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Power-series product

Recall: a power series f € Al[x]] is
a formal sum fy + fix + Hx% + - --
with each 6 c A.

Approximate f by the polynomial
fmod x"=1fy+ -+ f_1x" 1.

Given f mod x" and g mod x”,
can compute fg mod x" with
A-complexity O(nlgnlglg n).



Power-series reciprocal

f € Allx]] with fo = 1.
Given approximation to f.
Want approximation to 1/f.

Fact: If (1/f) mod x" =z
then (1/f) mod x?" =
z — (fz—1)z mod x*".

A-complexity O(nlg nlglg n)
for (1/f) mod x" given f mod x".



Newton's method

Differentiable partial function p.
Want to find a root of p.

General idea:
If z is “close” to a root of p
then z — p(2)/p'(z) is “closer.”

Fast convergence to simple roots.

Forp=(z—1—-1/fz):
p/p=(z— (fz—1)z2).



Power-series quotient

f g € Al[x]] with f = 1.

A-complexity O(nlg nlglg n)
for (g/f) mod x"
given f mod x", g mod x".

More precisely:
4 4 o(1) times multiplication.
(Cook; Sieveking; Kung; Brent)



Eliminate redundant FFTs.
Use higher-order iteration.
Merge quotient with reciprocal.

13/6 4+ o(1) times multiplication.

(Schonhage; A. Karp, Markstein,

U.S. Patent 5,341,321: Brent;
Harley; Zimmermann; Bernstein)



What about Z7?

Circuit of size O(nlgnlglgn)
can compute n-bit approximation
to a quotient in R.

Same idea as in A[[x]];
more numerical analysis.

Or a quotient in Z»:
given g € Z and odd f € Z,
find h € Z with hf = g (mod 2").



Power-series logarithm

R-complexity (12 + o(1))nlgn
to multiply in R[[x]].

Given f € R[[x]], fo = 1.
Want log f.

Use (logf) = f'/f.
R-complexity (26 + o(1))nlg n.



Power-series exponential

Given f € R[[x]], fo = 0.
Want exp f.

Use Newton's method to find
root of p = (z — logz — f).
Note p/p' = (z — (logz — f)z).

R-complexity (34 4+ o(1))nlg n.



Counting smooth polynomials

A polynomial in F3[t] is smooth

if it is a product of
polynomials of degree < 30.

deg n
ZnEFQ[t],nsmoothX ©

= [Ty<301/(1 — x*)%

where ¢, = (1/k) 41k 2%u(k/d).

N’



Not so easy to approximate
log f or exp f for f € R.

Circuit size n(lg n)°)
using arithmetic-geometric mean
or fast Taylor-series summation.

(Gauss; Legendre; Landen;
Beeler; Gosper; Schroeppel;
Salamin; Brent)



Multiplying many numbers

Given x1,X2,...,Xm € Z,
n bits together, m > 1.

Want x1x2 - - - Xm.

Method for m even: x1xo - - xm

= (xq 'Xm/2)(Xm/2—|—1  Xm).

Circuit size O(nlgnlglgnlg m).



Need a balanced splitting.
Otherwise too much recursion.

Can measure balance

by total bits instead of m.
Replaces Ig m by

entropy of x; size distribution.
(Strassen)



Continued fractions

5+1/2+1/(1+1/(1+1/3)))
= 97/18.

C(5)C(2)C(1)C(1)C(3) = (5% %)
where C(a) = (7 (1))

Given aq, as, . . ., am,
can quickly compute

C(a1)C(a2) - C(am).



Given f,g € Z,
can quickly compute gcd {f, g}
and the continued fraction for f/g.

Circuit size O(n(Ig n)? Iglg n).

(Lehmer; Knuth; Schonhage;
Brent, Gustavson, Yun)



Multipoint evaluation

Given positive f,q1,...,9m € Z.
Want each f mod g;.

Method for m even:
Recursively do the same for

f,q192, ..., dm-19m-.
Circuit size O(nlgnlglgnlg m).
(Borodin, Moenck)



Finding small factors

Given a set P of primes,
a set S of nonzero integers.
Want to partly factor S using P.

Method: Find g = [ |fcs f-
Find Q ={g € P: g mod q = 0}.
It #S <1, print (Q,S) and stop.
Choose T C S, half size.

Handle Q, 7. Handle @,5 — T.




Circuit size n(lg n)°(1).

In particular: Given y integers,
each with (Ig y)°() bits,

can recognize and factor

the y-smooth integers.

Circuit size (Ig y)°W) per integer.



Factoring into coprimes

Given a set S of positive integers:
Can find a coprime set P
and completely factor S using P.

Coprime means gcd{q,q'} = 1
for all g, q' € P with g # ¢

Circuit size n(lg n)°).



