A complete software implementation of NIST P-224

D. J. BernsteinUniversity of Illinois at ChicagoNSF CCR-9983950

cr.yp.to/nistp224.html

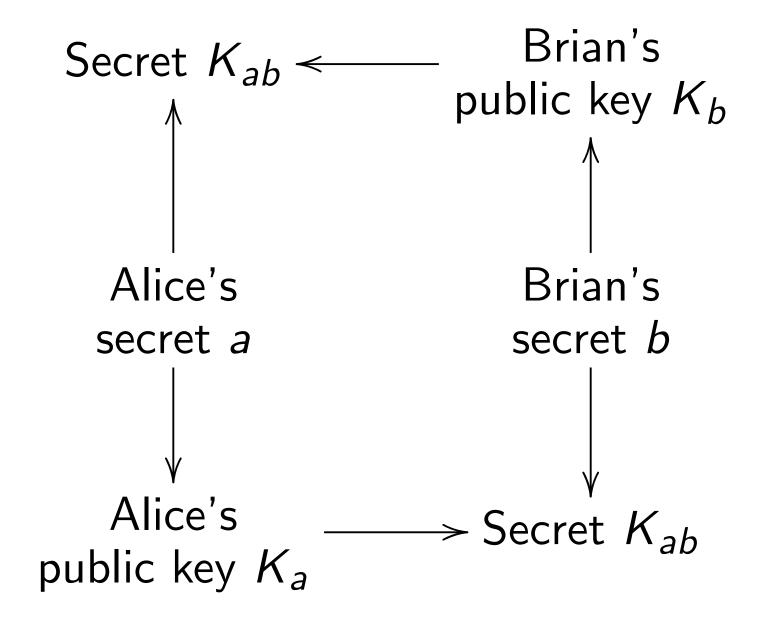
NIST P-224 is the elliptic curve $y^2 = x^3 - 3x + c_6$ over \mathbf{Z}/p .

Here $c_6 = 18958286285566608$ 00040866854449392 64155046809686793 21075787234672564

and $p = 2^{224} - 2^{96} + 1$.

Multiply $(10(2^{224}-1)/(2^8-1),...)$ by *n* on the curve to get $(K_n,...)$, for $n \in (\mathbf{Z}/\#\text{curve}(\mathbf{Z}/p))^*$.

Compressed Diffie-Hellman



What nistp224 does

nistp224 is a new program to compute K_{ab} given a, K_b .

Alice puts 28 random bytes into A, 28 newlines into K1.

cat A K1 | nistp224 > KA cat A KB | nistp224 > KAB

Also a C-language library:

```
unsigned char a[28];
unsigned char kb[28];
unsigned char kab[28];
nistp224(kab,kb,a);
58612 bytes for library on PIII.
```

Speed of version 0.76

Typical cycle counts, typical a's:

X	x, y	
595683	522639	Athlon
785900	668566	UltraSPARC
835530	734731	Pentium II
943244	827360	Pentium 4
1120824	985097	Pentium
1166080	1019027	RS64-III

Floating-point arithmetic

A 53-bit fp number is a real number $2^e f$ with $e, f \in \mathbf{Z}$ and $|f| < 2^{53}$.

Round each real number z to closest 53-bit fp number, fp₅₃ z: $|z - \text{fp}_{53} z| \le 2^{e-1}$ if $|z| \le 2^{e+53}$. Round halves to even.

Floating-point add:

Given 53-bit fp numbers r, s, compute $fp_{53}(r+s)$. (Or -.)

Floating-point multiply:

Given 53-bit fp numbers r, s, compute $fp_{53}(rs)$.

Fused multiply-accumulate:

Given 53-bit fp numbers r, s, t, compute $fp_{53}(rs + t)$.

In one cycle, UltraSPARC does one floating-point addition and one floating-point multiplication, subject to limits on *e*.

Results available after 3 cycles.

RS64-III does one addition or multiplication or fused mac.

At most 4 in a row.

Results available after 5 cycles.

Carrying

If r is a 53-bit fp number and $|r| \le 2^{e+51}$:

Define $\alpha_e = 3 \cdot 2^{e+51}$, $r_1 = \text{fp}_{53}(\text{fp}_{53}(r + \alpha_e) - \alpha_e)$, $r_0 = \text{fp}_{53}(r - r_1)$.

Then $r_1 \in 2^e \mathbf{Z}$, $|r_0| \leq 2^{e-1}$, and $r = r_0 + r_1$. (Kahan 1965, et al.)

Arithmetic mod p

Can build big-integer arithmetic using floating-point operations. (Veltkamp 1968; Dekker 1971)

$$ext{nistp224 uses } \mathbf{Z}[t] \cap \overline{\mathbf{Z}}[2^{56/3}t] = \left\{ \sum_{i \geq 0} g_i t^i : g_i \in 2^{\lceil 56i/3 \rceil} \mathbf{Z} \right\}.$$

$$\mathbf{Z}[t] \to \mathbf{Z}/p$$
 by $g \mapsto g(1)$.

Normally use small polynomials:

$$r = r_0 + r_1 t + r_2 t^2 + \cdots + r_{11} t^{11}$$

with $|r_i| \le 0.51 \cdot 2^{\lceil 56(i+1)/3 \rceil}$.

$$r_0 \in 2^0 \mathbf{Z}, |r_0| \leq 0.51 \cdot 2^{19}.$$
 $r_1 \in 2^{19} \mathbf{Z}, |r_1| \leq 0.51 \cdot 2^{38}.$
 $r_2 \in 2^{38} \mathbf{Z}, |r_2| \leq 0.51 \cdot 2^{56}.$
 $r_3 \in 2^{56} \mathbf{Z}, |r_3| \leq 0.51 \cdot 2^{75}.$
 $r_4 \in 2^{75} \mathbf{Z}, |r_4| \leq 0.51 \cdot 2^{94}.$
 $r_5 \in 2^{94} \mathbf{Z}, |r_5| \leq 0.51 \cdot 2^{112}.$
etc.

Use fp to compute *rs* given small *r*, *s*:

 $r_0s_0 \in 2^0\mathbf{Z}$, $|r_0s_0| \leq 0.27 \cdot 2^{38}$ so $r_0s_0 = \mathrm{fp}_{53} \, r_0s_0$; similarly $r_0s_1 + r_1s_0 = \mathrm{fp}_{53}(\mathrm{fp}_{53} \, r_0s_1 + \mathrm{fp}_{53} \, r_1s_0)$; etc.

Could use Karatsuba.

Eliminate t^{22} , t^{21} , ..., t^{16} and then t^{15} , t^{14} , t^{13} using $2^{411}t^{22} \equiv 2^{283}t^{15} - 2^{187}t^{10}$, $2^{392}t^{21} \equiv 2^{264}t^{14} - 2^{168}t^9$, etc.

$$(rs)_{10} + 2^{-128}(rs)_{17} - 2^{-224}(rs)_{22}$$
 is a 53-bit fp number.

Carry from t^8 to t^9 to t^{10} to t^{11} to t^{12} .

Eliminate t^{12} .

Carry from t^0 to t^1 to t^2 to t^3 to t^4 to t^5 to t^6 to t^7 to t^8 to t^9 .

Can reduce latency by doing a few more carries.

Faster squaring

$$(r^2)_1 = 2r_0r_1,$$

 $(r^2)_2 = 2r_0r_2 + r_1r_1,$
 $(r^2)_3 = 2(r_0r_3 + r_1r_2),$ etc.

Precompute $2r_0, \ldots, 2r_{10}$. 11 doublings instead of 21.

Similarly compute and reduce $r^2 - 8s$, $r(4s - u) - 8v^2$, etc.

Complete reduction mod p

Define
$$p_1 = 2^{-224} + 2^{-352} - 2^{-448}$$
.
If $x \in \mathbf{Z}$, $|x| < 2^{230}$,
then $\lfloor x/p \rfloor = \lfloor p_1 x + 2^{-225} \rfloor$, so $x \mod p = x - p \mid p_1 x + 2^{-225} \mid$.

Can compute this using fp.

Elliptic-curve arithmetic

Use Jacobian coordinates. (Miller 1985, et al.)

 $(x, y, z) \in (\mathbf{Z}/p)^3$, with $z \neq 0$ and with $y^2 = x^3 - 3xz^4 + c_6z^6$, represents $(x/z^2, y/z^3)$ on curve.

Use small polynomials q, r, s to represent x, y, z.

Elliptic-curve doubling

Given (x_1, y_1, z_1) with $z_1 \neq 0$:

$$2(x_1/z_1^2, y_1/z_1^3) = (x_2/z_2^2, y_2/z_2^3)$$

where $\delta = z_1^2, \ \gamma = y_1^2, \ \beta = x_1\gamma,$
 $\alpha = 3(x_1 - \delta)(x_1 + \delta),$
 $x_2 = \alpha^2 - 8\beta, \ z_2 = 2y_1z_1,$
 $y_2 = \alpha(4\beta - x_2) - 8\gamma^2.$

4 squares, 4 mults, 8 reduces.

nistp224 computes

$$\delta = \operatorname{reduce} s_1^2,$$
 $\gamma = \operatorname{reduce} r_1^2,$
 $\beta = \operatorname{reduce} q_1 \gamma,$
 $\alpha = \operatorname{reduce} 3(q_1 - \delta)(q_1 + \delta),$
 $q_2 = \operatorname{reduce}(\alpha^2 - 8\beta),$
 $s_2 = \operatorname{reduce}((r_1 + s_1)^2 - \gamma - \delta),$
 $r_2 = \operatorname{reduce}(\alpha(4\beta - q_2) - 8\gamma^2).$

5 squares, 3 mults, 7 reduces.

Elliptic-curve addition

Given (x_1, y_1, z_1) and (x_2, y_2, z_2) with $z_1 \neq 0$, $z_2 \neq 0$, and $(x_1/z_1^2, y_1/z_1^3) \neq (x_2/z_2^2, y_2/z_2^3)$: Use 4 squares and 12 mults to obtain sum (x_3, y_3, z_3) .

Again eliminate one reduction.

Could again trade mult for square.

Some of the intermediate results are z_1^2 , z_1^3 , z_2^2 , z_2^3 .

When reusing (x_1, y_1, z_1) , also reuse z_1^2, z_1^3 .

(Chudnovsky, Chudnovsky 1987; Cohen, Miyaji, Ono 1998)

Elliptic-curve multiplication

$$a_0, \ldots, a_{27} \in \{0, 1, \ldots, 255\}.$$
Define $a = 2^{216}(a_0 + 120) + 2^{208}(a_1 - 136) + \cdots + (a_{27} - 136).$

nistp224 uses simplest base-16 chain for a, coeffs $\{-8, -7, \ldots, 7\}$. 225 doubles, \leq 59 adds. Could eliminate a few adds.

Could exploit initial z = 1.

Plans: better scheduling

Worst-case *a*, using *x*, *y*: 385372 floating-point mults, 523578 floating-point adds.

678099 UltraSPARC cycles.

Rearrange operations to reduce gap.

Plans: better computers

Many things to try.

MMX, SSE, SSE2, etc. Simultaneous integer/fp.

Suggestions for chip designers: FCARRY r_1 , r_0 , k carries multiple of 2^k from r_0 to r_1 . FMCARRY multiplies and carries.