How to find smooth parts of integers

D. J. Bernstein

Thanks to:

University of Illinois at Chicago NSF DMS-0140542

Alfred P. Sloan Foundation

Prototypical factorization algorithm: continued-fraction method. (1931 Lehmer Powers, 1975 Morrison Brillhart)

Given n = 314159265358979323: Compute good approximations $\sqrt{n} \approx 560499122/1$, $\sqrt{n} \approx 1120998243/2$, $\sqrt{n} \approx 1681497365/3$ $\sqrt{n} \approx 6165490338/11$, $\sqrt{n} \approx 14012478041/25$, etc. via Euclid's algorithm.

 $p^2 \equiv \text{small (mod } n) \text{ if } \sqrt{n} \approx p/q$: $560499122^2 \equiv 403791561$, $1120998243^2 \equiv -626830243$, $1681497365^2 \equiv 271129318$, $6165490338^2 \equiv -465143839$, $14012478041^2 \equiv 145120806$, etc.

Find nonempty subsequence of 403791561, -626830243, . . . with square product. The p^2 's also have square product. Hope $1 < \gcd\{\sqrt{-\sqrt{n}}, n\} < n$.

How to find square product among first few thousand numbers?

Numbers with large prime factors are useless.

But many numbers are **smooth**: $145120806 = 2 \cdot 3^2 \cdot 17 \cdot 647 \cdot 733;$ $-521969851 = -13^3 \cdot 193 \cdot 1231;$ etc.

Recognize these smooth numbers; find their exponent vectors; do linear algebra on vectors mod 2 to find nonempty subset with even sum.

```
-5421351 = -3 \cdot 13 \cdot 13 \cdot 17 \cdot 17 \cdot 37
  454304721 = 3 \cdot 13 \cdot 31 \cdot 613 \cdot 613
  401224998 = 2 \cdot 3 \cdot 193 \cdot 317 \cdot 1093
-362966643 = -3 \cdot 3 \cdot 3 \cdot 13 \cdot 17 \cdot 59 \cdot 1031
-461281298 = -2 \cdot 17 \cdot 83 \cdot 223 \cdot 733
    68104737 = 3 \cdot 3 \cdot 17 \cdot 31 \cdot 83 \cdot 173
  278236113 = 3 \cdot 101 \cdot 859 \cdot 1069
-443339082 = -2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 89 \cdot 97 \cdot 317
  258865542 = 2 \cdot 3 \cdot 3 \cdot 13 \cdot 29 \cdot 37 \cdot 1031
    13005213 = 3 \cdot 13 \cdot 31 \cdot 31 \cdot 347
-185619402 = -2 \cdot 3 \cdot 3 \cdot 131 \cdot 223 \cdot 353
-308945194 = -2 \cdot 31 \cdot 47 \cdot 97 \cdot 1093
    88949286 = 2 \cdot 3 \cdot 3 \cdot 3 \cdot 47 \cdot 101 \cdot 347
  733202886 = 2 \cdot 3 \cdot 13 \cdot 31 \cdot 353 \cdot 859,
  162594973 = 59 \cdot 109 \cdot 131 \cdot 193
  143972541 = 3 \cdot 3 \cdot 17 \cdot 89 \cdot 97 \cdot 109
  312539253 = 3 \cdot 13 \cdot 89 \cdot 127 \cdot 709
    96382078 = 2 \cdot 13 \cdot 17 \cdot 17 \cdot 101 \cdot 127
 -70194923 = -47 \cdot 89 \cdot 97 \cdot 173
  244225878 = 2 \cdot 3 \cdot 13 \cdot 29 \cdot 101 \cdot 1069
-219831831 = -3 \cdot 3 \cdot 47 \cdot 709 \cdot 733.
```

These have square product. Obtain divisor 990371647 of n.

Given set P of primes and sequence S of numbers, can factor S over Pin time $b(\lg b)^{3+o(1)}$ where b is number of input bits. (2000 Bernstein)

Much faster than handling each element of *S* separately by trial division, Pollard's rho method, Pollard-Williams-Lenstra smooth-sized-group methods, etc.

Batch factorization algorithm:

- 1. Compute $y = \prod_{x \in S} x$.
- (Product tree; standard.)
- 2. Compute $y \mod p$ for each $p \in P$. (1972 Moenck Borodin.)
- 3. Discard p's not dividing y.
- 4. If #S < 1, done.
- (For exponents: 1995 Bernstein.)
- 5. Recursively handle halves of S.

Use fast multiplication everywhere.

- (1971 Pollard, 1971 Nicholson,
- 1971 Schönhage Strassen)

This is not the best way to recognize P-smooth numbers! Can usually achieve $b(\lg b)^{2+o(1)}$.

(2004 Franke Kleinjung Morain Wirth; buried inside paper on ECPP; no recognition of speedup; no serious analysis; grrr)

Then use previous algorithm to factor the smooth numbers. Usually not many smooth numbers, so this is fast.

batch time usually $b(\lg b)^{2+o(1)}$ (2004 Franke Kleinjung Morain Wirth); batch time $b(\lg b)^{2+o(1)}$ Positive integer \boldsymbol{x} (2004 Bernstein) batch time $b(\lg b)^{3+o(1)}$ (2000 Bernstein) Small factors of $oldsymbol{x}$ time $b(\lg b)^{2+o(1)}$ (standard) batch time at worst $b(\lg b)^{3+o(1)}$; Small factors of $oldsymbol{x}$ usually negligible if $oldsymbol{x}$ is smooth

The usually-better algorithm:

- 1. Compute $z = \prod_{p \in P} p$.
- 2. Compute $z \mod x$ for each $x \in S$.
- 3. Repeatedly divide x by $gcd \{z \mod x, x\}$.

Step 3 might take many iterations.

Better, guaranteeing $b(\lg b)^{2+o(1)}$: Compute $(z \mod x)^{\text{big}} \mod x$. (2004 Bernstein; many precedents)

Many constant-factor speedups: FFT doubling (2004 Kramer) et al.

In newer algorithms for factorization, discrete logs, etc.:
Often numbers are sieveable.
(introduced by 1977 Schroeppel)

Sieve up to (largest prime) $^{\theta}$; discard if not too promising; then use batch smoothness method.

Total time is roughly $RS^{\theta}T^{1-\theta}$ where R is smoothness ratio, S is sieve time per number, T is batch time per number. (see 1982 Pomerance)

S is annoyingly high if sieve doesn't fit into DRAM, so take $\theta < 1$. (standard; e.g. factorization of RSA-155 used non-optimal $\theta = 0.8$)

Consequence: Reducing T helps.

When T is small enough, should choose θ to sieve in L2 cache, maybe even L1 cache, so as to reduce S further; makes T even more important. (2000 Bernstein) http://cr.yp.to/papers.html

#dcba "Factoring into coprimes in essentially linear time"

#sf "How to find small factors of integers"

#multapps "Fast multiplication and its applications"

#smoothparts "How to find smooth parts of integers"

Forthcoming: "Sieving in cache"