
Building circuits

for integer factorization

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation

I want to work for NSA � � �

� � � as an independent contractor.

Outline of business plan:

NSA sends me (� �), where
� � is a 1024-bit integer;
� ��� are primes;

� � � as an independent contractor.

Outline of business plan:

NSA sends me (� �), where
� � is a 1024-bit integer;
� ��� are primes;
� is a large pile of cash.

One year later,

I send NSA (� �) or (� �).

Extremely important: Need

CONFIDENCE
that dollars are more than enough

to compute (���) or (� �)

in one year.

Extremely important: Need

CONFIDENCE
that dollars are more than enough

to compute (���) or (� �)

in one year.

If is not enough,

NSA sends me to Guantanamo Bay.

Unacceptable risk.

Can we expect to achieve

confidence that cost of factoring �

is ?

Yes.

Expensive way to achieve

confidence: Go ahead and

spend dollars factoring � .

Goal: Achieve confidence

with much less expense

than doing the factorization.

Other issues, not as important:

� NSA would like minimum

� � � but all ’s in a wide range

are acceptable.

� I would like my actual

computation cost to be minimum

� � � but all costs in a wide range

are acceptable.

CONFIDENCE is essential.

Minimization is not essential.

Minimum cost is not essential

but we can still aim for it.

Can we expect to achieve it? No!

Can never confidently state

lower bound on the cost.

People keep discovering

ways to reduce the cost.

Let’s look at an example:

finding a good NFS polynomial.

Degree 1 + 5 number-field sieve

is given � ; chooses � 1
�
6;

expands � in base as
� = 5

5 + 4
4 + � � � + 0,

maybe with negative coefficients;

contemplates polynomial values

(� �)(5 � 5 + 4 � 4 + � � � + 0
5).

Have 5
� 1

�
6.

Typically all the � ’s

are on scale of � 1
�
6.

(1993 Buhler Lenstra Pomerance)

To reduce values by factor :

Enumerate many possibilities

for near 0 � 25 � 1
�
6.

Have 5
� 1 � 25 � 1

�
6.

4
�

3
�

2
�

1
�

0 could be

as large as 0 � 25 � 1
�
6.

Hope that they are smaller,

on scale of
� 1 � 25 � 1

�
6.

Conjecturally this happens

within roughly 7 � 5 trials.

Then (� �)(5 � 5 + � � � + 0
5)

is on scale of 6(� 3)2
�
6

for � � on scale of .

Improvement: Force 4 to be small.

Say � = 5
5 + 4

4 + � � � + 0.

Choose integer 4 5 5.

Write � in base + :
� = 5(+)5

+ (4 � 5 5)(+)4 + � � � .

Now degree-4 coefficient

is on same scale as 5.

Hope for small 3
�

2
�

1
�

0.

Conjecturally this happens

within roughly 6 trials.

Improvement: Skew coefficients.

(1999 Murphy, without analysis)

Enumerate many possibilities

for near � 1
�
6.

Have 5
� 5 � 1

�
6.

4
�

3
�

2
�

1
�

0 could be

as large as � 1
�
6.

Force small 4. Hope for

3 on scale of
� 2 � 1

�
6,

2 on scale of
� 0 � 5 � 1

�
6.

Conjecturally this happens

within roughly 4 � 5 trials:

(2 + 1) + (0 � 5 + 1) = 4 � 5.

For � on scale of 0 � 75

and on scale of
� 0 � 75

have � � on scale of 0 � 25 � 1
�
6

and 5 � 5 + 4 � 4 + � � � + 0
5

on scale of
� 1 � 25 5 � 1

�
6.

Product 6(� 3)2
�
6.

Improvement:

Control another coefficient.

(2004.11 Bernstein)

Say � = 5
5 + 4

4 + � � � + 0.

Choose integer 4 5 5

and integer 5 5.

Find all short vectors

in lattice generated by

(3 � 0 � 0 � 10 5
2 � 4 4 + 3),

(0 � 4 � 0 � 20 5 � 4 4),

(0 � 0 � 5 � 10 5
2),

(0 � 0 � 0 �).

Hope for below 1

with (10 5
2 � 4 4 + 3)

+ (20 5 � 4 4)

+ (10 5
2) 2

below 3 modulo .

Write � in base + + .

Obtain degree-5 coefficient

on scale of
� 5 � 1

�
6;

degree-4 coefficient

on scale of
� 4 � 1

�
6;

degree-3 coefficient

on scale of
� 2 � 1

�
6.

Hope for good degree 2.

Conjecturally succeed

within roughly 3 � 5 trials.

Saves time as soon as exceeds

ratio of lattice-reduction time

between dimensions 1 � 4.

Faster polynomial search

can afford larger

smaller polynomial values

faster factorization.

Claims of the form

“Factoring � costs ,”

or “factoring � with the

number-field sieve costs ,”

are inherently untrustworthy

and frequently wrong.

Many people claimed that NFS

would cost more than QS

for 120-digit integers.

That’s speculation, not science.

They were wrong.

Erroneous lower-bound claims

occur in other contexts too.

Fast integer multiplication

(time exponent 1 + � (1))

has now set ECPP speed records.

(2004 Morain talk: “More and

more powerful computers

fast methods begin to be

fast in real life”)

Many people had claimed

that fast multiplication

is of no practical interest.

They were wrong.

In contrast, claims of the form

“Factoring � costs ”

are sometimes justified.

But not always! Check the details.

Example: “These integers have

smoothness probability 2 � 10
� 11

� � � since (10) = 2 � 77 � � � � 10
� 11”

is unjustified speculation.

“These integers have

smoothness probability 2 � 10
� 11

� � � by extrapolation from

smaller factorization experiments

using exp(3 blah blah blah)”

is unjustified speculation.

“These integers have

smoothness probability 2 � 10
� 11

� � � as shown by smoothness

tests on a uniform random sample

of 1015 of these integers”

is justified—but not cheaply.

Can much more quickly

obtain good lower bounds

on smoothness probabilities.

Define as the set of

1000000-smooth integers � 1.

The Dirichlet series for

is [�] � lg � =

(1 + � lg 2 + � 2 lg 2 + � 3 lg 2 + � � �)

(1 + � lg 3 + � 2 lg 3 + � 3 lg 3 + � � �)

(1 + � lg 5 + � 2 lg 5 + � 3 lg 5 + � � �)

� � �

(1 + � lg 999983 + � 2 lg 999983 + � � �).

Replace primes 2 � 3 � 5 � 7 �
� � �

� 999983

with slightly larger real numbers

2 = 1 � 18, 3 = 1 � 112, 5 = 1 � 117,

� � � , 999983 = 1 � 1145.

Replace each 2
�

3
�

� � � in with

2
�

3
�

� � � , obtaining multiset .

The Dirichlet series for

is [�] � lg � =

(1 + � lg 2 + � 2 lg 2 + � 3 lg 2 + � � �)

(1 + � lg 3 + � 2 lg 3 + � 3 lg 3 + � � �)

(1 + � lg 5 + � 2 lg 5 + � 3 lg 5 + � � �)

� � �

(1 + � lg 999983 + � 2 lg 999983 + � � �).

This is simply a power series

� 0
0 + � 1

1 + � � � =

(1 + 8 + 2 � 8 + 3 � 8 + � � �)

(1 + 12 + 2 � 12 + 3 � 12 + � � �)

(1 + 17 + 2 � 17 + 3 � 17 + � � �)

� � � (1 + 145 + 2 � 145 + � � �)

in the variable = � lg 1 � 1.

Compute series mod (e.g.) 2910;

i.e., compute � 0
� � 1

�
� � �

� � 2909.

has � 0 + � � � + � 2909 elements

1 � 12909 2400, so has

at least that many elements 2400.

So have guaranteed lower bound

on number of 1000000-smooth

integers in [1 � 2400].

Can compute an upper bound to

check looseness of lower bound.

If looser than desired,

move 1 � 1 closer to 1.

Achieve any desired accuracy.

What about more complicated

notions of smoothness?

Can modify Dirichlet series

in many interesting ways to

modify notion of smoothness.

Use 1 + � lg 999983 instead of

(1 + � lg 999983 + � 2 lg 999983 + � � �)

to throw away � ’s having

more than one factor 999983.

Multiply � 0
0 + � � � + � 2909

2909

by � lg 1000003 + � � � + � lg 999999937

to allow � ’s that are

1000000-smooth integers 2400

times one prime in [106 � 109].

What about polynomial values?

Twisted Dirichlet series for

powers of an invertible ideal

of the ring of integers of

Q(�) (� �)(5
� 5 + � � � + 0):

1 + [] � lg (�) + []2 � 2 lg (�) + � � �

where [] is class, is norm.

Replace with ,

multiply for various ’s

to see distribution of

smooth ideals in each class.

Check that small principal ideals

correspond to (� �)(� � �).

This is much more complicated

than simply using ;

but it gives us CONFIDENCE

regarding smoothness probabilities.

Reasonably small CPU time.

Trickier type of tradeoff:

Are we willing to sacrifice

CPU time in the factorization

to gain confidence?

Let’s look at one proposal:

Build 1
�
2 � 1

�
2 mesh

of simple processors.

Build
�

pairs (���)

into each processor.

Spread � ’s among processors.

Each processor is # � for one � .

#1 #2 #3
(2 � 1)(2 � 2)(2 � 3)
(5 � 2)(7 � 1)(7 � 2)
#4 #5 #6

(2 � 4)(2 � 5)(3 � 1)

#7 #8 #9
(3 � 2)(3 � 3)(5 � 1)

Given � :

For each (� �), processor

generates � th multiple � of

in � + 1 � � + 2 �
� � �

� � + ,

if there is one,

and sends (���) to #(� � �)

through the mesh.

With random routing:
1

�
2+ �

time, 1+ �
hardware.

(2001.03 Bernstein talk,

“The NSA sieving circuit”)

But does routing really work?

Packets bump into each other.

Even worse, in linear algebra,

many packets are aimed at a

small part of the mesh.

Gain confidence by switching

to a mesh-sorting algorithm:

Circuits for linear algebra

� � � Sort all the integers and

pairs (� �) in order of � � �

(2001.11 Bernstein, “Circuits

for integer factorization”)

I speculate that routing works.

No evidence that it’s bad.

Obviously worth exploring:

Should and (� �) be assigned

permanently to cells? � � � There is

a huge literature on mesh routing

and mesh sorting, with dozens of

potentially useful techniques.

(2001.11 Bernstein, same paper)

But sorting definitely works

and isn’t much slower.

Another choice that affects

both speed and confidence:

Which computers to use?

Some of the dollars

will be spent buying

(or renting) computers.

Can buy special-purpose

computers; but should I?

What do I want in a computer?

Let’s look at some options � � �

An old computer, the MasPar:

16384 parallel processors

in a 2-dimensional mesh,

each connected to neighbors.

200000 32-bit additions

per second per processor.

No longer sounds impressive.

“SIMD”: global instructions

transmitted to all processors;

no need to store instructions

in each processor.

Was used for factorizations.

Currently available for $50:

correlation-detector chip.

One billion times per second:

Given input bit sequences

0
�

1
�

2
�

� � �

�
63,

� 0
� � 1

� � 2
�

� � �

� � 63,

computes 0 � 0 + � � � + 63 � 63

and 100 shifted correlations;

merges into a detector sequence.

The speed is inspirational.

Might try to use this for

factorization—but it clearly

was designed for something else.

Another interesting computer:

the human brain.

Roughly 1012 neurons

in a 3-dimensional mesh,

each connected to 100 neighbors.

Each neuron stores 1 byte,

performs 100 ops/second.

Designed for vision processing

and other pattern-matching tasks.

Hard to use for factorization.

Draws about 20 watts—

but relies on 100-watt

“body” for energy acquisition.

Another interesting computer:

the Internet.

Huge general-purpose computer.

“A powerful multicomputer,

much larger than a major city.”

Includes millions of chips,

millions of network connections.

Notable difference from the

other computer examples:

the chips are considerably

faster than the connections.

Has been used for factorizations.

Many people are saying that

special-purpose computers are

much more cost-effective than

general-purpose computers:

speedups of 1000 or more

for large factorization problems.

That’s a terribly strange

thing to say!

We normally think of a

general-purpose computer as

simulating any computer (up

to a similar size) without much

loss of price-performance ratio.

e.g. One 2-tape Turing machine

can simulate any Turing machine

with slowdown � (lg);

reasonably small constants.

e.g. Athlon quickly simulates G5.

Unless we want the last ounce

of speed, we’re happy with a

general-purpose computer.

Lack of efficient simulation

tells us that a machine has a

basic architectural deficiency.

e.g. 1-tape Turing machines

cannot efficiently simulate

more tapes. Too local!

(Many easy test problems.)

e.g. 2-tape Turing machines

cannot efficiently simulate

random-access machines.

Too sequential!

(Harder to find test problems.)

What we’re seeing now

in integer factorization:

random-access machines cannot

efficiently simulate circuits.

An easy test problem:

sort � integers in [1 � �].

(Many other test problems:

e.g., multiply � -bit numbers.)

Mesh-sorting circuit of

size � 1+ � (1) takes time � 1
�
2+ � (1).

Random-access machine of

size � 1+ � (1) takes time � 1+ � (1).

These � (1)’s are fairly small.

Architectural deficiency in

random-access machines:

no parallelism.

Bad fix: Discard the concept

of general-purpose computers;

throw away modularity and the

efficiencies of the mass market.

Good fix: Switch to a

better architecture—

a general-purpose computer

that can efficiently

simulate large circuits.

Don’t want to lose confidence!

Extreme example: Don’t want to

assume quantum computers.

“Can they be built?”

(Cryptographers need to be ready

with post-quantum cryptography

in case they are built.)

Don’t want to use dim-3 mesh.

Don’t want long wires.

Don’t want global RAM.

Don’t want global clocks.

Don’t want global instructions.

Don’t want large chips.

Resulting computer architecture:

chip is a dimension-2

mesh of dinky little processors,

each connected to neighbors;

computer is a dimension-2

mesh of chips,

each connected to neighbors.

Clearly buildable at huge sizes,

cost scaling linearly with

number of chips—and can

still do fast sorting etc.

I’m now designing a DLP

plus mesh programming tools.

Compared to the Internet:

more parallelism in chips;

chips balanced with network.

Compared to Computational RAM:

a complete local network;

no global clocks;

larger DLPs.

� � �

Compared to the MasPar

(which was easy to program):

almost identical,

except no global clocks.

Assume a good computer.

What factorization algorithms

am I investigating?

Broadly classify NFS sieving

options by asymptotic price-

performance ratio for testing

smoothness of 2+ � (1) numbers;

i.e., by scalability.

RAM sieving: 3+ � (1).

Same for parallel trial division

(Georgia Cracker, TWINKLE).

Useful for Internet factorizations.

“There are several ways to achieve

cost 2 � 5+ � (1): parallel Pollard rho,

for example, or sieving via

Schimmler’s algorithm”

(2001.11 Bernstein, “Circuits for

integer factorization,” Section 5,

“Circuits to find smooth

numbers”). Same for TWIRL etc.

“Parallel ECM or HECM � � �

2+ � (1)” (2001.11 Bernstein).

Also 2+ � (1), but clearly faster:

sieving plus rho plus early-abort

ECM (2001.11 Bernstein).

NFS price-performance ratio is

exp((+ � (1)) 3 (log �)(log log �)2)

assuming standard conjectures.

sieving linalg
RAM RAM 2 � 85 � � � standard
RAM RAM 2 � 76 � � � improved
mesh RAM 2 � 37 � � �

mesh mesh 2 � 36 � � �

ECM RAM 2 � 08 � � �

ECM mesh 1 � 97 � � �

(2 � 37, 1 � 97: 2001.11 Bernstein;

RAM 2 � 76: 2002.04 Pomerance)

Of course, � (1) is not 0,

but can draw some conclusions

about large numbers:

� Linear-algebra choice is

clearly much less important

than sieving choice.

� Communication costs keep

the price-performance exponent

above the operation exponent.

Alternative: Apply ECM

directly to � .

Usually ignored: “Many

more operations than NFS.”

But simple algorithm,

minimal communication.

Easy to obtain confidence.

For speed, want a very fast

multiplication circuit.

Standard multipliers are

suboptimal, even for 64 bits!

