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often collide for large .
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was limited to about 246.
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e.g., � 2 �
92 for � = 2048.

Security gap compared to AES

1 � 7 292 if 264.

With old security bound,

was limited to about 246.

Improved security bounds

apply far beyond the MAC context.

“Stronger security bounds for

permutations”: http://cr.yp.to

/papers.html#permutations

Stronger than “game-playing.”

Another application: Counter mode

is provably stronger than CBC.

/papers.html#countermode,

coming soon.
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16-byte block invertibility:
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but still annoying.

AES security problems from
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“Not vulnerable to timing attacks”

was wrong. Very hard to fix

without extreme slowdowns.

/papers.html#cachetiming

Many fast stream ciphers

don’t have these problems.

Do we want to keep AES?
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