

The stream cipher MICKEY (version 1)

Algorithm specification issue 1.0

Steve Babbage

Vodafone Group R&D, Newbury, UK
steve.babbage@vodafone.com

Matthew Dodd

Independent consultant
matthew@mdodd.net
www.mdodd.net

29P

th
P April 2005

Abstract: The stream cipher MICKEY (which stands for Mutual Irregular Clocking KEYstream
generator) is aimed at resource-constrained hardware platforms. It is intended to have low complexity
in hardware, while providing a high level of security. It uses irregular clocking of shift registers, with
some novel techniques to balance the need for guarantees on period and pseudorandomness against
the need to avoid certain cryptanalytic attacks.

Keywords: MICKEY, stream cipher, ECRYPT, irregular clocking.

1. Introduction
We present the stream cipher MICKEY (which stands for Mutual Irregular Clocking
KEYstream generator).

MICKEY is aimed at resource-constrained hardware platforms. It is intended to have low
complexity in hardware, while providing a high level of security.

2. Input and output parameters
MICKEY takes two input parameters:

• an 80-bit secret key K , whose bits are labelled 790 kk K ;

• an initialisation variable IV , anywhere between 0 and 80 bits in length, whose bits
are labelled 10 −IVLENGTHiviv K .

The keystream bits output by MICKEY are labelled K,, 10 zz . Ciphertext is produced from
plaintext by bitwise XOR with keystream bits, as in most stream ciphers.

3. Acceptable use
The maximum length of keystream sequence that may be generated with a single ()IVK , pair
is 2P

40
P bits. It is acceptable to generate 2P

40
P such sequences, all from the same K but with

different values of IV . It is not acceptable to use two initialisation variables of different
lengths with the same K . And it is not, of course, acceptable to reuse the same value of IV
with the same K .

MICKEY v1 specification 2

4. Components of the keystream generator
4.1 The registers
The generator is built from two registers R and S . Each register is 80 stages long, each
stage containing one bit. We label the bits in the registers 790 rr K and 790 ss K respectively.

Broadly speaking, we think of R as “the linear register” and S as “the non-linear register”.

4.2 Clocking the register R
Define a set of feedback tap positions for R :

}79,78,76,73,71,69,67,62
,56,54,52,51,49,43,41,39,37,35,34,28,27,26,24,22,20,17,16,14,13,9,8,7,6,4,2,0{=RTAPS

We define an operation CLOCK_R (R , RBITINPUT __ , RBITCONTROL __) as
follows:

• Let 790 rr K be the state of the register R before clocking, and let 790 rr ′′K be the state
of the register R after clocking.

• RBITINPUTrBITFEEDBACK ___ 79 ⊕=

• For 791 ≤≤ i , 1−=′ ii rr ; 00 =′r

• For 790 ≤≤ i , if RTAPSi ∈ , BITFEEDBACKrr ii _⊕′=′

• If 1__ =RBITCONTROL :

• For 790 ≤≤ i , iii rrr ⊕′=′

4.3 Clocking the register S
Define four sequences 781 00 COMPCOMP K , 781 11 COMPCOMP K , 790 00 FBFB K ,

790 11 FBFB K as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
COMP 0BiB

 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0
COMP 1BiB

 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1
FB 0 BiB

1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1
FB 1BiB

1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1

i 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
COMP 0BiB

1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
COMP 1BiB

1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1
FB 0 BiB

1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0
FB 1BiB

1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0

i 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
COMP 0BiB

1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0
COMP 1BiB

0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0
FB 0 BiB

1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0
FB 1BiBBB

0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1

MICKEY v1 specification 3

We define an operation CLOCK_S (S , SINPUT_BIT _ , SBITCONTROL __) as
follows:

• Let 790 ss K be the state of the register S before clocking, and let 790 ss ′′K be the
state of the register after clocking. We will also use 790 ˆˆ ss K as intermediate variables
to simplify the specification.

• SBITINPUTsBITFEEDBACK ___ 79 ⊕=

• For 781 ≤≤ i , () ()()iiiiii COMPsCOMPsss 1.0ˆ 11 ⊕⊕⊕= +− ; 00̂ =s ; 7879ˆ ss = .

• If 0__ =SBITCONTROL :

• For 790 ≤≤ i , ()BITFEEDBACKFBss iii _.0ˆ ⊕=′

• If instead 1__ =SBITCONTROL :

• For 790 ≤≤ i , ()BITFEEDBACKFBss iii _.1ˆ ⊕=′

4.4 Clocking the overall generator
We define an operation CLOCK_KG (R , S , MIXING , BITINPUT _) as follows:

• 5327__ rsRBITCONTROL ⊕=

• 2653__ rsSBITCONTROL ⊕=

• If TRUEMIXING = , then 40___ sBITINPUTRBITINPUT ⊕= ; if instead
FALSEMIXING = , then BITINPUTRBITINPUT ___ =

• BITINPUTSBITINPUT ___ =

• CLOCK_R (R , RBITINPUT __ , RBITCONTROL __)

• CLOCK_S (S , SBITINPUT __ , SBITCONTROL __)

5. Key loading and initialisation
The registers are initialised from the input variables as follows:

• Initialise the registers R and S with all zeros.

• (Load in IV .) For 10 −≤≤ IVLENGTHi :

• CLOCK_KG (R , S , TRUEMIXING = , iivINPUT_BIT =)

• (Load in K .) For 790 ≤≤ i :

• CLOCK_KG (R , S , TRUEMIXING = , ikINPUT_BIT =)

• (Preclock.) For 790 ≤≤ i :

• CLOCK_KG (R , S , TRUEMIXING = , 0=INPUT_BIT)

MICKEY v1 specification 4

6. Generating keystream
Having loaded and initialised the registers, we generate keystream bits 10 −Lzz K as follows:

• For 10 −≤≤ Li :

• 00 srzi ⊕=

• CLOCK_KG (R , S , FALSEMIXING = , 0=INPUT_BIT)

7. Design principles
7.1 The variable clocking of R : what it does
When 0__ =RBITCONTROL , the clocking of R is a standard linear feedback shift
register clocking operation (with Galois-style feedback, following the primitive characteristic
polynomial ∑

∈

+=
RTAPSi

i
R xxxC 80)(, with RINPUT_BIT _ XORed into the feedback).

If we represent elements of the field)2(80GF as polynomials ∑
=

79

0i

i
i xr , modulo)(xCR , then

shifting the register corresponds to multiplication by x in the field.

Figure 1: Clocking the R register with 0__ =RBITCONTROL

When 1_ =BITCONTROL , as well as shifting each bit in the register to the right, we also
XOR it back into the current stage, as shown in Figure 2. This corresponds to multiplication
by 1+x in the same field.

r0 r1 r2 r3 r76 r77 r78 r79

INPUT_BIT_R

r0 r1 r2 r3 r76 r77 r78 r79

INPUT_BIT_R

Figure 2: Clocking the R register with 1__ =RBITCONTROL

The characteristic polynomial)(xCR has been chosen so that 1|)(++ xxxC J
R , where

J = 2P

40
P – 23. Thus, clocking the register with 1__ =RBITCONTROL is equivalent to

clocking the register J times.

r0 r1 r2 r3 r76 r77 r78 r79

INPUT_BIT_R

r0 r1 r2 r3 r76 r77 r78 r79

INPUT_BIT_R

MICKEY v1 specification 5

This technique — a simple operation, related to the standard linear register clocking operation
but equivalent to making the register “jump” by clocking it J times — is due to Cees
Jansen [1]. In [1], Jansen presents the technique applied to LFSRs with Fibonacci-style
clocking, but it is clear that the same approach is valid with Galois-style clocking.

7.2 Motivation for the variable clocking
Stream ciphers making use of variable clocking often lend themselves to statistical attacks, in
which the attacker guesses how many times the register has been clocked at a particular time.
There are a number of characteristics of a cipher design that may make such attacks possible.

To illustrate these possible characteristics, let us consider the stream cipher LILI-128 [2].
LILI-128 uses two LFSRs, of length 39 and 89; the 89-stage register is clocked 1, 2, 3 or 4
times at each clock of the overall generator, based on two control bits from the 39-stage
register. Attacks based on guessing a likely number of clocks of the 89-stage register may be
possible because:

(a) Clocking the 89-stage register m times and then n times gives the same result as clocking
n times and then m times. For instance, clocking twice and then three times gives the
same result as clocking three times and then twice. The different possible clocking
operations commute. So for instance the attacker may guess that, after ten clocks of the
overall generator, the 89-stage register has had two single-clocks, three double-clocks,
three triple-clocks and two quadruple-clocks; she doesn’t need to guess the order in which
the different clockings occurred.

(b) Furthermore, clocking once and then four times gives the same end result as clocking
twice and then three times. There are lots of combinations that give, for example, 25
clocks of the register after 10 clocks of the overall generator; the attacker can assign a
single overall probability to this event, without having to distinguish between the many
different clocking combinations that could have led to it. This further improves the
efficiency of a statistical attack.

(c) Finally, 25 clocks of the 89-stage register may have occurred after ten generator clocks, or
after nine generator clocks, or after eleven generator clocks, …. Again, this can be used
to make attacks more efficient — see [3, 4] for an example.

The principles behind the design of MICKEY are:

• to take all of the benefits of variable clocking, in protecting against many forms of attack;

• to guarantee period and local randomness;

• subject to those, to reduce the susceptibility to statistical attacks as far as possible.

Specifically, taking points (a)–(c) in turn:

(a) does apply to register R (because JJ clockclockclockclock oo 11 =), but does not apply to
register S , whose different clocking operations do not commute.

(b) does not apply to either register. In the case of R , for any given values 402≤t and u ,
there is at most one possible pair of values 1n and Jn such that tnn J ≤≤ ,0 1 ; tnn J =+1 ;
and uJnn J =+1 . (1n and Jn represent the number of times that R is clocked once and
J times respectively.)

(c) effectively does not apply to either register. In the case of R , for any given value u , if
we assume that RBITCONTROL __ is selected at random then we are very unlikely in

MICKEY v1 specification 6

practice to observe more than one triple of values t , 1n and Jn such that 402≤t ;
tnn J ≤≤ ,0 1 ; tnn J =+1 ; and uJnn J =+1 . (For instance, it is very unlikely that in a

keystream sequence of length 2P

40
P we will see Jn ≥1 .)

In MICKEY, the register R acts as the “engine”, ensuring that the state of the generator does
not repeat within the generation of a single keystream sequence, and ensuring good local
statistical properties. The influence of R on the clocking of S also prevents S from
becoming stuck in a short cycle. We chose the “jump index” J as close as possible to 2P

40
P, so

that the state of R will not repeat during the generation of a maximum length (2 P

40
P-bit)

keystream sequence, but so that property (c) above is satisfied as perfectly as possible.

7.3 Selection of cloc
We deliberately chose t
registers, in such a way
attacker how either regist
and determine” or “divide

7.4 The S register f
For any fixed value of C
that the space of possible

Our design goal for the
initial state of S is

SBITCONTROL __ a
consider the sequence (s
generator has been clock
sequence — that is, we d
is especially likely to be
range over all possible va

Register R

Controls R
feedback

Controls S
feedback

Register S

Keystream bit

Register R

Controls R
feedback

Controls S
feedback

Register S

Keystream bit

F
igure 3: The variable clocking architecture

k control bits
he clock control bits for each register to be derived from both
 that knowledge of either register state is not sufficient to tell the
er will subsequently be clocked. This helps to guard against “guess
 and conquer” attacks.

eedback function
SBITONTROL __ , the clocking function of S is invertible (so

 register values is not reduced by clocking S).

clocking function of S can be stated as follows. Assume that the
 randomly selected, and that the sequence of values of
pplied to the clocking of S are also randomly selected. Then

,...)2,1,0:)(0 =ii . (By)(0 is we mean the contents of 0s after the
ed i times.) We want to avoid any strong affine relations in that
o not want there to exist a set I such that the value ∑ ∈

=
Ii

isp)(0
 equal to 0 (or to 1) as the initial state and SBITCONTROL __
lues.

MICKEY v1 specification 7

The reason for this design goal is to avoid attacks based on establishing a probabilistic linear
model (i.e. a set I as described above) that would allow a linear combination of keystream
bits to be strongly correlated to a combination of bits only from the (“linear”, “weaker”) R
register. We are thinking here especially of distinguishing attacks.

It is not straightforward to meet this design goal in an optimum sense (even if we defined it
more precisely than we have done), but we do have some reason to believe that we have met it
pretty well. At least, earlier proposals we considered for S were weaker in this regard. We
modelled a number of constructions on a scaled down version of S , and looked for the
strongest linear relations holding over relatively short sequences))((0 is , and we found that
the construction we have chosen performed well.

In particular, our construction preserves local randomness, in the sense that, if the initial state
is uniformly random, then a sequence of 80 successive bits)(0 is will also be uniformly
random. So no sum of fewer than 81 successive bits)(0 is will be equal to 0 with probability
distinct from ½. From our empirical analysis, we believe that the strongest bias will come
from a combination selected from precisely 81 successive bits)(0 is .

We should be honest, though, and say that we would ideally have liked more time to analyse
possible constructions. There is probably some scope for further improvement.

s55 s56 s57

INPUT_BIT_S

s79

FB0i FB1i

CONTROL_BIT_S = 0 1

s55 s56 s57

INPUT_BIT_S

s79

FB0i FB1i

CONTROL_BIT_S = 0 1

Figure 4: Clocking the S register

7.5 Key loading
We use a non-linear loading mechanism to protect against resynchronisation attacks.

7.6 Algebraic attacks
Algebraic attacks usually become possible when the keystream is correlated to one or more
linearly clocking registers, whose clocking is either entirely predictable or can be guessed.

We have taken care that the attacker cannot eliminate the uncertainty about the clocking of
either register by guessing a small set of values. (By illustrative contrast, some attacks on
LILI-128 [2] were possible because the state of the 39-stage register could be guessed, and
then the clocking of the 89-stage register became known.)

Furthermore, each keystream bit produced by MICKEY is not correlated to the contents of
either one register (so in particular not to the “linear register” R).

MICKEY v1 specification 8

7.7 Weak keys
There is a small class of arguably weak keys for MICKEY: namely, those ()IVK , pairs for
which the state of R after loading is all zeroes. It is clear that, if an attacker assumes that this
is the case, she can readily confirm her assumption and deduce the remainder of the generator
state by analysing a short sequence of keystream. But, because this can be assumed to occur
with probability roughly 2P

-80
P — the same probability as for any guessed secret key to be

correct — we do not think it necessary to prevent it (and so in the interests of efficiency we do
not do so).

7.8 State entropy
The generator is subject to variable clocking under control of bits from within the generator.
This results in a reduction of the entropy of the overall generator state: some generator states
after clocking have two or more possible preimages, and some states have no possible
preimages. We considered the possibility of attacks resulting from this, but we do not believe
that any exist. The fact that the control bit for each register is derived by XORing bits from
both registers, and hence is uncorrelated to the state of the register it controls, is crucial: it
means that clocking the overall generator does not reduce the entropy of either one register
state.

7.9 Output function
MICKEY uses a very simple output function (00 sr ⊕) to compute keystream bits from the
register states.

We considered more complex alternatives, e.g. of the form ()79107910)(sshsrrgr KK ⊕⊕⊕
for some Boolean functions g and h . Although these might increase the security margin
against some types of attack, we preferred to keep the output function simple and elegant, and
rely instead on the mutual irregular clocking of the registers.

8. The intended strength of the algorithm
When used in accordance with the rules set out in section 3, MICKEY is intended to resist
any attack faster than exhaustive key search.

The designers have not deliberately inserted any hidden weaknesses in the algorithm.

9. Performance of the algorithm
MICKEY is not designed for notably high speeds in software, although it is straightforward to
implement it reasonably efficiently. Our own reasonably efficient (but not turbo-charged)
implementation generated 10P

8
P bits of keystream in 5.2 seconds, using a PC with a 3.4GHz

Pentium 4 processor.

There may be scope for more efficient software implementations that produce several bits of
keystream at a time, making use of look-up tables to implement the register clocking and
keystream derivation.

10. IPR
The designers of the algorithm do not claim any IPR over it, and make it freely available for
any purpose. To the best of our knowledge no one else has any relevant IPR either. We will
update the ECRYPT stream cipher project coordinators if we ever discover any.

MICKEY v1 specification 9

11. References
 [1] C.J.A.Jansen, Streamcipher Design: Make your LFSRs jump!, presented at the

ECRYPT SASC (State of the Art in Stream Ciphers) workshop, Bruges, October
2004, and in the workshop record at
HTUhttp://www.isg.rhul.ac.uk/research/projects/ecrypt/stvl/sasc-record.zipUTH.

[2] E.Dawson, A.Clark, J.Golić, W.Millan, L.Penna, L.Simpson, The LILI-128 Keystream
Generator, NESSIE submission, in the proceedings of the First Open NESSIE
Workshop (Leuven, November 2000), and available at HTUhttp://www.cryptonessie.orgUTH.

[3] Patrik Ekdahl, Thomas Johansson: Another attack on A5/1, IEEE Transactions on
Information Theory 49(1): 284-289 (2003).

[4] A.Maximov, T.Johansson, S.Babbage, An Improved Correlation Attack on A5/1, in
Helena Handschuh, M. Anwar Hasan (Eds.): Selected Areas in Cryptography 2004 (ed
Handschuh/Hasan), Lecture Notes in Computer Science #3357, Springer Verlag.

	Introduction
	Input and output parameters
	Acceptable use
	Components of the keystream generator
	The registers
	Clocking the register R
	Clocking the register S
	Clocking the overall generator

	Key loading and initialisation
	Generating keystream
	Design principles
	The variable clocking of : what it does
	Motivation for the variable clocking
	Selection of clock control bits
	The register feedback function
	Key loading
	Algebraic attacks
	Weak keys
	State entropy
	Output function

	The intended strength of the algorithm
	Performance of the algorithm
	IPR
	References

