
Speed records

for cryptographic software:

an update

D. J. Bernstein

University of Illinois at Chicago

NSF CCR–9983950



Elliptic-curve cryptography

Define p = 2226 − 5; p is prime.

Consider the elliptic curve

y2 = x3 + 7530x2 + x over Z=p.

For n ∈ Z: Multiply

(53(2224 − 1)=(28 − 1); : : :) by n

on the curve to get (Kn; : : :) or ∞.



Compressed Diffie-Hellman

Your secret key: a ∈ 16Z

with 0 ≤ Ka < 2224.

Your public key: Ka.

My secret key: b ∈ 16Z

with 0 ≤ Kb < 2224.

My public key: Kb.

Our shared secret: Kab.



Given a;Kb, can compute Kab

in < 106 cycles.

This is a very fast curve;

somewhat faster than NIST P-224.

Elliptic-curve DH is much faster

than other forms of DH

at this presumed security level.



Some computational tools

Curve shape y2 = x3 + c2x
2 + x

allows very fast compressed

curve multiplication.

(Montgomery 1987)

Small c2 = 7530 saves some mults.

Curve multiplication is only

≈ 2000 multiplications in Z=p

and one inversion in Z=p.



Represent integers as sums of

floating-point numbers

at specified scales.

Use radix R = 228:25;

sparse p = R8 − 5 allows

very fast reduction mod p.

Floatasm: new language

and generation/verification tools

for straight-line fp code.

Keep the multiplier busy!



Hashing with rare collisions

For 128-bit mi ’s: Define

hr (m0; m1; : : : ; m‘−1) =

(r ‘+1 + m0r
‘ + · · ·+ m‘−1r)

mod (2130 − 5).

2130 − 5 is prime > 2128

to allow 128-bit mi ’s.

Works well with radix 226.



Secret-key message authentication

I save (k; r) = SHA-256(Ka; Kab).

You transmit nth message m

as n;m; (Fk (n) + hr (m)) mod 2128,

using strong secret-key cipher F .

(Easy to encrypt too.)

I reject n′; m′; s ′ if n′ is old or if

s ′ 6= (Fk (n′) + hr (m′)) mod 2128.



Can compute hr (m) in < 103 cycles

for typical lengths of m.

No precomputation needed,

thanks to wide mi ’s.

This is the fastest known method

to handle a flood of forgeries while

communicating with known users.



Equation verification

To check a ring equation

such as s2 = tn + f h where

s; t; n; f ; h have thousands of bits:

Reduce s; t; n; f ; h modulo

secret 115-bit prime ‘.

Compute s2 − tn − f h mod ‘.



Public-key signature verification

Signature of m under public key n

is (r; h; f ; s; t) where

r is a random 256-bit string,

h is a cryptographic hash of (r; m),

f ∈ {1;−1; 2;−2}, and

s2 = tn + f h.

Check s2 = tn + f h in < 104 cycles

for 3072-bit public keys.

This is the fastest known method

at its presumed security level.



Hello, chip designers

Common chips have multiplier

computing 128-bit product,

then rounding to 64 bits.

Small additional cost:

Provide the whole product,

and a 136-bit adder.

Roughly 4× speedup in arithmetic.


