How to find
smooth parts of integers

D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF DMS—-0140542

Alfred P. Sloan Foundation

Prototypical factorization algorithm:
continued-fraction method.
(1931 Lehmer Powers,
1975 Morrison Brillhart)

Given n = 314159265358979323:
Compute good approximations
v/n ~ 560499122 /1,

v/n ~ 1120998243/2,

v/n ~ 1681497365/3,

v/n ~ 6165490338/11,

v/n =~ 14012478041/25,

etc. via Euclid’s algorithm.

p?> = small (mod n) if vn ~ p/q:
5604991222 = 403791561,
11209982432 = —626830243,
16814973652 = 271129318,
61654903382 = —465143839,
140124780412 = 145120806, etc.

Find nonempty subsequence of
403791561, —626830243, . ..
with square product.

The p?’s also have square product.

Hope 1 < gcd{v —+ ,n}<n.

How to find square product
among first few thousand numbers?

Numbers with large prime factors
are useless.

But many numbers are smooth:
145120806 = 2 - 3% - 17 - 647 - 733;
—521969851 = —133 - 193 - 1231;
etcC.

Recognize these smooth numbers;
find their exponent vectors;
do linear algebra on vectors mod 2 to

find nonempty subset with even sum.

—5421351=-3-13-13-17-17- 37,
454304721 =3-13-31-613-613,
401224998 =2-3-193-317-1093,

—362966643 =—-3-3-3-13-17-59-1031,
—461281298 = —2-17-83-223- 733,

68104737 =3-3-17-31-83-173,

278236113 =3-101-859 1069,
—443339082=-2-3-3-3-3-89-97-317,
258865542 =2-3-3-13-29-37-1031,

13005213 =3-13-31-31- 347,
—185619402 =—-2-3-3-131-223- 353,
—308945194 = —2-31-47-97-1093,

86949286 =2-3-3-3-47-101- 347,
733202886 =2-3-13-31-353-859,
162594973 =59-109-131-193,
143972541 =3-3-17-89-97-109,
312539253 =3-13-89-127-709,

963820/8=2-13-17-17-101-127,
—70194923 = —47-89-97-173,
244225878 =2-3-13-29-101 - 1069,

—219831831 =—-3-3-47-709-733.

These have square product.
Obtain divisor 990371647 of n.

Given set P of primes

and sequence S of numbers,
can factor S over P

in time b(lg b)3*+°(1)

where b is number of input bits.
(2000 Bernstein)

Much faster than handling
each element of S separately
by trial division,

Pollard’s rho method,

Pollard-Williams-Lenstra
smooth-sized-group methods, etc.

Batch factorization algorithm:

1. Compute y =| |,cs T

(Product tree; standard.)

2. Compute y mod p for each p € P.
(1972 Moenck Borodin.)

3. Discard p's not dividing .

4. 1f #5 < 1, done.

(For exponents: 1995 Bernstein.)

5. Recursively handle halves of S.

Use fast multiplication everywhere.
(1971 Pollard, 1971 Nicholson,

1971 Schonhage Strassen)

This I1s not the best way to

recognize P-smooth numbers!
Can usually achieve b(lg b)2to(1).

(2004 Franke Kleinjung Morain
Wirth; buried inside paper on ECPP;
no recognition of speedup;

no serious analysis; grrr)

Then use previous algorithm

to factor the smooth numbers.
Usually not many smooth numbers,
so this Is fast.

batch time usually (g &) (L)
(2004 Franke Kleinjung Morain Wirth);

Positive integer T bateh time b(1g 6)20(1)

atch i (2004 Bernstein)

b(lg b)3—|—0(1)
(2000 Bernstein)
Y
Small factors of > |5 2 smooth!
time b(1g b)210(1)
(standard)

Y
Small factors of

if 2 is smooth

batch time
at worst b(lg 6)3+(1)
usually negligible

The usually-better algorithm:
1. Compute z = |,cp P

2. Compute z mod z foreachz € S.
3. Repeatedly divide = by
gcd {z mod z, z}.

Step 3 might take many iterations.

Better, guaranteeing b(lg b)2+°().
Compute (z mod z)°'8 mod z.
(2004 Bernstein; many precedents)

Many constant-factor speedups:
FFT doubling (2004 Kramer) et al.

In newer algorithms for

factorization, discrete logs, etc.:

Often num

hers are sieveable.

(introduced by 1977 Schroeppel)

Sieve up to (largest prime)?;

discard if n

Total time
where R iIs

S is sieve t
T Is batch

ot too promising;

then use batch smoothness method.

is roughly RS9T1-0
smoothness ratio,
Ime per number,

time per number.

(see 1982 Pomerance)

Sisa

nnoyingly high if

sieve doesn't fit into DRAM,
so take 0 < 1.

(stana

ard; e.g. factorization of

RSA-155 used non-optimal § = 0.8)

Conse

When

quence: Reducing T helps.

T 1s small enough,

should choose 8 to sieve in L2 cache,

maybe even L1 cache,

so as to reduce S further:

makes T even more important.

(2000

Bernstein)

http://cr.yp.to/papers.html

#dcba “Factoring into coprimes
in essentially linear time”

#sf “How to find
small factors of integers”

#multapps "Fast multiplication
and its applications”

#smoothparts “"How to find
smooth parts of integers”

Forthcoming: “Sieving in cache”

