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Abstract. Phelix1 is a high-speed stream cipher with a built-in MAC func-
tionality. It is efficient in both hardware and software. On current Pentium
CPUs, Phelix has a per-packet overhead of less than 900 clocks, plus a per-
byte cost well under 8 clocks per byte, comparing very favorably with the best
AES (encryption-only) implementations, even for small packets.
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1 Introduction

Securing data in transmission is the most common real-life cryptographic prob-
lem. Basic security services require both encryption and authentication. This
is almost always done using a symmetric cipher—public-key systems are only
used to set up symmetric keys—and a Message Authentication Code (MAC).

The AES process provided a number of very good block cipher designs, as
well as a new block cipher standard. The cryptographic community learned
a lot during the selection process about the engineering criteria for a good
cipher. AES candidates were compared in performance and cost in many dif-
ferent implementation settings. We learned more about the importance of fast
rekeying and tiny-memory implementations, the cost of S-boxes and circuit-
depth for hardware implementations, the slowness of multiplication on some
platforms, and other performance considerations.

The community also learned about the differences between cryptanalysis
in theory and cryptanalysis in practice. Many block cipher modes restrict the
types of attack that can be performed on the underlying block cipher. Yet the
generally accepted attack model for block ciphers is very liberal. Any method
that distinguishes the block cipher from a random permutation is considered
an attack. Each block cipher operation must protect against all types of attack.
The resulting overengineering leads to inefficiencies.

Computer network properties like synchronization and error correction
have eliminated the traditional synchronization problems of stream-cipher
modes like OFB. Furthermore, stream ciphers have different implementation
properties that restrict the cryptanalyst. They only receive their inputs once
(a key and a nonce) and then produce a long stream of pseudorandom data. A
1 Pronounced “felix” (rhymes with “helix”).



stream cipher can start with a strong cryptographic operation to thoroughly
mix the key and nonce into a state, and then use that state and a simpler
mixing operation to produce the keystream. If the attacker tries to manipu-
late the inputs to the cipher he encounters the strong cryptographic operation.
Alternatively, he can analyze the keystream, but this is a static analysis only.
As far as we know, static attacks are much less powerful than dynamic attacks.
As there are fewer cryptographic requirements to fulfill, we believe that the
keystream generation function can be made significantly faster, per message
byte, than a block cipher can be. Given the suitability of stream ciphers for
many practical tasks and the potential for faster implementations, we believe
that stream ciphers are a fruitful area of research.

Additionally, a stream cipher is often implemented—and from a crypto-
graphic point of view, should always be implemented—together with a MAC.
Encryption and authentication go hand in hand, and significant vulnerabili-
ties can result if encryption is implemented without authentication. Outside
the cryptographic literature, not using a proper MAC is one of the commonly
encountered errors in stream cipher systems. A stream cipher with a built-in
MAC is much more likely to be used correctly, because it provides a MAC
without the associated performance penalties.

Phelix is an attempt to combine all these lessons. It is closely related to a
prior cipher, Helix [Helix03], proposed by some of the same authors.

2 An Overview of Phelix

Phelix is a combined stream cipher and MAC function, and directly provides
authenticated encryption functionality. By incorporating the plaintext into the
stream cipher state, Phelix can provide authentication functionality without
extra cost [Gol00].

The design strength of Phelix is 128 bits, which means we expect that no
attack on the cipher exists that requires fewer than 2128 Phelix block function
evaluations to be carried out. Phelix can process data in less than 7 clock
cycles per byte on a Pentium M CPU, more than twice as fast as the best
known AES implementation.

Phelix uses a 256-bit key and a 128-bit nonce. The key is secret, and the
nonce is typically public knowledge. Phelix is optimized for 32-bit platforms;
all operations are on 32-bit words. The only operations used are addition
modulo 232, exclusive or, and rotation by fixed numbers of bits. The design
philosophy of Phelix can be summarized as “many simple rounds.”

Phelix has a state that consists of nine words of 32 bits each. The state
is broken up into two groups: 5 “active” state words, which participate in
the block update function, and 4 “old” state words that are only used in
the keystream output function. A single round of Phelix consists of adding
(or xoring) one active state word into the next, and rotating the first word.
This is shown in Figure 1, where the active state words are shown as vertical
lines. Multiple rounds are applied in a cyclical pattern to the active state.
The horizontal lines of the rounds wind themselves in helical fashion through
the five active state words. Twenty rounds make up one block (see Figure 2).
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Fig. 1. A single round of Phelix

Phelix actually uses two intertwined helices; a single block contains two full
turns of each of the helices. The name Phelix was derived by a contraction
of sorts, from the fact that there are five “strands” in the helices, so that the
structure can be thought of as a penta-helix.

During each block, several other activities occur. During block i, one word
of keystream is generated (Si), two words of key material are added (Xi,0 and
Xi,1), and one word of plaintext is added (Pi). The output state of one block
is used as input to the next, so the computations shown in figure 2 are all that
is required to process 4 bytes of the message. As with any stream cipher, the
ciphertext is created by xoring the plaintext with the keystream (not shown
in the figure).

At the start of an encryption, a starting state is derived from the key and
nonce. The key words Xi,j depend on the key, the length of the input key, the
nonce, and the block number i. State-guessing attacks are made more difficult
by adding key material at double the rate at which key stream material is
extracted. At the end of the message, some extra processing is done, after
which a 128-bit MAC tag is produced to authenticate the message.

The structure of Phelix is very similar to that of Helix [Helix03]. In fact,
the block functions of the two ciphers are identical, except for the keystream
output function. The enlarged internal state of Phelix, along with moving
the keystream output point to force larger plaintext diffusion, would seem to
increase the security margin significantly. These changes were made largely in
response to [Mul04].

3 Definition of Phelix

The Phelix encryption function takes as input a variable-length key U of up
to 256 bits (32 bytes), a 128-bit (16-byte) nonce N , and a plaintext P . It
produces a ciphertext message and a tag that provides authentication. The
decryption function takes the key, nonce, ciphertext, and tag, and produces
either the plaintext message or an error if the authentication failed.

3.1 Preliminaries

Phelix operates on 32-bit words, while the inputs and outputs are 8-bit bytes.
In all situations, Phelix uses the least-significant-byte-first convention. A se-
quence of bytes xi is identified with a sequence of words Xj by the relations

Xj :=
3∑

k=0

x(4j+k) · 28k xi :=
⌊

Xbi/4c
28(i mod 4)

⌋
mod 28
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Fig. 2. One block of Phelix encryption
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These two equations are complementary and show the conversion both ways.
Let `(x) denote the length of a string of bytes x. The input key U consists

of a sequence of bytes u0, u1, . . . , u`(U)−1 with 0 ≤ `(U) ≤ 32. The key is
processed through the key mixing function, defined in section 3.7, to produce
the working key which consists of 8 words K0, . . . , K7.

The nonce N consists of 16 bytes, interpreted as 4 words N0, . . . , N3.
The plaintext P and ciphertext C are both sequences of bytes of the same

length, with the restriction that 0 ≤ `(P ) < 264. Both are manipulated as a
sequence of words, Pi and Ci, respectively. The last word of the plaintext and
ciphertext might be only partially used. The “extra” plaintext bytes in the
last word are taken to be zero. The “extra” ciphertext bytes are irrelevant and
never used. Note that the cipher is specified for zero-length plaintexts; in this
case, no data is encrypted and only a MAC is generated.

3.2 A Block

Phelix consists of a sequence of blocks. The blocks are numbered sequentially,
which assigns each block a unique number i. At the start of block i, the active
state consists of five words: Z

(i)
0 , . . . , Z

(i)
4 ; at the end of the block, the active

state consists of Z
(i+1)
0 , . . . , Z

(i+1)
4 , which forms the input to the next block

with number i+1. Block i also uses as input two key words Xi,0 and Xi,1, the
plaintext word Pi, and a previous state word Z

(i−4)
4 .

The complete block function is illustrated in figure 2. All values are 32-bit
words; exclusive or is denoted by ⊕, addition modulo 232 is denoted by ¢, and
rotation by ≪. The block function actually consists of two applications of a
“half-block” function H, defined as:

Function H(w0, w1, w2, w3, w4, K0,K1)
Begin

w0 := w0 ¢ (w3 ⊕K0); w3 := w3 ≪ 15;
w1 := w1 ¢ w4; w4 := w4 ≪ 25;
w2 := w2 ⊕ w0; w0 := w0 ≪ 9;
w3 := w3 ⊕ w1; w1 := w1 ≪ 10;
w4 := w4 ¢ w2; w2 := w2 ≪ 17;

w0 := w0 ⊕ (w3 ¢ K1); w3 := w3 ≪ 30;
w1 := w1 ⊕ w4; w4 := w4 ≪ 13;
w2 := w2 ¢ w0; w0 := w0 ≪ 20;
w3 := w3 ¢ w1; w1 := w1 ≪ 11;
w4 := w4 ⊕ w2; w2 := w2 ≪ 5;
Return (w0, w1, w2, w3, w4);

End.

Given the function H, the block function, shown in figure 2, is computed
as follows:

(Y (i)
0 , Y

(i)
1 , Y

(i)
2 , Y

(i)
3 , Y

(i)
4 ) := H(Z(i)

0 , Z
(i)
1 , Z

(i)
2 , Z

(i)
3 , Z

(i)
4 , 0,Xi,0)

(Z(i+1)
0 , Z

(i+1)
1 , Z

(i+1)
2 , Z

(i+1)
3 , Z

(i+1)
4 ) := H(Y (i)

0 , Y
(i)
1 , Y

(i)
2 , Y

(i)
3 , Y

(i)
4 , Pi,Xi,1)
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Each block produces one word of keystream Si := Y
(i)
4 +Z

(i−4)
4 . The ciphertext

words are defined by Ci := Pi ⊕ Si.
In the remainder of this paper, the terms “block,” and “block function”

are used interchangeably.

3.3 Key Words for Each Block

The expanded key words are derived from the working key K0, . . . , K7, the
nonce N0, . . . , N3, the input key length `(U), and the block number i. We first
extend the nonce to 8 words by defining Nk := (k mod 4) − Nk−4 (mod 232)
for k = 4, . . . , 7. The key words for block i are then defined by

Xi,0 := Ki mod 8

Xi,1 := K(i+4) mod 8 + Ni mod 8 + X ′
i + i + 8

X ′
i :=





b(i + 8)/231c if i mod 4 = 3
4 · `(U) if i mod 4 = 1
0 otherwise

where all additions are taken modulo 232. Note that X ′
i encodes bits 31 to 62

of the value i + 8; this is not the same as the upper 32 bits of i + 8.

3.4 Initialization

A Phelix encryption is started by setting

Z
(−8)
j := Kj+3 ⊕Ni for j = 0, . . . , 3

Z
(−8)
4 := K7

Z
(i)
4 := 0 for i = −12, . . . , −9

Pi := 0 for i = −8, . . . , −1

Eight blocks are then applied, using block number i = −8, . . . ,−1. For
these blocks, the generated keystream words are discarded.

3.5 Encryption

After the initialization, the plaintext is encrypted. Let k := b(`(P ) + 3)/4c
be the number of words in the plaintext. The encryption consists of k blocks
numbered 0 to k − 1. Each block generates one word of keystream, which is
used to encrypt one word of the plaintext. Depending on `(P ) mod 4, between
1 and 4 of the bytes of the last keystream word are used.

3.6 Computing the MAC

Just after the block that encrypted the last plaintext byte, one of the state
words is modified. The internal state word Z

(k)
0 is xored with the value

0x912d94f1.2 Using this modified state, eight blocks, numbered k, . . . , k + 7
2 This constant is constructed by taking the six least significant bits of each of the ASCII

characters of the string “Helix,” and setting the bits before and after these 30 bits.
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are applied for post-mixing. For these blocks, the plaintext word Pi is defined
as `(P ) mod 4, and the generated keystream is discarded . After the post-
mixing, four more blocks, numbered k + 8, . . . , k + 11, are applied, using the
same plaintext input word (i.e., `(P ) mod 4). The keystream words generated
by these four blocks form the MAC tag.

3.7 Key mixing

The key mixing converts a variable-length input key U to the fixed-length
working key, K.

First, the Phelix block function is used to create a round function R that
maps 128 bits to 128 bits, as follows:

Function R(w0, w1, w2, w3)
Begin

Local Variable w4 := `(U) + 64;
(w0, w1, w2, w3, w4) := H(w0, w1, w2, w3, w4, 0, 0);
(w0, w1, w2, w3, w4) := H(w0, w1, w2, w3, w4, 0, 0);
Return (w0, w1, w2, w3);

End.

The input key U is first extended with 32 − `(U) zero bytes. The 32 key
bytes are converted to 8 words K32, . . . ,K39. Further key words are defined
by the equation

(K4i, . . . ,K4i+3) := R(K4i+4, . . . ,K4i+7)⊕ (K4i+8, . . . , K4i+11)

for i = 7, . . . , 0. The words K0, . . . , K7 form the working key of the cipher.
(This recursion defines a Feistel-type cipher on 256-bit blocks.)

3.8 Decryption

Decryption is almost identical to encryption. The only differences are:

– The keystream Si generated after the first application of the H function in
each block is used to decrypt the ciphertext, producing the plaintext word
that is used in the second application of the H function within the block.
The implementation must insure that any unused bytes of the final plain-
text word are taken as zero for purposes of computing the block function,
regardless of value of the extra keystream bytes.

– Once the tag has been generated, it is compared to the tag provided. If
the two values are not identical, all generated data (i.e., the keystream,
plaintext, and tag) is destroyed.

4 Implementation

Compared to many ciphers, Phelix is relatively easy to implement in software.
If 32-bit addition, exclusive or, and rotation functions are available, all the
functions are easily implemented. Phelix is also fast. A single round takes only
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one clock cycle to compute on most current Pentium CPUs, because the su-
perscalar architecture can perform an addition or xor simultaneously with
a 32-bit rotation. A block of Phelix takes 20 cycles plus some overhead for
the handling of the plaintext, keystream, and ciphertext. Our assembly lan-
guage implementation requires less than 7 clock cycles per byte on a Pentium
M CPU, and under 14 clocks per byte using optimized C (gcc version 3.2).
This compares to about 14 clock cycles per byte for the best known AES
implementation (in assembler) on the same platform. 3

The per-packet processing overhead of Phelix is due mainly to the eight
words of initialization and twelve words of MAC processing. To first order,
this overhead can be thought of as processing an extra 20 words (80 bytes) per
packet. In assembler on the Pentium M, there is also roughly an additional 200
clocks of general setup overhead (including nonce mixing into Xi,1), for a total
of 750-850 clocks per packet. By comparison, this overhead is approximately
the time required to process a single 64-byte block of SHA-1 or three 16-byte
blocks of AES on the same platforms, but Phelix performs both encryption
and MAC in the same operation.

Packet Size (N) Approximate

Operation Version 64 bytes 256 bytes 1024 bytes Equation (clks)

Encrypt C 41.6 cpb 20.3 cpb 15.0 cpb 1810 + 13.2 N

Decrypt C 42.3 cpb 21.1 cpb 15.8 cpb 1610 + 14.0 N

Encrypt ASM 18.5 cpb 9.8 cpb 7.4 cpb 810 + 6.6 N

Decrypt ASM 18.2 cpb 9.6 cpb 7.4 cpb 750 + 6.7 N

Empirical Phelix software speeds on a Pentium M CPU are given in the
table above, where “cpb” indicates clocks per byte. These speeds are for an
“all-in-one” call, where the entire packet is processed with a single call. The
basic software model for Phelix is a slope-intercept equation, where the slope
is under 7 clocks/byte and the intercept is about 800 clocks per packet, in
assembler on a Pentium M. Minor speed differences occur due to encryption
vs. decryption, and to various compilers and CPU versions, For example, on
a Pentium III CPU, the slope is about 7.5 cpb, and the intercept is about 850
clocks. Using an “incremental” API, where each phase of the operation (e.g.,
nonce setup, data encryption/decryption, MAC output) is performed with a
separate call, adds an extra per-packet overhead of about 300 CPU clocks in
assembler and 100 clocks in C.

On a Pentium 4 CPU (P4), the same Phelix assembler code runs in about
1100+10N clocks per packet, and the C code runs in about 3100+26N clocks
per packet. Both of these numbers are considerably slower than the Pentium M
benchmarks. Perhaps recoding Phelix specifically for a P4 CPU could improve
these numbers, but the P4 has a (well deserved) reputation for very high clock

3 This is a somewhat unfair comparison. Most block cipher modes only provide encryption
or authentication, so two passes over the message are required. The alternative is to use
one of the new authenticated encryption modes, such as [Jut01], but they are all patented
and require a license.
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frequencies and relatively low instructions per clock, compared to the Pentium
III and M CPUs.

The key mixing only needs to be done once for each key value and imple-
ments a Feistel cipher, so it can be done in place. The key mixing function
takes about 400 clocks in assembler on a Pentium M, and under 600 clocks
in C (gcc version 3.2). Within a packet, the Xi,1 key words can be mostly
precomputed, with only the block number being added every block. Imple-
mentations that limit the plaintext size to 232 bytes can ignore the upper bits
of the block number in the definition of X ′

i, because these bits will always be
zero.

No algorithm setup is required for Phelix. There are no tables to be built.
The code size on a Pentium is under 5K bytes for the optimized assembler
version, including both all-in-one and incremental APIs, and under 6K bytes
for a C version. The code size obviously depends on the amount of optimization
and loop unrolling used. For example, the all-in-one assembler version could
be coded in under 2K bytes at some cost in performance, although we have
not implemented such a version.

Phelix is also fast in hardware. The rotations incur no gate delays, only
wiring delays, although they do consume routing resources in chip layouts. The
critical path through the block function consists of 6 additions and 5 xors.
As the critical path contains no rotations, a certain amount of ripple of the
32-bit adders can be overlapped, with the lower bits being produced and used
before the upper bits are available. A more detailed analysis of this overlapping
is required for any high-speed implementation. A conservative estimate for a
relatively low-cost ASIC layout is 2.5 ns per 32-bit adder and 0.5 ns per xor,
which adds up to 17.5 ns/block. This translates to more than 200 MByte per
second, or just under 2 Gbit per second. We roughly estimate that such a
design would consume fewer than 20,000 gates. Such a design would incur
about a 20 clock overhead per packet in order to process the initialization and
MAC blocks.

We are not aware of any special efforts required to avoid implementation
weaknesses, other than standard practices required for dealing with crypto-
graphic primitives.

5 Use

One of the dangers of a stream cipher is that the keystream will be reused.
To avoid this problem, Phelix imposes a few restrictions on the sender and
receiver:

– The sender must ensure that each (K,N) pair is used at most once to
encrypt a message. A single sender must use a new and unique nonce for
each message. Multiple senders that want to use the same key must employ
a scheme that divides the nonce space into non-overlapping sets, in order to
ensure that the same nonce is never used twice. If two different messages
are ever encrypted with the same (K,N) pair, Phelix loses most of its
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security properties. We claim, however, that even in such a case it remains
infeasible to recover the key.4

– The receiver may not release the plaintext P , or the keystream, until it has
verified the tag successfully. In most situations, this requires the receiver
to buffer the entire plaintext before it is released.

These requirements seem restrictive, but they are in fact required by all stream
ciphers and many block cipher modes (e.g., OCB [RBBK01b,RBBK01a] and
CCM [WHF]).

Although Phelix allows the use of short keys, we strongly recommend the
use of keys of at least 128 bits, preferably 256 bits.

6 Other modes of use

So far we have described Phelix as providing both encryption and authentica-
tion. Phelix can be used in other modes as well. For any particular key, Phelix
should be used with a single mode. Using several modes with a single key can
lead to a loss of security.

6.1 Additional Authentication Data (AAD)

In packet environments, it is often desirable to authenticate the packet header
without encrypting it. From the encryption/authentication layer, this looks
like an additional string of data that is to be authenticated but not encrypted.

Let `(A) be the number of such unencrypted header bytes to be authenti-
cated. Phelix defines a simple extension for processing AAD that seamlessly
reverts to the non-AAD case when `(A) = 0, defined as follows.

The AAD is padded with 0–3 zero bytes until the length is a multiple
of four. After cipher initialization (section 3.4), the padded AAD blocks are
“encrypted” as plaintext blocks, but all the associated ciphertext words are
discarded. However, both before the first AAD block and after the final AAD
block, the state variable Z1 (i.e., Z

(0)
1 and Z

(d`(A)/4e)
1 ) is xored with the 32-

bit hex constant 0xaadaadaa. Next, the input message data is encrypted (or
decrypted) as a normal message through Phelix, except that the starting block
number is d`(A)/4e. At this point, after the last message word is processed (i.e.,
at the same time Z

(k)
0 is xored with the value 0x912d94f1, as in section 3.6),

the following steps are also performed, with k = d`(A)/4e+ d`(P )/4e:

Z
(k)
2 := Z

(k)
2 ⊕ b`(A)/232c

Z
(k)
4 := Z

(k)
4 ⊕ (`(A) mod 232)

After these updates to the internal state, the final MAC processing proceeds as
in section 3.6, resulting in a MAC tag computed over the AAD and plaintext.

4 Note that Helix actually was vulnerable to a key recovery attack if (Key,Nonce) pairs
where reused [Mul04].
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6.2 Truncated MAC Values

To reduce bandwidth consumption, it is often desirable to use a MAC value
shorter than 128 bits. For example, in IPsec packets, MAC values (or “tags”)
are typically truncated to 96 bits. Phelix allows the use of truncated MAC
tags, with some restrictions discussed below. If desired, a single Phelix key
may be used with both MAC truncation and AAD without affecting security.

Let t be the desired size, in bits, of the MAC tag, with 0 < t ≤ 128. The
definition of X ′

i in section 3.3 is then extended, for the case i mod 4 = 1, to
X ′

i := 4 · `(U) + 256 · (t mod 128). In other words, this technique embeds both
`(U) and t into different bit fields within X ′

i. Note that the extended definition
seamlessly reverts to the non-truncated case when t = 128.

After encryption, the truncated MAC tag consists of the first t bits of
the 16-byte MAC value. More formally, let the untruncated MAC bytes be
(m0, . . . , m15). The truncated MAC bits are then the bytes

(m0, . . . , mb(t−1)/8c−1 , mb(t−1)/8c mod 21+((t−1) mod 8)).

Given the nature of Phelix, where plaintext can affect the internal cipher
state, MAC truncation must be handled prudently. As an extreme example
in the absence of any restrictions, if a tag length t = 1 were negotiated, an
attacker could submit forged packets with a repeated nonce value and have
them successfully decrypted with probability 0.5, probably opening the door
to devastating key recovery attacks. Fortunately, truncated Phelix MACs can
be used safely, but only under certain restrictions:

– The receiver must implement an anti-replay strategy, so that multiple pack-
ets with the same nonce will never be decrypted. Since anti-replay is almost
always a required policy anyway, this restriction is not onerous.

– The tag length t must be negotiated together with the key U , and the two
values must always be bound together. The receiver must always compare
all t bits of the MAC tag before “approving” a packet and revealing its
plaintext. In other words, an attacker must not be allowed to submit pack-
ets to be encrypted or decrypted with a tag length t different from that
negotiated when the key U was selected.

– Since an attacker will be able to mount an attack due to tag truncation
only if he is able to have forgery attempts successfully decrypted, the tag
length t must be large enough that there is no acceptable probability of
having the receiver accept and decrypt a forged packet within the lifetime
of the system.

This last restriction deserves some further discussion. For example, sup-
pose that the receiver can verify and decrypt no more than 2q packets per
second, and that the desired security lifetime is 100 years, or approximately
232 seconds. The probability of a forgery succeeding in the lifetime is then
p ≈ 2q+32−t, so a value t > q + 64 is required to guarantee p < 2−32. As
a particular case of interest, on a 10-Gbit/sec link using IPsec with a mini-
mum packet size of 64 bytes, we find q ≈ 21, so we require t > 85 to achieve
p < 2−32. In practice, of course, it is almost certain that a successful attack
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would require considerably more than a single forged packet, so larger values
of p may well be acceptable. For example, a less demanding hypothetical sys-
tem might use an 802.11 wireless link with q < 214. If the goal is only p < 2−8

(so that the probability of getting more than four forged packets is easily less
than 2−32) and the expected system lifetime is 25 years, then the requirement
could be met with t > 54.

Another common approach to enforcing such restrictions is to close a Phelix
“session” (and negotiate a new key) after more than a certain number of
forgery attempts have been detected by the decryptor. Alternately, a policy
of rekeying after a certain number (e.g., 232) of packets have been processed
will shorten the lifetime of a key and thus limit the probability of a forgery
being accepted. The particular settings chosen for any such policies should
be carefully chosen as part of the system design in order to meet the desired
security goals without affecting performance.

As a general guideline, if truncated Phelix tags must be used, values of
t < 96 should be considered only after careful analysis, and values of t < 64
are strongly discouraged in all cases.

6.3 Pure stream cipher, PRNG, and PRFG

Phelix can be used as a pure stream cipher by ignoring the MAC computations
at the end. And like any stream cipher, Phelix is a cryptographically strong
pseudorandom number generator. For every (key,nonce) input, it produces a
stream of pseudorandom data. This makes Phelix suitable for use as a PRNG.
Similarly, Phelix can be viewed as a Pseudorandom Function Generator: given
a secret key and encrypting an all-zero plaintext, the nonces define different
outputs, indistinguishable from uniformly chosen independent bit strings.

6.4 MAC with Nonce

Phelix can also be used a pure MAC function. The data to be authenticated
is encrypted, but the ciphertext is discarded. The receiver similarly discards
the keystream and just feeds the plaintext to the Phelix rounds. In this mode
Phelix is significantly faster than, for example, HMAC-SHA1, but it does
require a unique nonce for each message. Unfortunately, it is insecure to use
Phelix with a fixed nonce value.

7 Design rationale

Although the design strength of Phelix is 128 bits, we use 256-bit keys. This
avoids a very general class of attacks that exploits collisions on the key value.
For flexibility, Phelix also allows shorter keys to be used, as there are many
practical situations in which fewer than 256 bits of key material are available.

The small set of elementary operations that Phelix uses makes it efficient on
a large number of software platforms. The absence of tables, variable rotations,
and multiplications makes Phelix small and efficient in hardware as well.

The number of active state words (i.e., 5) was chosen as the maximum state
that can easily fit in the registers of mainstream Intel CPUs. The number of
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old state words (4) used for output “masking” was chosen so that the total
amount of unknown internal state is always at least 256 bits, even after the
keystream output.

Most ciphers use lookup tables to provide the necessary nonlinearity. In
Phelix, the nonlinearity comes from the mixing of xors with additions. Neither
of these operations can be approximated well within the group of the other.

The diffusion in Phelix is not terribly fast, but it is unstoppable. As the
attacker has very little control over the state, it is not possible to limit the
diffusion of differences. In those areas where dynamic attacks are possible, we
use a sequence of 8 blocks to ensure thorough mixing of the state words.

The key mixing is an unkeyed bijective function. The purpose is to spread
the available entropy over all key words. If, for example, the key is provided
by a SHA-1 computation, then only 5 words of key material are provided. The
key mixing ensures that all 8 key words depend on the key material. Using a
bijective mixing function ensures that no two 256-bit input keys lead to the
same working key values. The use of the input key length in X ′ guarantees
that even keys that lead to the same working key (each short key leads to a
working key that is also produced by a 256-bit key) do not lead to equivalent
Phelix encryptions.

7.1 Key schedule

The Xi,0 values simply cycle through the key words. The Xi,1 values depend on
the same key words in anti-phase, the extended nonce words, the block number,
and the input key length. This key schedule has a number of properties. All 8
key words and all 4 nonce words affect the state every 4 blocks.

The key schedule also ensures that different (K,N) pairs produce different
block key sequences. Even stronger: no sequence of 17 key words ever occurs
twice across all keys, all nonce values, and all positions in the encryption
computation.

To demonstrate this, we look at the sequence Wj := Xbj/2c,j mod 2. This
is the sequence of key words in the order they are used. Given just part of
the sequence Wj , without the proper index values j, we can recover the key,
nonce, and block number. (When the plaintext word is zero, the first half of
the block function is identical to the second half of the block function, so it
makes sense to look at the sequence Wj and allow half-block offsets.)

If Wj = Wj+16, then j is even; otherwise, j is odd. This allows us to split
the Y values back into an Xi,0 and Xi,1 sequence.

Now consider

Di := Xi,1 −Xi,0 + Xi+4,1 −Xi+4,0

= Ni mod 8 + N(i+4) mod 8 + X ′
i + X ′

i+4 + 2i + 20

= (i mod 4) + 2i + 20 + X ′
i + X ′

i+4

all modulo 232. We first look at Di mod 4. The X ′ terms can only have a
nonzero contribution if i mod 4 = 3, so 3 out of 4 consecutive times we get
just ((i mod 4) + 2i) mod 4 = 3i mod 4, which gives us i mod 4. Looking at
the full Di for an i with i mod 4 = 0 gives us i mod 231. The sum X ′

i + X ′
i+4
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from the case i mod 4 = 3 gives us the upper bits of i. This recovers5 the block
number, i.

Given i mod 8, we can recover the working key from the Xi,0’s. Knowledge
of i, and the key words allows us to compute the key length and the nonce from
the Xi,1’s, as well as check the redundancy introduced by the nonce expansion
to 8 words.

We have not investigated whether it is possible to recover the key, nonce,
and block number from fewer than 17 consecutive key words. A simple counting
argument shows that at least 14 are required. This remains an open problem.

7.2 Choice of Rotation Counts

Phelix mixes additions mod 232 and bit-wise XORs. The rotations provide the
diffusion between the various bit positions in the state words. Without the ro-
tations, the diffusion could only go into one direction: from the less significant
bit positions to the more significant ones. Thus, the choice of rotation counts
is critical for the security of Phelix. During the design process we examined
the impact of various choices of rotation counts both in terms of attempts to
cryptanalyze the cipher, and also in terms of their impact on statistical tests
of the block function.

To analyze the diffusion properties of a set of rotation counts, consider a
variant of the block function with all the additions changed to xors. (This
is equivalent to ignoring the carries in the additions.) In this variant, we can
track which output bits are affected by which input bits. For this analysis, we
consider an output bit affected if its computational path has a dependency
on the input bit at any one point, even if the output bit in our linearized
block function is not changed due to several dependencies canceling out. This
seems to be the most suitable way to analyze diffusion and is related to the
independence assumption in differential and linear cryptanalysis.

A set of rotation counts can, at best, ensure that changing a single state
input bit affects at least 21 bits of the output. There are a large number (over
6 000) of such rotation count sets.

We discarded all rotation count sets that contained a rotation count of 0,
1, 8, 16, 24, or 31. Rotation by a multiple of 8 repeats after only two or four
operations, and rotation by 1 or 31 bit positions provides diffusion between
adjacent bits, something the carry bits already do. This reduced the set of
candidate rotation counts to 86.

Using the full block function, we ran statistical tests on many candidate
rotation count sets to see how these values would affect the ability of the block
function to diffuse changes and mix together separate information within the
160-bit internal state. Among our tests, we considered:

1. The number of rounds required before all output bits passed binomial tests,
given a fixed input difference in the state.

5 This isn’t absolutely perfect. We do not recover the 62’nd bit of i + 8, but this bit will
only be set during the very last few blocks of a message very close to 264 bytes long. This
does not lead to a weakness.
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2. The number of rounds required before the output states’ Hamming weight
distribution passed a χ2 test, given low- and high-Hamming weight input
states.

3. The number of rounds required before the output states’ differences in
Hamming weight distribution passed a χ2 test, given low- and high-Hamming
weight differences in the input state [KRRR98].

4. Low- and high-Hamming weight higher-order differences, and the num-
ber of rounds required before the resulting output differences’ Hamming
weights passed a χ2 test.

The surprising result was that most rotation counts did pretty well. Our
carefully selected rotation count sets were slightly better than random ones,
but only by a small margin. Degenerate rotation counts (all rotation counts
equal, or most rotation counts zero) led to much worse test results.

At the end of our analysis, we selected more or less at random from the
remaining candidates. Based on our limited analysis, the specific choice of
rotation counts does not have a strong impact on the security of Phelix, with
only the caveat that we had to avoid some obvious degenerate cases.

8 Cryptanalysis

Phelix is intended to provide everything needed for an encrypted and au-
thenticated communications session. A successful attack on Phelix will have
occurred when an attacker can either predict a keystream bit he hasn’t seen
with a probability slightly higher than 50%, or when he can create a forged or
altered message that is accepted by the recipient with a probability substan-
tially higher than 2−128. To be meaningful, given the 128-bit security bound
of Phelix, any such attack must require fewer than 2128 block function eval-
uations for all participants combined. Also, any such attack must obey the
security requirements placed on Phelix operations; e.g., no reuse of nonces,
MACs checked before decrypted messages released, etc.

In this section, we consider a number of possible ways to attack Phelix.
Although our time and resources have been limited, we have not yet discovered
any workable method of attacking Phelix.

8.1 Static analysis

A static analysis takes the keystream and tries to reconstruct the state and
key. Several properties make this type of attack difficult. Even if the whole
state is known, any four consecutive keystream words are fully random. This
is because each Xi,0 key value affects Si in a bijective manner, so for any
given state and any sequence of Xi,1 words, there is a bijective mapping from
Ki mod 8, . . . , K(i+3) mod 8 to Si, . . . , Si+3. A similar argument applies when the
block function is computed backwards. Any attempt to recover the key, even
if the state is known at a single point, must therefore span at least 4 blocks.
Of course, there is no reasonable way of finding the state. At any point in a
block, there are at least 256 bits of unknown state, even after the keystream
word is output. As the design strength is 128 bits, an attacker cannot afford
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to guess the entire state. A partially guessed state does not help much, as key
material is added at twice the rate that keystream is produced.

8.2 Period length

The Phelix internal state is updated continuously by the plaintext it is en-
crypting. So long as the plaintext is not repeating, the keystream should have
an arbitrarily long period, up to the maximum packet size of 264 bytes.

With a fixed or repeating plaintext, the Phelix state does not cycle, either.
In section 7.1 we showed that any 17 consecutive key words used as inputs to
the block function are unique. The nonrepeating key word values prevent the
state from ever falling into a cycle.

8.3 State collisions

In [Mul04], an internal collision after 2114 words of chosen plaintext was found
in the cipher Helix [Helix03], the predecessor to Phelix. To avoid this class
of attack, Phelix added the 4 “old” state words, increasing the internal state
significantly to 288 bits. Thus, the unknown state remains at 256 bits even after
outputting the keystream word within a block, so no collisions are reasonably
expected within the security bounds.

8.4 Weak keys

Phelix makes constant use of the words of the working key. An all-zero working
key intuitively seems like a bad thing (it effectively omits a few operations from
the block function), but we have not discovered any possible attack based on
it. The all-zero working key is only generated by a single key of 32 bytes in
length. Shorter key length cannot generate the all-zero working key. The all-
zero working key does not seem to have any practical security relevance, and
there is no reason to treat this key differently from any other key.

8.5 Adaptive chosen plaintext attacks

Because the plaintext affects the state, Phelix allows an attack model that
traditional stream ciphers prevent: An attacker can request the encryption of
a plaintext block under an already established (key,nonce) pair, and can use
the resulting ciphertext to determine what plaintext to request next.

We have found no way to use such an attack against Phelix. As with the
discussion of static analysis above, the large unknown and untouchable state,
and the continual mixing of key material into that state, appear to defeat
attempts to use control over one input of the block function to control other
parts of its state. Additionally, the usage restrictions on Phelix do not allow
reuse of nonces, which ensures that the state is always a “moving target.”

However, it should be noted that in [Mul04], a key recovery attack of
complexity 288 was found against Helix [Helix03], assuming nonce reuse. While
this attack clearly violates critical and commonly accepted usage restrictions
of stream ciphers, the concern that the Helix key itself could be recovered led
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to the Phelix enhancements. The active state values of Phelix are identical
to those of Helix, but the inclusion of the “old” state variables in the Phelix
output keystream function makes it much more difficult to guess or learn the
internal active state than in Helix. Further, the point within the Phelix block
at which the keystream is extracted, namely Y

(i)
4 , forces much greater diffusion

and nonlinear mixing of the previous plaintext word, thwarting the differential
plaintext attack described in [Mul04].

8.6 Chosen input differential attacks

One powerful mode of attack is for the attacker to make small changes in the
input values and look at how the changes propagate through the cipher.

In Phelix, this can be done only with the key or the nonce. In each case,
the block function is applied multiple times to the input. In Phelix, all the
places where such attacks are possible have eight consecutive blocks without
any output. A change to the nonce, such as is considered in [DGV93], will
be thoroughly mixed into the state by the time the first keystream word is
generated. Similarly, a change to the last plaintext byte is thoroughly mixed
into the state before the first MAC tag word is generated. A differential attack
would have to use a differential through 8 blocks, or 160 rounds of Phelix. A
search found no useful differentials for 8 blocks of Phelix, nor useful higher-
order differentials.

8.7 Algebraic attacks over GF(2)

The algebraic analysis of Helix, the predecessor to Phelix, employed lineariza-
tion techniques, inspired by extended linearisation [CP02]. Independently from
Helix, such algebraic techniques have been used to successfully analyze stream
ciphers [Cou02,Arm02]. The best attack against Helix was based on optimisti-
cally (from the addversary’s point of view) assuming a certain system of equa-
tions to have full rank. The adversary than had to solve this system with
its ≈ 249.1 binary unknowns. Solving a system of linear equations in N un-
knowns by Gaussian elimination takes time O(N3). However, [CP02] suggested
a O(N2.376)-time algorithm, though with some apparently huge proportional-
ity constant. If we extremely optimistically set this constant to 1, the attacks
takes time 2116.7. At the time of designing Helix, we did not consider this a
practical threat, and, due to the optimistic and even unrealistic nature of our
assumptions, we conjectured the algebraic attack actually to to take more than
2128 steps. We are not aware of any results contradicting this conjecture.

As it turns out, Phelix’ resistance against this type of attack greatly im-
proves on Helix’ resistance. While Phelix uses the same block function as Helix,
the internal state size of Phelix has increased by 128 bits. The analysis shows
that (under the same full-rank assumption as before), the system of linar equa-
tions now has ≈ 264.07 unknowns. No algorithm is known, which could possibly
solve such a system of linear equations in 2128 steps or less.
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9 Conclusions and intellectual property statement

Most applications that require symmetric cryptography actually require both
encryption and authentication. We believe that the most efficient way to
achieve this combined goal is to design cryptographic primitives specifically
for the task. Towards this end, we present a new such cryptographic primi-
tive, called Phelix. We hope that Phelix and this paper will spur additional
research in authenticated encryption stream ciphers. As with any experimental
design, we note that Phelix should not be used until it has received additional
cryptanalysis.

There are no hidden weaknesses inserted the the designers of Phelix, nor
are we aware of any material weaknesses of the algorithm.

Finally, we hereby explicitly release any intellectual property rights to Phe-
lix into the public domain. Furthermore, we are not aware of any patent or
patent application anywhere in the world that covers Phelix.
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A Test vectors

The authors maintain a website at http://www.schneier.com/phelix.html
with Phelix news, example code, and test vectors. We give some simple test
vectors here. (The 8-word working key is given as a sequence of 32 bytes, least
significant byte first.)

MAC tag: 128 bits
Initial Key: <empty string>
Working Key: A9 3B 6E 32 BC 23 4F 6C 32 6C 0F 82 74 FF A2 41

E3 DA 57 7D EF 7C 1B 64 AF 78 7C 38 DC EF E3 DE
Nonce: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
AAD: <empty string>
Plaintext: 00 00 00 00 00 00 00 00 00 00
Ciphertext: D5 2D 45 C6 05 FD 7A 67 74 8D

MAC tag: 128 bits
Initial Key: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00

04 00 00 00 05 00 00 00 06 00 00 00 07 00 00 00
Working Key: 6E E9 A7 6C BD 0B F6 20 A6 D9 B7 59 49 D3 39 95

04 F8 4A D6 83 12 F9 06 ED D1 A6 98 9E C8 9D 45
Nonce: 00 00 00 01 01 00 00 01 02 00 00 01 03 00 00 01
AAD: <empty string>
Plaintext: 00 01 02 03 01 02 03 04 02 03 04 05 03 04 05 06

04 05 06 07 05 06 07 08 06 07 08 09 07 08 09 0A
Ciphertext: B5 FC 4B F5 BC 64 0A 56 00 3D 59 6D 33 4B A5 94

A5 48 7B 4E 30 8E DB 05 A7 D6 2F 23 45 14 02 4A

MAC tag: 64 bits
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Initial Key: 01 02 03 04 05 06 07 08 08 07 06 05 04 03 02 01
Working Key: 98 3F 23 CE B9 F4 D9 68 B0 56 54 06 2D 15 34 C6

4B 38 AD E7 C2 BA A4 DF D8 D4 02 21 DB BC 96 E8
Nonce: 04 00 00 00 05 00 00 00 06 00 00 00 07 00 00 00
AAD: <empty string>
Plaintext: <empty string>
Ciphertext: <empty string>

MAC tag: 96 bits
Initial Key: 09 07 05 03 01
Working Key: 36 0A 5B CD 91 EC 72 89 0A C3 BA 9D 1C 48 E2 E0

03 1C 86 33 83 A4 9F D8 CB F8 CC CA 1F D6 AB 5D
Nonce: 08 07 06 05 04 03 02 01 00 01 02 03 04 05 06 07
AAD: 00 02 04 06 01 03 05 07 08
Plaintext: 00 01 02 03 01 02 03 04 02 03 04 05 FF
Ciphertext: F1 0D 3E 06 7A 32 B1 BE DA A5 89 8B DE
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