Applications of fast multiplication

D. J. BernsteinUniversity of Illinois at Chicago

Power-series product

Recall: a power series $f \in A[[x]]$ is a formal sum $f_0 + f_1x + f_2x^2 + \cdots$ with each $f_j \in A$.

Approximate f by the polynomial $f \mod x^n = f_0 + \cdots + f_{n-1}x^{n-1}$.

Given $f \mod x^n$ and $g \mod x^n$, can compute $fg \mod x^n$ with A-complexity $O(n \lg n \lg \lg n)$.

Power-series reciprocal

 $f \in A[[x]]$ with $f_0 = 1$. Given approximation to f. Want approximation to 1/f.

Fact: If $(1/f) \mod x^n = z$ then $(1/f) \mod x^{2n} =$ $z - (fz - 1)z \mod x^{2n}$.

A-complexity $O(n \lg n \lg \lg n)$ for $(1/f) \mod x^n$ given $f \mod x^n$.

Newton's method

Differentiable partial function p. Want to find a root of p.

General idea:

If z is "close" to a root of p then z - p(z)/p'(z) is "closer." Fast convergence to simple roots.

For
$$p = (z \mapsto 1 - 1/fz)$$
: $p/p' = (z \mapsto (fz - 1)z)$.

Power-series quotient

 $f, g \in A[[x]]$ with $f_0 = 1$.

A-complexity $O(n \lg n \lg \lg n)$ for $(g/f) \mod x^n$ given $f \mod x^n$, $g \mod x^n$.

More precisely:

4+o(1) times multiplication.

(Cook; Sieveking; Kung; Brent)

Eliminate redundant FFTs.

Use higher-order iteration.

Merge quotient with reciprocal.

13/6 + o(1) times multiplication.

(Schönhage; A. Karp, Markstein, U.S. Patent 5,341,321; Brent;

Harley; Zimmermann; Bernstein)

What about **Z**?

Circuit of size $O(n \lg n \lg \lg n)$ can compute n-bit approximation to a quotient in \mathbf{R} .

Same idea as in A[[x]]; more numerical analysis.

Or a quotient in \mathbb{Z}_2 : given $g \in \mathbb{Z}$ and odd $f \in \mathbb{Z}$, find $h \in \mathbb{Z}$ with $hf \equiv g \pmod{2^n}$.

Power-series logarithm

R-complexity $(12 + o(1))n \lg n$ to multiply in **R**[[x]].

Given $f \in \mathbf{R}[[x]]$, $f_0 = 1$. Want $\log f$.

Use $(\log f)' = f'/f$. **R**-complexity $(26 + o(1))n \lg n$.

Power-series exponential

Given $f \in \mathbf{R}[[x]]$, $f_0 = 0$. Want exp f.

Use Newton's method to find root of $p = (z \mapsto \log z - f)$. Note $p/p' = (z \mapsto (\log z - f)z)$.

R-complexity $(34 + o(1))n \lg n$.

Counting smooth polynomials

A polynomial in $\mathbf{F}_2[t]$ is **smooth** if it is a product of polynomials of degree ≤ 30 .

$$\sum_{n \in \mathbf{F}_2[t], n \text{ smooth }} x^{\deg n}$$

$$= \prod_{k \leq 30} 1/(1-x^k)^{c_k}$$

$$= \exp \sum_{k \leq 30} c_k (x^k + \frac{1}{2}x^{2k} + \cdots)$$
where $c_k = (1/k) \sum_{d|k} 2^d \mu(k/d)$.

Not so easy to approximate $\log f$ or $\exp f$ for $f \in \mathbf{R}$.

Circuit size $n(\lg n)^{O(1)}$ using arithmetic-geometric mean or fast Taylor-series summation.

(Gauss; Legendre; Landen; Beeler; Gosper; Schroeppel; Salamin; Brent)

Multiplying many numbers

Given $x_1, x_2, \ldots, x_m \in \mathbf{Z}$, n bits together, $m \geq 1$. Want $x_1x_2 \cdots x_m$.

Method for m even: $x_1x_2\cdots x_m$ = $(x_1\cdots x_{m/2})(x_{m/2+1}\cdots x_m)$.

Circuit size $O(n \lg n \lg \lg n \lg m)$.

Need a balanced splitting.

Otherwise too much recursion.

Can measure balance by total bits instead of m. Replaces $\lg m$ by entropy of x_j size distribution. (Strassen)

Continued fractions

$$5 + 1/(2 + 1/(1 + 1/(1 + 1/3)))$$

= 97/18.

$$C(5)C(2)C(1)C(1)C(3) = \begin{pmatrix} 97 & 27 \\ 18 & 5 \end{pmatrix}$$

where $C(a) = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}$.

Given a_1, a_2, \ldots, a_m , can quickly compute $C(a_1)C(a_2)\cdots C(a_m)$.

Given $f, g \in \mathbf{Z}$, can quickly compute $\gcd\{f, g\}$ and the continued fraction for f/g.

Circuit size $O(n(\lg n)^2 \lg \lg n)$.

(Lehmer; Knuth; Schönhage; Brent, Gustavson, Yun)

Multipoint evaluation

Given positive $f, q_1, \ldots, q_m \in \mathbf{Z}$. Want each $f \mod q_i$.

Method for *m* even:

Recursively do the same for

 $f, q_1 q_2, \ldots, q_{m-1} q_m$.

Circuit size $O(n \lg n \lg \lg n \lg m)$.

(Borodin, Moenck)

Finding small factors

Given a set P of primes, a set S of nonzero integers. Want to partly factor S using P.

Method: Find $g = \prod_{f \in S} f$. Find $Q = \{q \in P : g \mod q = 0\}$. If $\#S \leq 1$, print (Q, S) and stop. Choose $T \subseteq S$, half size. Handle Q, T. Handle Q, S - T. Circuit size $n(\lg n)^{O(1)}$.

In particular: Given y integers, each with $(\lg y)^{O(1)}$ bits, can recognize and factor the y-smooth integers. Circuit size $(\lg y)^{O(1)}$ per integer.

Factoring into coprimes

Given a set S of positive integers: Can find a coprime set Pand completely factor S using P.

Coprime means $\gcd \{q, q'\} = 1$ for all $q, q' \in P$ with $q \neq q'$.

Circuit size $n(\lg n)^{O(1)}$.