A complete
software implementation

of NIST P-224

D. J. Bernstein
University of lllinois at Chicago

NSF CCR-9983950

cr.yp.to/nistp224.html

NIST P-224 is the elliptic curve
y? = x3 — 3x + cg over Z/p.

Here cg = 18958286285566608
00040866854449392
64155046309636793
21075787234672564

and p = 2224 — 2% 4 1,

Multiply (10(2%%4—1)/(28—-1),...)
by n on the curve to get (Kj,...),
for n € (Z/#curve(Z/p))*.

Compressed Diffie-Hellman

Secret K,p <
A

Alice's
secret g

Y
Alice’s
public key Kj

Brian's

public

ey Kp
A

Brian's
secret b

Y

> Secret K,

What nistp224 does

nistp224 i1s a new program
to compute K, given a, K.

Alice puts 28 random bytes into A,
28 newlines into K1.

cat A K1 | nistp224 > KA
cat A KB | nistp224 > KAB

Also a C-language library:

unsigned char a[28];
unsigned char kb[28];
unsigned char kab[28];
nistp224(kab,kb,a) ;

58612 bytes for library on PIII.

Speed of version 0.76

Typical cycle counts, typical a's:

X X,y

505683 522639 Athlon
785900 668566 UltraSPARC
835530 734731 Pentium |l
043244 827360 Pentium 4
1120824 985097 Pentium
1166080 1019027 RS64-III

Floating-point arithmetic

A 53-bit fp number
is a real number 2¢f
with e, f € Z and |f| < 2°3.

Round each real number z to

closest 53-bit fp number, fps3 z:
z — fpeg z| < 2871 if |z] < 26133,
Round halves to even.

Floating-point add:
Given 53-bit fp numbers r, s,
compute fps3(r +5). (Or —.)

Floating-point multiply:
Given 53-bit fp numbers r, s,
compute fpg3(rs).

Fused multiply-accumulate:
Given 53-bit fp numbers r, s, t,
compute fpg3(rs + t).

In one cycle, UltraSPARC does
one floating-point addition and

one floating-point multiplication,
subject to limits on e.
Results available after 3 cycles.

RS64-111 does one addition or
multiplication or fused mac.
At most 4 In a row.

Results available after 5 cycles.

Carrying

If ris a 53-bit fp number
and |r| < 2¢+31,

Define ap = 3 - 2621
rn = fpg3(fps3(r + ae) — ae),
ro = fps3(r —).

Then r € 26Z, |rp| < 2871,
and r = g+ .
(Kahan 1965, et al.)

Arithmetic mod p

Can build big-integer arithmetic

using floating-point operations.
(Veltkamp 1968; Dekker 1971)

nistp224 uses Z[t] N 7[256/3 t] =
{ZIZO git':gi € 2(56"/&2}.

Z[t] - Z/p by g — g(1).

Normally use small polynomials:

r=rn+ nt-—+ I’2t2 + -+ r11t11
with |r;| < 0.51 - 2196(+1)/3]

ro € 2°Z, |ro| < 0.51-2%9.
rne?29Z || <051-238
re 238Z || <0.51-2%.
rs €207 |r3| <0.51-27.
ra € 2°Z, |ry| < 0.51-2%9%
rm €227, || < 0.51-2112
etc.

Use fp to compute rs

given small r, s:

roso € 207 roso| < 0.27 - 238
so rosp = fps3 roso;
similarly rgsy + risp =

fps3(fps3 ros1 + fps3 r1so);
etcC.

Could use Karatsuba.

t22, t21, o t16

Eliminate

and then t1°, 14, t13 using
2411422 — 283,15 _ 187,10

etc.

(rs)104+271%%(rs)17 —272%*(rs)22
is a b3-bit fp number.

Carry from t3 to t° to
t10 to t1! to t12.
Eliminate t12.

Carry from t° to t! to
t? to t3 to t* to t° to
t% to t’ to 3 to 7.

Can reduce latency by
doing a few more carries.

Faster squaring

(r*)1 = 2ryn,
(r*)2 = 2rgry + i,
(r?)3 = 2(rgr3 + rin), etc.

Precompute 2rg, ..., 2n0.
11 doublings instead of 21.

Similarly compute and reduce
r’> — 8s, r(4s — u) — 8v?, etc.

Complete reduction mod p

Define p; = 272244 27392_p—448

If x € Z, |x| < 2230
then [x/p| = |p1x + 2_225J, SO
xmodp=x—p LPlX + 2_225J.

Can compute this using fp.

Elliptic-curve arithmetic

Use Jacobian coordinates.
(Miller 1985, et al.)

(x,y,z) € (Z/p)3, with z #£ 0
and with y? = x3 — 3xz* + ¢52°,

represents (x/z°, y/z3) on curve.

Use small polynomials g, r, s
to represent X, y, Z.

Elliptic-curve doubling

Given (x1, y1,21) with z; # 0:
2(X1/2121)/1/Z13) = (Xz/Zzz')/z/ZS)
where 0 = 212, v = y12, b = x17,
o= 3(X1 — 5)(X1 + 5),

x) = a’ — 8B, z2=2y121,

y2 = a(4B — x2) — 8v°.

4 squares, 4 mults, 8 reduces.

nistp224 computes

0 = reduce 512,

_ 2
¥ = reduce ry,

B = reduce g1y,
o = reduce3(q; — d)(q1 + 9),
g> = reduce(a® — 8B)

so = reduce((r; + 51)% — v — 6),
ry = reduce(a(4B8 — qo) — 8v2).

5 squares, 3 mults, 7 reduces.

Elliptic-curve addition

Given (x1, y1,21) and (x2, y2, 20)
with z1 # 0, zo # 0, and
(X1/2121)/1/213) 7 (x2/222,y2/223):
Use 4 squares and 12 mults

to obtain sum (x3, y3, z3).

Again eliminate one reduction.
Could again trade mult for square.

Some of the intermediate results

2 3 2 _3
are zy, 77, Z5, Z5.

When reusing (x1, y1, 21),

also reuse 212, 213.

(Chudnovsky, Chudnovsky 1987;
Cohen, Miyaji, Ono 1998)

Elliptic-curve multiplication

ao, ..., a7 € {0,1,..., 255%.
Define a = 221%(ap + 120) +
2298(a; — 136) + - - - + (ap7 — 136).

nistp224 uses simplest base-16
chain for a, coeffs {—8, —7,...,7}.
225 doubles, < 59 adds.
Could eliminate a few adds.
Could exploit initial z = 1.

Plans: better scheduling

Worst-case a, using x, y:
385372 floating-point mults,
523578 floating-point adds.

678099 UltraSPARC cycles.

Rearrange operations
to reduce gap.

Plans: better computers

Many things to try.

MMX, SSE, SSE2, etc.
Simultaneous integer/fp.

Suggestions for chip designers:
FCARRY ry, rng, k carries
multiple of 2X from ry to ry.
FMCARRY multiplies and carries.

