machine works.

Possibility 1: The machine is a
“1-tape Turing machine
using selection sort.”

Specifically: The machine has
a 1-dimensional array
containing ©(n) “cells.”

Each cell stores ©(lgn) bits.

Input and output are
stored in these cells.

The machine

also

“head” moving th
Head contains O

Head can see the

Its current array p

perform arithmetic

move to adjacent

Selection sort: He

looks at each arra

picks up the
moves It to t

arges

NeE €n

picks up the secon

etc.

The answer depends on

how the machine works.

Possibility 1: The machine is a
“1-tape Turing machine
using selection sort.”

Specifically: The machine has
a 1-dimensional array
containing ©(n) “cells.”

Each cell stores ©(lgn) bits.

Input and output are
stored in these cells.

The machine also has a
“head” moving through array.
Head contains ©(1) cells.

Head can see the cell at

Its current array position;
perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head
looks at each array position,
picks up the largest number,

moves it to the end of the array,

picks up the second largest,
etc.

ds on
vorks.

machine Is a
chine
t.”

nachine has
ray

cells.”

(lgm) bits.

re
|s.

The machine also has a

“head” moving through array.
Head contains ©(1) cells.

Head can see the cell at

Its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the
moves It to t

argest number,

ne end of the array,

picks up the second largest,

etc.

Moving to adjacer
takes n°1) second

Moving a number
takes nlto(l) secc

Same for comparis

Total sorting time
n2+0(1) seconds.

Cost of machine:
n1t°(1) Euros
for n1to(1) cells.

Negligible extra cc

The machine also has a Moving to adjacent array position
“head” moving through array. takes n°1) seconds.

Head contains ©(1) cells. Moving a number to end of array

Head can see the cell at takes nlto(1) seconds.
Its current array position; Same for comparisons etc.

perform arithmetic etc.; . .
Total sorting time:

move to adjacent array position.
J y P n2°(1) seconds.

Selection sort: Head .
Cost of machine:

n1to(l) Euros
for n1to(1) cells.

Negligible extra cost for head.

looks at each array position,
picks up the largest number,

moves it to the end of the array,

picks up the second largest,
etc.

has a

rough array.

1) cells.

cell at

osition;

> etc.;

array position.

ad

/ position,

st number,

C

C

of the array,
largest,

Moving to adjacent array position
takes n°1) seconds.

Moving a number to end of array
takes n1t°(1) seconds.
Same for comparisons etc.

Total sorting time:
n2+0(1) seconds.

Cost of machine:
n1t°(1) Euros
for n1to(1) cells.

Negligible extra cost for head.

Possibility 2: The
“2-dimensional RA
using merge sort."

Machine has ©(n
In a 2-dimensional

O(4/n) rows, O(4

Machine also has .

Merge sort: Head
sorts first |n /2| n
sorts last [n/2]| n
merges the sorted

Moving to adjacent array position
takes n°1) seconds.

Moving a number to end of array
takes n1to(1) seconds.
Same for comparisons etc.

Total sorting time:
n2+0(1) seconds.

Cost of machine:
n1t°(1) Euros
for n1to(1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has ©(n) cells
in a 2-dimensional array:

O(4/n) rows, ©(4/n) columns.

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.

t array position
s.

to end of array
nds.
0ons etc.

st for head.

Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has ©(n) cells
in a 2-dimensional array:

O(4/n) rows, ©(4/n) columns.

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.

Merging requires 7
to “random’ array

Average jump: n’

to adjacent array |
Each move takes 1

Total sorting time
nl-5to(1l) seconds.

Cost of machine:
nlto(l) Eyuros.

Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has ©(n) cells
in a 2-dimensional array:

O(4/n) rows, ©(4/n) columns.

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.

Merging requires ntT°() jumps
to “random’” array positions.

0.540(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°(1) seconds.

Total sorting time:
nl-5to(1) seconds.

Cost of machine: once again
nlto(l) Euros.

machine is a
\[V]

| cells

array:
/n) columns.
2 head.

recursively
umbers;
uymbers;
lists.

Merging requires ntT°() jumps
to “random’” array positions.

0.540(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°1) seconds.

Total sorting time:
nl-5to(1) seconds.

Cost of machine: once again
nlto(l) Euros.

Possibility 3: The
“pipelined 2-dimer

using radix-2 sort.

Machine

has ©(n)

In a 2-dimensional

Each cell in the ar

network
cells In t
Each cel
network
cells in t

Machine

Inks to tl
ne same C

In the to
Inks to ti

ne top row

also has

attached to top-le

Merging requires ntT°() jumps
to “random’” array positions.

0.5+0(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°1) seconds.

Total sorting time:
nl-5to(1l) seconds.

Cost of machine: once again
nlto(l) Euros.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine

has ©(n) cells

in a 2-dimensional array.

Each cell in the array has

network
cells In t
Each cel
network
cells in t

Machine

inks to the 2 adjacent
ne same column.

in the top row has
inks to the 2 adjacent

ne top row.

also has a CPU

attached to top-left cell.

zl—l—o(l) jumps
' positions.

5+0(1) Moves

yositions.

1°(1) seconds.

once again

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine

has ©(n) cells

in a 2-dimensional array.

Each cell in the array has

network
cells In t
Each cel
network
cells in t

Machine

inks to the 2 adjacent
ne same column.

iIn the top row has
inks to the 2 adjacent

ne top row.

also has a CPU

attached to top-left cell.

Radix-2 sort: CPL
shuffles array usin;

even numbers befc
31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc. O(lgn) bits.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine

has ©(n) cells

in a 2-dimensional array.

Each cell in the array has

network
cells In t
Each cel
network
cells in t

Machine

inks to the 2 adjacent
ne same column.

In the top row has
inks to the 2 adjacent

ne top row.

also has a CPU

attached to top-left cell.

Radix-2 sort: CPU

shuffles array using bit 0,
even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc. O(lgn) bits.

machine Is a
1sional RAM

| cells

array.

ray has

1e 2 adjacent
olumn.

p row has

1e 2 adjacent

V.

1 CPU
ft cell.

Radix-2 sort: CPU

shuffles array using bit 0,
even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc. O(lgn) bits.

CPU can read/wri

sending request th
Does not need to
before sending ne»

CPU can read an

of n0-57o(1) cells

0.5+0(1) SECON:

In n
Sends all requests,

then recelves resp«

Total sorting time
nl1to(1) seconds.

Cost of machine:
n1to(l) Euros.

Radix-2 sort: CPU

shuffles array using bit 0,
even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc. O(lgn) bits.

CPU can read/write any cell by
sending request through network.
Does not need to wait for response
before sending next request.

CPU can read an entire row

of n0-5To(1) cells

0.5+0(1) seconds.

In n
Sends all requests,

then receives responses.

Total sorting time:
nl1to(1) seconds.

Cost of machine: once again
nlto(l) Euros.

> bit 0,
re odd.

CPU can read/write any cell by
sending request through network.
Does not need to wait for response
before sending next request.

CPU can read an entire row

of n0-57o(1) cells

0.5+0(1) seconds.

In n
Sends all requests,

then receives responses.

Total sorting time:
nl1to(1) seconds.

Cost of machine: once again
nlto(l) Euros.

Possibility 4: The
“2-dimensional me
using Schimmler s

Machine has ©(n
In a 2-dimensional
Each cell has netw

to the 4 adjacent

Machine also has .
attached to top-le

CPU broadcasts ir
to all of the cells,

cells do most of tt

CPU can read/write any cell by Possibility 4: The machine is a

sending request through network. “2-dimensional mesh

Does not need to wait for response using Schimmler sort.”
before sending next request. Machine has ©(n) cells
CPU can read an entire row in a 2-dimensional array:.
of n0-+o(1) cells Each cell has network links
in n0-5t°(1) seconds. to the 4 adjacent cells.

Sends all requests, |
Machine also has a CPU

then receives responses.
attached to top-left cell.

Total sorting time: CPU broadcasts instructions
1+o(1

n1to(l) seconds. to all of the cells, but

Cost of machine: once again cells do most of the processing.

nlto(1) Euros.

te any cell by
rough network.
wait for response
t request.

entire row

1s.

DNSES.

once again

Possibility 4: The machine is a
“2-dimensional mesh
using Schimmler sort.”

Machine has ©(n) cells
in a 2-dimensional array.

Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU
attached to top-left cell.
CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Schimmler sort:

Recursively sort qt
in parallel. Then f
Sort each column
Sort each row in
Sort each column

Sort each row in

With proper choic
eft-to-right /right-
for each row, can

that this sorts whe

Possibility 4: The machine is a
“2-dimensional mesh

using Schimmler sort.”

Machine has ©(n) cells
in a 2-dimensional array.
Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU
attached to top-left cell.
CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Schimmler sort:

Recursively sort quadrants
in parallel. Then four steps:
Sort each column in parallel.
Sort each row in parallel.

Sort each column in parallel.

Sort each row in parallel.

With proper choice of
eft-to-right /right-to-left
for each row, can prove

that this sorts whole array.

machine Is a
sh
ort.

| cells
array.

ork links

cells.

y CPU

ft cell.
structions
but

e processing.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort eac
Sort eac
Sort eac
Sort eac

n row In parallel.

n row In parallel.

With proper choice of

for each

eft-to-right /right-to-left

row, can prove

that this sorts whole array.

To sort one row:

Sort each pair in
31415926+

n column in parallel.

n column in parallel.

13145926

Sort alternate pair
13145926+
11345296

Repeat.

Can prove that ro
when number of s
equals row length.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort eac
Sort eac
Sort eac
Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of

for each

eft-to-right /right-to-left

row, can prove

that this sorts whole array.

To sort one row:

Sort each pair in parallel.
31415926+

13145926

Sort alternate pairs in parallel.

13145926 +—
11345296

Repeat.

Can prove that row is sorted
when number of steps
equals row length.

1adrants

our steps:

in parallel.

arallel.

in parallel.

arallel.

e of
to-left
prove

le array.

To sort one row:

Sort each pair in parallel.
31415926+
13145926

Sort alternate pairs in parallel.

13145926 +—
11345296

Repeat.

Can prove that row is sorted
when number of steps
equals row length.

Sort one row

0.5+0(1)

In n sSecont

All rows In paralle
n0-5+0(1) seconds.

Total sorting time
n0-5+t0(1) seconds.

Cost of machine:
n1to(l) Euros.

To sort one row: Sort one row

- in n9-512(1) seconds.
Sort each pair in parallel.
31415926+ All rows In parallel:
13145926 n0-5+0(1) seconds.
Sort alternate pairs in parallel. Total sorting time:
13145926+ n0-5+0(1) seconds.
11345296 Cost of machine: once again
Repeat. n1to(l) Euros.

Can prove that row is sorted
when number of steps
equals row length.

yarallel.

s In parallel.

N 1S sorted
teps

Sort one row

0.5+0(1)

n n seconds.

All rows In parallel:
n0-5+0(1) seconds.

Total sorting time:
n0-5+t0(1) seconds.

Cost of machine: once again
nlto(l) Euros.

Some philosophica

1-tape Turing mac
RAMs, 2-dimensio
compute the same

Prove this by prov
each machine can
computations on t

(We believe that e
reasonable model

can be simulated |
1-tape Turing mac
“Church-Turing th

Sort one row Some philosophical notes

in n9-512(1) seconds. . .

1-tape Turing machines,
All rows in parallel: RAMs, 2-dimensional meshes
n0-5+0(1) seconds. compute the same functions.
Total sorting time: Prove this by proving that
n0-5+0(1) seconds. each machine can simulate

. . computations on the others.
Cost of machine: once again

n1to(l) Euros. (We believe that every
reasonable model of computation

can be simulated by a
1-tape Turing machine.
“Church-Turing thesis.”)

1s.

once again

Some philosophical notes

1-tape Turing machines,
RAMSs, 2-dimensional meshes
compute the same functions.

Prove this by proving that
each machine can simulate
computations on the others.

(We believe that every

reasonable model of computation
can be simulated by a

1-tape Turing machine.
“Church-Turing thesis.”)

1-tape Turing mac
RAMs, 2-dimensio
compute the same
in polynomial time
at polynomial cost

Prove this by prov
simulations are po

(Is this true for ev
reasonable model

Consider quantum

Some philosophical notes

1-tape Turing machines,
RAMSs, 2-dimensional meshes
compute the same functions.

Prove this by proving that
each machine can simulate
computations on the others.

(We believe that every

reasonable model of computation
can be simulated by a

1-tape Turing machine.
“Church-Turing thesis.”)

1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that
simulations are polynomial.

(Is this true for every
reasonable model of computation?
Consider quantum computers.)

| notes

hines,
nal meshes
functions.

ing that
simulate
he others.

very
of computation
WA

hine.

esis.”)

1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that
simulations are polynomial.

(Is this true for every
reasonable model of computation?
Consider quantum computers.)

1-tape Turing mac
RAMs, 2-dimensio
do not compute

the same function:
within, e.g., time

and cost nlto(l)

Example: 1-tape
cannot sort In tim
Too locall!

Example: 2-dimen
cannot sort In tim
Too sequentiall

1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that
simulations are polynomial.

(Is this true for every
reasonable model of computation?
Consider quantum computers.)

1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in time nlto(l)
Too locall

Example: 2-dimensional RAM

cannot sort in time n0-o(1)

Too sequentiall

hines,
nal meshes
functions

ing that
lynomial.

ery
of computation?
computers.)

1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in time nlto(l)
Too locall

Example: 2-dimensional RAM

cannot sort in time n0-2o(1)

Too sequentiall

o(1) is asymptotic
Speedup factor sus
might not be a sp
for small values of

When n is small,
RAM might seem
sensible machine ¢

But, for large n,

having a huge mel
waiting for a singl
is a silly machine «

1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in time nlto(l)
Too locall

Example: 2-dimensional RAM

cannot sort in time n0-5o(1)

Too sequentiall

o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, for large n,

having a huge memory
waiting for a single CPU
is a silly machine design.

hines,
nal meshes

>

n 1+0(1)

[uring machine
A ,n1+o(1).

sional RAM
~ 10.5+0(1)

o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, for large n,

having a huge memory
waiting for a single CPU
is a silly machine design.

Myth:

Parallel computati

Improve price-
p parallel com

DGFﬁ

DUte

may reduce time k

but Increase cost |

Reality: Can often

a large serial com|

into p small parall

so cost does not

increase by factor

o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, for large n,

having a huge memory
waiting for a single CPU
is a silly machine design.

Myth:
Parallel computation cannot
improve price-performance ratio;

p parallel computers
may reduce time by factor p
but increase cost by factor p.

Reality: Can often convert
a large serial computer
into » small parallel cells,
so cost does not

increase by factor p.

-h as n0.5—|—0(1)

cedup

to be a
lesign.

nory
= CPU
lesign.

Myth:

Parallel computation cannot

Improve price-
p parallel com

berformance ratio:

outers

may reduce time by factor p

but increase cost by factor p.

Reality: Can often convert

a large serial computer

into » small parallel cells,

so cost does not

increase by factor p.

Myth: Designing

cannot produce m

SMmad
com

| constant-fac

nared to, e.g.,

What matters is s

streamlining, such
instruction-decodil

Reality: In 1997, |

Was

1000 times fa:

set of Pentiums at

What matters is p

Myth: Myth: Designing a new machine

Parallel computation cannot cannot produce more than a
improve price-performance ratio; small constant-factor improvement
p parallel computers compared to, e.g., a Pentium.
may reduce time by factor p What matters is special-purpose
but increase cost by factor . streamlining, such as reducing

. Instruction-decoding costs.
Reality: Can often convert &

a large serial computer Reality: In 1997, DES Cracker
into p small parallel cells, was 1000 times faster than a
so cost does not set of Pentiums at the same price.

increase by factor . What matters is parallelism.

on cannot
ormance ratio;
rs

y factor p

y factor p.

- convert
yuter
el cells,

Myth: Designing a new machine
cannot produce more than a
small constant-factor improvement

compared to, e.g., a Pentium.
What matters is special-purpose
streamlining, such as reducing

instruction-decoding costs.

Reality: In 1997, DES Cracker
was 1000 times faster than a

set of Pentiums at the same price.
What matters is parallelism.

Future computers
massively parallel |

Computer designel
today's RAM-style
just as we laugh a
a 1-tape Turing m

Algorithm experts
today's dominant
algorithm analysis,
count CPU “operz
vIeEW memory acce

Myth: Designing a new machine Future computers will be
cannot produce more than a massively parallel meshes.

small constant-factor improvement . .
Computer designers will laugh at

compared to, e.g., a Pentium. today’s RAM-style machines,

What matters is special-purpose .
just as we laugh at

streamlining, such as reducing

_ _ _ a 1-tape Turing machine.
instruction-decoding costs.

| Algorithm experts will laugh at
Reality: In 1997, DES Cracker

_ today’'s dominant style of
was 1000 times faster than a

algorithm analysis, where we

set of Pentiums at the same price. y C
P count CPU “operations” and

What matters is parallelism. .
view memory access as free.

) new machine Future computers will be Brute-force search

ore than a massively parallel meshes. For each 128-bit A

tor improvement Computer designers will laugh at define H(k) = AE

d Pentlum. tOday,S RAM—Style machines,

necial-purpose Typical known-pla

just as we laugh at

' iven H(k): want

as reducing a 1-tape Turing machine. . ()

18 COsts. | | Cryptanalyst build
Algorithm experts will laugh at .

YES Cracker | p parallel AES circ
today’'s dominant style of .

ster than 3 | _ each guessing n k
algorithm analysis, where we

' the same price. for a total of pn k

Lol count CPU “operations” and
arallelism. . .
view memory access as free. Time: n AES eval

Cost: p AES circu
Success chance: p

Future computers will be
massively parallel meshes.

Computer designers will laugh at
today's RAM-style machines,
just as we laugh at

a 1-tape Turing machine.

Algorithm experts will laugh at
today's dominant style of

algorithm analysis, where we
count CPU “operations” and
view memory access as free.

Brute-force searches

For each 128-bit AES key &
define H(k) = AES,(0).

Typical known-plaintext attack:
given H(k); want to find k.

Cryptanalyst builds machine with
p parallel AES circuits,

each guessing n keys,

for a total of pn keys.

Time: n AES evaluations.
Cost: » AES circuits.

Success chance: pn /2128,

will be
meshes.

s will laugh at
' machines,

L

achine.

will laugh at
style of

“where we
tions' and
ss as free.

Brute-force searches

For each 128-bit AES key £
define H(k) = AESL(0).

Typical known-plaintext attack:
given H(k); want to find k.

Cryptanalyst builds machine with
p parallel AES circuits,

each guessing n keys,

for a total of pn keys.

Time: n AES evaluations.
Cost: » AES circuits.

Success chance: pn /2128,

Cryptanalyst is act

attacking many Al
Wants to find k1,
given H(k1), H(k

Rivest's “time-mel
using distinguishec
merges these com,

For any 128-bit r:
H(r), H(H(r)), ..
finding string that
with 30 zero bits.
Call that string Z|

Brute-force searches

For each 128-bit AES key £
define H(k) = AESL(0).

Typical known-plaintext attack:
given H(k); want to find k.

Cryptanalyst builds machine with
p parallel AES circuits,

each guessing n keys,

for a total of pn keys.

Time: n AES evaluations.
Cost: » AES circuits.

Success chance: pn /2128,

Cryptanalyst is actually
attacking many AES keys.
Wants to find k1, ko, . ..
given H(k1), H(k2),

Rivest's “time-memory tradeoff
using distinguished points”
merges these computations.

For any 128-bit r: Compute
H(r), H(H(r)), ... until
finding string that begins
with 30 zero bits.

Call that string Z(7).

€S

\ES key £
Sk(0).

Intext attack:
to find k.

s machine with
ults,

y'S,

eys.

uations.

Its.
,n/2128.

Cryptanalyst is actually
attacking many AES keys.

Wants to find k1, ko, . ..
given H(k1), H(k>),

Rivest's “time-memory tradeoff
using distinguished points”
merges these computations.

For any 128-bit r: Compute
H(r), H(H(r)), ... until
finding string that begins
with 30 zero bits.

Call that string Z(7).

Given H(ky), H(k:

Choose random 77
Store Z(7r1), Z(7ro
in an array in RAN

Compute each Z(.
look up Z(H(k;))
Z(

It Z(H(k;)) = Z(:
check whether H(.
any of H(r;), H(F

Details: avoid infi
handle multiple co

Cry

ptanalyst Is actually

attacking many AES keys.

Wa

nts to find k1, ko, . ..

given H(k1), H(k2),

Rivest's “time-memory tradeoff

using distinguished points”

merges these computations.

For

any 128-bit r: Compute

H(r), H(H(r)), ... until

finc

wit

ing string that begins
n 30 zero bits.

Cal

that string Z(r).

Given H(k1), H(k2), ..., H(kp):

Choose random 71,79, ..., Tp.
Store Z(r1), Z(12), ..., Z(Tp)
in an array in RAM.

Compute each Z(H(k;));
look up Z(H(k;)) in the array.

If Z(H(k;)) = Z(rg),
check whether H(k;) matches
any of H(r;), H(H(rj)),....

Details: avoid infinite loops;
handle multiple collisions.

mory tradeoff
] points”
outations.

Compute
. until

begins

Wl

Given H(k1), H(ks), ..., H(kp):

Choose random 71,79, ..., Tp.
Store Z(r1), Z(712), ..., Z(Tp)
in an array in RAM.

Compute each Z(H(k;));

look up Z(H(k;)) in the array.

If Z(H(k;)) = Z(rg),
check whether H(k;) matches
any of H(r;), H(H(rj)), ...

Details: avoid infinite loops;
handle multiple collisions.

Heuristic analysis:
Z(r1),Z(r2),...,
involves ~ 23V out

If any of the input
then we'll find k1.
Chance ~ 23Vp /21

Same for ko, k3, . .
Total chance = 23
of finding at least

On a serial compu
~ 231p AES evalu

Cost: =~ 128p bits

Given H(k1), H(k2), ..., H(kp):

Choose random 71,79, ..., Tp.
Store Z(r1), Z(712), ..., Z(Tp)
in an array in RAM.

Compute each Z(H(k;));

look up Z(H(k;)) in the array.

If Z(H(k;)) = Z(rg),
check whether H(k;) matches
any of H(r;), H(H(rj)),....

Details: avoid infinite loops;
handle multiple collisions.

Heuristic analysis: Computing

Z(r1),Z(r2), ..., Z(Tp)
involves ~ 23V outputs of H.

If any of the inputs match k1
then we'll find k1.
Chance ~ 230p /2128

Same for ko, k3,
Total chance =5 230p? /2128
of finding at least one key.

On a serial computer,
~ 231y AES evaluations.
Cost: =~ 128p bits of memory.

H(ki));

in the array.

V‘j),
k;) matches

i(r), ...

nite loops;
llisions.

Heuristic analysis: Computing

Z(r1),Z(r2), ..., Z(Tp)
involves ~ 23V outputs of H.

If any of the inputs match k1
then we'll find k1.
Chance ~ 230p /2128

Same for ko, k3,
Total chance =5 230p? /2128
of finding at least one key.

On a serial computer,
~ 231y AES evaluations.
Cost: =~ 128p bits of memory.

Much better: Mas

Compute all Z val
using » AES circu
Use Schimmler sot

collisions Z(H(k;)

Time: ~ 231 AES
plus ~ 8,/p Schin
About p times fas

Cost: p AES circu

plus network links.
Maybe 100 times
than serial. Can re

Heuristic analysis: Computing

Z(r1),Z(r2), ..., Z(Tp)
involves ~ 23V outputs of H.

If any of the inputs match k1
then we'll find k1.
Chance ~ 230p /2128

Same for ko, k3,
Total chance =z 230p? /2128
of finding at least one key.

On a serial computer,
~ 231y AES evaluations.
Cost: =~ 128p bits of memory.

Much better: Massive parallelism.

Compute all Z values in parallel,
using p AES circuits.
Use Schimmler sort to find

collisions Z(H(k;)) = Z(r5).

Time: ~ 231 AES evaluations,
plus ~ 8,/p Schimmler steps.
About p times faster than serial.

Cost: » AES circuits,

plus network links.

Maybe 100 times more expensive
than serial. Can reduce the 100.

Computing

Z(rp)
puts of H.

s match &1

23

OP2/2128
one key.
ter,

ations.

of memory.

Much better: Massive parallelism.

Compute all Z values in parallel,
using p AES circuits.

Use Schimmler sort to find
collisions Z(H(k;)) = Z(r5).

231 AES evaluations.

Time: &
plus ~ 8,/p Schimmler steps.

About p times faster than serial.

Cost: » AES circuits,

plus network links.

Maybe 100 times more expensive
than serial. Can reduce the 100.

Sieving

The “number-field

is today's fastest r
to factor a big RS

Most important N
find small prime d
ofz,z+1,x+ 2

1000002: divisible
1000003:

1000004: divisible
1000005: divisible
1000006: divisible

Much better: Massive parallelism.

Compute all Z values in parallel,
using o AES circuits.

Use Schimmler sort to find
collisions Z(H(k;)) = Z(r5).

231 AES evaluations.

Time: &
plus ~ 8,/p Schimmler steps.

About p times faster than serial.

Cost: » AES circuits,

plus network links.

Maybe 100 times more expensive
than serial. Can reduce the 100.

Sieving

The “number-field sieve” (NFS)

is today's fastest method
to factor a big RSA key n.

Most important NFS bottleneck:
find small prime divisors
ofz,z+1,xz+2,..., T+ .

1000002: divisible by 2 3
1000003:

1000004: divisible by 2 2
1000005: divisible by 3 5
1000006: divisible by 2 7

sive parallelism.

ues in parallel,
ts.

t to find

) = Z(rj).
evaluations,

imler steps.
ter than serial.

Its,

more expensive
2duce the 100.

Sieving

The “number-field sieve” (NFS)

is today's fastest method
to factor a big RSA key n.

Most important NFS bottleneck:

find small prime divisors

ofz,z+1,x+2

1000002

1000003:

1000004
1000005:
1000006:

..... T+ Y.
. divisible by 2 3
divisible by 2 2
divisible by 3 5
divisible by 2 7

Conventional sievi

(e.g. 2000 Silverm
2000 Lenstra Shar

Generate pairs (2,
(2,1000004), (2,1
(3,1000002), (3,1
etc.

Use distribution sc
to sort by second

y1to(l) pairs.
Sorting time yl1°

machine cost ylT*

Sieving

The “number-field sieve” (NFS)

is today's fastest method
to factor a big RSA key n.

Most important NFS bottleneck:

find small prime divisors

ofz,z+1,x+2

1000002

1000003:

1000004
1000005:
1000006:

..... T+ Y.
. divisible by 2 3
divisible by 2 2
divisible by 3 5
divisible by 2 7

Conventional sieving/ TWINKLE
(e.g. 2000 Silverman,
2000 Lenstra Shamir):

Generate pairs (2, 1000002),
(2,1000004), (2,1000006), ...,
(3,1000002), (3,1000005), ...,
etc.

Use distribution sort

to sort by second component.

y1to(l) pairs.

Sorting time ylto(1).
machine cost y1To(1),

sieve” (NFS)
nethod
A key n.

FS bottleneck:

VISOI'S
.., T T Y.

by 2 3

oy 2 2
oy 3 5
oy 2

Conventional sieving/ TWINKLE
(e.g. 2000 Silverman,
2000 Lenstra Shamir):

Generate pairs (2, 1000002),
(2,1000004), (2,1000006), ...,
(3,1000002), (3,1000005), ...,
etc.

Use distribution sort

to sort by second component.

y1o(l) pairs.
Sorting time ylto(1).
machine cost y1To(1),

For same machine
achieve much high
by massive paralle

e.g. Schimmler sor
sorting time yY-°>1

machine cost ylT°

This drastically re

overall NFS time

for sufficiently larg
(2001 Bernstein)

Conventional sieving/ TWINKLE
(e.g. 2000 Silverman,
2000 Lenstra Shamir):

Generate pairs (2, 1000002),
(2,1000004), (2,1000006), ...,
(3,1000002), (3,1000005), ...,
etc.

Use distribution sort

to sort by second component.

y1o1) pairs.
Sorting time ylto(1).
machine cost ylto(l),

For same machine cost,
achieve much higher speed
by massive parallelism.

e.g. Schimmler sort:
sorting time y0->to(1).

machine cost y1To(1),

This drastically reduces

overall NFS time

for sufficiently large n.
(2001 Bernstein)

g/ TWINKLE

an,
nir):

1000002),
000006), .. .,
000005), ...,

rt
component.

1).

(1)

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time y

O.5+o(1);

machine cost ylto(l),

This @

overal

rastically reduces
NFS time

for sufficiently large n.

(2001

Bernstein)

Can do even bette
low-memory small
algorithms, such a

elliptic-curve meth

Time only y0+o(1)

machine cost y1 T

This further reduc
overall NFS time

for sufficiently larg
(2001 Bernstein)

Can also save time
bottleneck, “linear

ess important. (2

For same machine cost,

achieve much higher speed

by massive parallelism.

e.g. Schimmler sort:

sorting time y

O.5+o(1);

machine cost y1To(1).

This @

overal

rastically reduces
NFS time

for sufficiently large n.

(2001

Bernstein)

Can do even better with
low-memory small-divisor
algorithms, such as the
elliptic-curve method (ECM).
0+4o0(1).

1—|—o,(1)_

Time only y
machine cost y

This further reduces
overall NFS time

for sufficiently large n.
(2001 Bernstein)

Can also save time in another
vottleneck, “linear algebra™;
ess important. (2001 Bernstein)

cost,
er speed
Ism.

o(l);
(1)

Juces

en.

Can do even better with
low-memory small-divisor
algorithms, such as the
elliptic-curve method (ECM).
0+4o0(1).

1—|—o,(1)_

Time only y
machine cost y

This further reduces
overall NFS time
for sufficiently large n.

(2001 Bernstein)

Can also save time in another
oottleneck, “linear algebra™;

ess important. (2001 Bernstein)

NFS price-perform

exp((B+0(1)) v/ (I

assuming standard

sleving Inear
RAM RAM
RAM RAM

Schimmler| RAM

Schimmler|Schim
ECM RAM

ECM Schim

(RAM 2.85: stand
2.37, 1.97: 2001.1
RAM 2.76: 2002.(

Can do even better with
low-memory small-divisor
algorithms, such as the
elliptic-curve method (ECM).
0+4o0(1).

1—|—o,(1)_

Time only y
machine cost y

This further reduces
overall NFS time

for sufficiently large n.
(2001 Bernstein)

Can also save time in another
vottleneck, “linear algebra™;

ess important. (2001 Bernstein)

NFS price-performance ratio is

exp((B+0(1)) 3/ (log n)(log log)?)

assuming standard conjectures.

sieving inear algebra |

RAM RAM 2.85...
RAM RAM 2.76 ...
Schimmler| RAM 2.37 ...
Schimmler|Schimmler [2.36...
ECM RAM 2.08...
ECM Schimmler |1.97...

(RAM 2.85: standard;
2.37, 1.97: 2001.11 Bernstein:
RAM 2.76: 2002.04 Pomerance)

r with
-divisor

s the

od (ECM).

(1)

€S

en.

> In another
~algebra”;
001 Bernstein)

NFS price-performance ratio is

exp((B+0(1)) 3/ (log n)(log log)?)

assuming standard conjectures.

sieving inear algebra |

RAM RAM 2.85...
RAM RAM 2.76 . ..
Schimmler| RAM 2.37 ...
Schimmler|Schimmler [2.36...
ECM RAM 2.08...
ECM Schimmler |1.97...

(RAM 2.85: standard;
2.37, 1.97: 2001.11 Bernstein:

RAM 2.76: 2002.04 Pomerance)

Switching from R/
massively parallel |
produces gigantic
for sutficiently larg

Improvement from
RAM factorization
to best machine, [
corresponds to mu

number of digits c
by 3.009...+ o(1

NFS price-performance ratio is Switching from RAM to a
exp((B+0(1)) </ (log n)(log log n)?) massively parallel machine

assuming standard conjectures. produces gigantic NFS speedups

Sieving near algebra|g3 for sutficiently large n.

Eﬁl\l\;ll zﬁx 38(55 XN Improvement from conventional
0. .. S _

Schimmier RAM 537 RAM factorlz.atlon, g =285...

Schimmler|Schimmler [2.36... to best machine, § =1.97. .,

ECM RAM 2.08... corresponds to multiplying

ECM Schimmler 1.97... number of d|g|ts of n

(RAM 2.85: standard; by 3.009... + o(1).

2.37, 1.97: 2001.11 Bernstein:
RAM 2.76: 2002.04 Pomerance)

ance ratio is Switching from RAM to a As always, o(1) is

2 . .
g n)-(loglog n)<) mazswely p-arallél r;lzla:cshme d Situation for small
conjectures.]E)ro u;:fés- glglan;clc speedups '« much less clear
Jlgebral @ or sufficiently large n. o
' X5 | How expensive s |
09 . . . Improvement from conventional .
2.70. .. RAM factorization, 8 = 2.85 factor 1024-bit k3
2.37... | SR We still don't kno
mler 12.36 .. to best machine, B8 =1.97.. .,
2.08... corresponds to multiplying Can now find man
mler 1.97... number of d|g|ts of n making wild predic
by 3.009. ..+ o(1). None of the predic
ard: .
| can be taken serio
1 Bernstein:

)4 Pomerance)

Switching from RAM to a
massively parallel machine
produces gigantic NFS speedups
for sutficiently large n.

Improvement from conventional
RAM factorization, 8 = 2.85. . .,
to best machine, 5 =1.97.. .
corresponds to multiplying
number of digits of n

by 3.009. .. + o(1).

As always, o(1) is asymptotic.

Situation for
Is much less

small n
clear.

How expensive Is It to

factor 1024-bit RSA keys?
We still don't know.

Can now fina
making wild
None of the

can be taken

many papers
redictions.

oredictions
seriously!

\M to a
machine

NFS speedups
e n.

conventional
B =285...
] =1.97...

ltiplying
f n

).

As always, o(1) is asymptotic.

Situation for small n
Is much less clear.

How expensive Is It to

factor 1024-bit RSA keys?
We still don't know.

Can now find many papers
making wild predictions.

None of the predictions

can be taken seriously!

NFS speed is com

Example: NFS fac
using an auxiliary
Number of polyno
is huge. Effect of
takes time to com

Some papers don”
effort into polynor
so they underestin

Some papers make
optimal-polynomia
so they overestima

As always, o(1) is asymptotic.

Situation for small n
Is much less clear.

How expensive Is It to

factor 1024-bit RSA keys?
We still don't know.

Can now find many papers
making wild predictions.

None of the predictions

can be taken seriously!

NFS speed is complicated.

Example: NFS factors n

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don't put enough

effort into polynomial choice,

so they underestimate NFS

speed.

Some papers make unjustified

optimal-polynomial extrapo
so they overestimate NFS s

ations,

heed.

asymptotic.

n

t o
A keys?

N.

y papers
tions.

tions
usly!

NFS speed is complicated.

Example: NFS factors n

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don't put enough

effort into polynomial choice,

so they underestimate NFS

speed.

Some papers make unjustified

optimal-polynomial extrapo
so they overestimate NFS s

ations,
heed.

At a lower leve
massively paral

T«
el

are much less stre.

than today's Penti

Computer market

Massive parallelisn

become the de-fac

and will be tuned

How much speed 1
Today 1t's hard to
But we'll find out!

NFS speed is complicated.

Example: NFS factors n

using an auxiliary polynomial.

Number of polynomial choices

is huge. Effect of polynomial

takes time to compute.

Some papers don't put enough

effort into polynomial choice,

so they underestimate NFS

speed.

Some papers make unjustified

optimal-polynomial extrapo
so they overestimate NFS s

ations,
heed.

At a lower leve
massively paral

, today's
el computers

are much less streamlined

than today's Pentiums.

Computer market will evolve.

Massive parallelism will

become the de-facto standard,

and will be tuned carefully.

How much speed will we gain?

Today it's hard to say.
But we'll find out!

