TMD-Tradeoff and State Entropy Loss
Considerations of Streamcipher MICKEY

Jin Hong and Woo-Hwan Kim

National Security Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea
{jinhong,whkimb}@etri.re.kr

Abstract. We give three weaknesses of a recently proposed streamci-
pher MICKEY. A small class of weak keys is found and we show time-
memory-data tradeoff is applicable. We also show that the state update
function reduces entropy of the internal state as it is iterated, result-
ing in keystreams that start out differently but become merged together
towards the end.

Keywords: MICKEY, stream cipher, time memory data tradeoff, inter-
nal state entropy, weak key

1 Introduction

Streamcipher MICKEY [4] is a low-end hardware oriented cipher, designed by
S. Babbage and M. Dodd, with 80-bit intended security level, and submitted
to ECRYPT for competition in the streamcipher project [1]. It was one of the
algorithms selected and presented at the Symmetric Key Encryption Workshop
(SKEW, Arhus, Denmark, May, 2005).

Internal state of the cipher consists of two 80-bit feedback shift registers that
are carefully designed to mutually and irregularly clock each other. The output
keystream is a simple XOR of the two register outputs and hence not much more
than the two registers themselves are needed for a hardware implementation of
MICKEY. Since the minimum internal state size for a streamcipher aiming for
80-bit security is 160 bits, the cipher seems to be quite near the minimum point
reachable with respect to hardware implementation cost and this makes it a very
attractive proposal for constrained hardware environments.

In this paper, three undesirable properties of MICKEY, in relation to its
security aspects, are discussed. The first is that time-memory-data tradeoff is
applicable with online complexity lower than exhaustive search. It is widely
believed that using an internal state size of twice the key size eliminates TMD
tradeoff attacks completely. Here, we show that, with a technique called BSW
sampling, we can effectively reduce the search space and apply TMD tradeoff to
a reduced internal state.

Our second remark starts from the fact that the state update function of
MICKEY is not bijective. This reduces entropy of the internal state as the

keystream generator is run forward and we study the iterative entropy loss quan-
titatively. We show that although the restriction to 240-bits of keystream usage
per key setup, set up by the designers, prevents any keystream from circling
back through a whole period, it does not stop two long keystreams that started
out differently from merging together towards the end.

The last observation we make is the existence of a small family of weak keys.

After briefly describing MICKEY, we shall go through the three weaknesses
in the same order introduced above. In the appendix, we consider application of
some of these ideas to the higher security cousin MICKEY-128.

2 MICKEY

Let us very briefly recall the specifications of MICKEY and fix notation. As we
shall not be working with the key schedule, just the main body will be described.

MICKEY uses two 80-bit registers named R and S. Register R is a linear
feedback shift register whose cells we denote by 7; (0 < i < 79). Depending on
a control bit, it is clocked in two different ways. If the control bit is set to 0,
it is clocked in the normal way. When the control bit is set to 1, it is clocked
240 — 23 times. Of course, a way to do this without actually repeatedly clocking
the register is given, but we shall not be concerned with such implementation
aspects. Register S is a nonlinear feedback shift register whose cells we denote
by s; (0 <i<79). As with R, there are two ways to clock S, the choice being
made through another control bit.

Since R is an LFSR, it is clear that, once the control bit used for the most
recent clocking is known, it may be inverted one step back. The inversion map
will be linear for both cases of the control bit. Similarly, as the designers state
in their specifications, the clocking for S is also invertible, once the control bit
is fixed. The actual inverse clocking method is easy to find once the normal
clocking method is fully understood.

One bit of keystream is produced before each internal state update by XOR-
ing two bits contained in cells g and so. To update the whole generator, the
XOR s97 @ r53 of two bits is set as control bit for register R, the bit s535 @ 96
is set as the control bit for register S, and the two 80-bit registers are clocked
accordingly. After each key-IV loading, which we do not describe, the keystream
generator may be used to produce at most 249 bits of keystream.

The logics of this paper should be understandable with what has so far been
explained of MICKEY. But those interested in following actual computations
should consult the original specification [4] for more information.

3 TMD tradeoff with BSW sampling

In this section, we shall see that time-memory-data tradeoff is applicable to the
internal state of MICKEY with online complexity less than exhaustive search.

3.1 BS-tradeoff

The problem of recovering the internal state of a streamcipher, given multiple
keystream segments, may be seen as a special case of the following more general
inversion problem.

Given a oneway function f: X —) and a set D = {y;}; C Y, find at
least one z; € X for which f(z;) = y;.

Our interest lies in the case where X is the set of all internal states,) is the
set of keystream segments long enough to reliably distinguish states, and f is
the mapping of state to finite keystream segment. Once the internal state corre-
sponding to some keystream segment is obtained by inverting this mapping, the
cipher can be run forward to obtain all future keystream for that session.

Starting with the work of Hellman [9], numerous studies on time-memory-
(data) tradeoff attacks have appeared in the literature, but in this work, we shall
focus on the TMD tradeoff attack given by Biryukov and Shamir [5]. The BS-
tradeoff, interpreted as a tool for inverting general oneway functions f : X —),
is as follows.

Let N = |X| be the size of the search space. Given any triple (T, M, D)
satisfying the tradeoff curve

TM?D? = N? with 1<D?<T, (1)

there exists an algorithm that solves the inversion problem in the fol-
lowing manner.
Before a target set D of size D is given, the attacker prepares tables to be
stored in memory of size M through a pre-computation phase requiring
(offline) time

P=N/D. (2)

When the target data set D is given, with high probability, a single
solution to the inversion problem is produced within (online) time T

A typical point on the BS-tradeoff curve is
T=M=N>D=N% with P=N3i (3)

Since the attack complexity of this approach is taken to be the maximum of T',
M, and D, disregarding the offline time complexity, this has worked, together
with birthday paradox based TMD attacks [3, 8], as a reason for many recent
streamcipher designs incorporating internal state size at least twice as big as
intended security level. MICKEY follows this trend and uses 160-bit state size
to aim for 80-bit security.

3.2 Restricting the search space

Let us explain the basics of BSW-sampling [6]. Suppose we can find a subset
X' C X for which elements of ' = f(X') can easily be singled out from).

Consider the restriction
fl . Xl - yl

of f to X'. Given a target data set D C Y, one samples the data by taking
D' =DnNY" and apply TMD tradeoff to f’ with the smaller data set D’. As the
search space X’ is smaller than X, this should be more efficient than applying
TMD-tradeoff to f itself, and it is clear that any inversion of f' is also an
inversion for f. Of course, the (pre-sampling) data requirement will be larger
than the usual approach.

3.3 Sampling MICKEY keystream

The usual way of applying TMD tradeoff attack to MICKEY would be to con-
sider the case where X is the set of all 160-bit internal states and) is the set of
all keystream segments of 160-bit length. The mapping f will send an internal
state to the first 160 keystream bits obtained from the state.

To apply the sampling method, we define

Y' = {160-bit keystream segments starting with 27 zeros}. (4)

These are certainly easily distinguishable from the rest of the elements of).
With an understanding of BS-tradeoff algorithm, it should be clear that the
only obstacle to its actually application on the restricted mapping

;=) Y (5)
is the construction of an efficiently computable, preferably injective, mapping
h:Y — X' (6)

The construction of this mapping for MICKEY is a bit tedious, so let us go
through this step by step.

1. View a random element y €)’ as a 133-bit value by disregarding the 27
initiating zeros.

2. Fill register S with the first 80 bits of y.

3. Fill cells rqy,...,rs3 of register R with the remaining 53 bits of y. We shall
consider the remaining 27 cells, o and 754, . .., 79 as having been filled with
indeterminate variables o and 34, ...,Z79. To define the mapping (6), it
suffices to determine the correct values for these variables which allow the
keystream generated from this state to start with 27 zeros.

4. Since the first output bit ro ® so must be zero, and since sq is already fixed,
we immediately obtain x. Hence forth, we shall treat z as a constant rather
than as a variable.

5. Calculate s53 ® rag, the control bit for S, and also sa7 @ 153, the control bit
for R.

6. Clock register S according to its control bit.

7. Clock register R according to its control bit. In saying this, we mean to
write the contents of the cells as linear functions of the remaining variables
T54,---,T79. In particular, using the feedback equation for R, one can show
that the new content of rq will be

- Z7g, if the control bit for R is zero, and

- Z7g9 @ T, if the control bit for R is one.
Recalling the fact that z¢ has already been determined, and using the con-
dition for the second output bit to be zero, one determines x79 which is
actually the feedback bit. We can now treat z79 also as a constant, rather
than as a variable.

8. Determination of the feedback bit allows cells 7g,...,r53 to be determined
explicitly, and for the rest of the cells to be written as a function of the
remaining 25 variables 54, ..., x7s. For example, the current updated value
of 779 will be either z75 & 79 or z7s, depending on the (known) control bit
for R.

9. Once again, calculate both control bits and clock the two registers accord-
ingly.

10. This time, the new value for sg and the zero-output condition will determine
the variable z7g and also the second feedback bit.

11. Continue in this manner until all variables are determined. Notice that each
new clocking determines one more indeterminate and hence at most 26 clock-
ings are needed.

We have thus defined an appropriate mapping (6) and successfully reduced the
search space size from 2190 to N = 2133,

3.4 TMD tradeoff with sampling on MICKEY

Let us now see what TMD tradeoff complexities we can obtain on the smaller
space X’.

Start with unfiltered data size of 260, For example, these may be obtained by
sliding a window of 160-bit size over 22°-many keystreams, each of (240 + 159)-
bit length. Only about 2727 of these will start with 27 zeros. Hence the sampled
data to be used in our TMD tradeoff attack is D = 233 = 26027 Values T = 256
and M = 257, together with D = 233 and N = 233, satisfy the TMD tradeoff
curve (1), and the offline pre-computation complexity (2) becomes P = 2100,

In summary, once a table costing offline time 2! is built, TMD tradeoff
attack with BSW sampling on MICKEY is possible with online complexity 257.
This is (almost) the minimum online complexity achievable with our sampling.

To lower the pre-computation time as far as possible, we start with unfiltered
data size of 266-5. This results in the tradeoff point T = 27%, M = 25* and
D = 2395 with pre-computation time P = 2935,

Owing to the pre-computation complexity larger than exhaustive search of
key, some would not view this technically as a break of MICKEY. But still, it
does show that we cannot treat MICKEY as providing absolutely full 80-bit

security. Furthermore, the fact that such sampling is possible can be viewed as
a weakness in itself. This might open doors to other exploits.

Notice that ECRYPT’s current recommendation for key sizes [2] seem to be
viewing anything less than 81 bits to be vulnerable to exhaustive search by large
agencies, hence the pre-computation time 2'%0 or 2935 cited above should be
seen as reachable in the near future.

We refer readers to Appendix A for a related general treatment of complex-
ities involving TMD-tradeoff with BSW sampling.

4 State entropy loss

The state update function of MICKEY starts by calculating two control bits.
These bits determine the fate of the very bits used to obtain the control bits.
This kind of double-use of information usually produces collisions. The state
update function is not one-to-one and through repeated application of the state
update function, entropy of the state is bound to decrease. In this section, we
study the actual amount of entropy lost.

4.1 Preliminary

Given a set X = {z;}ics, with each element z; appearing with probability p;,
the entropy of set X is defined as

H(X) == pilog,(pi). (7)

icl

For example, if some set Y contains N elements, and all elements occur with
equal probability, then we have

H(Y) = = 3 log(5p) = loga (V).

Hence, a set of size 2" with uniform probability distribution has entropy n.
Given a mapping ¢, acting on a space of size N and of uniform distribution,
let us define the notation

EL(p) = log,(N) — H(Image(y)), (8)
EL(p) = log,(N) — log, (Image(e)). (9)

The operator EL measures the entropy loss suffered by a uniform space through
application of a mapping. Operator EL measures the same value in a rough way,
by assuming that all elements of the image space occur with equal probability.
We will always have EL(¢) > EL(y) for any map .

4.2 Comparing update function with random mapping

There are some known results concerning the behavior of random mappings, and
the following lemma may be found in [7].

Lemma 1. For a random mapping on N elements, the expectation value for the
number of its image points has the asymptotic form (1 — %)N, as N — oo.

Using our notation, this may be written equivalently in the following way.

Lemma 2. For a random mapping ¢ on N elements, EL(¢) — —logy(1—1) ~
0.6617 as N — ooc.

So, if a random function was chosen as the state update function for some
streamcipher, the internal state would lose more than 0.66-bit entropy on its
first update. Let us see how the MICKEY’s state update function behaves in
this regards.

For the rest of this section, ¢ will denote a random mapping and f will be
used to denote the state update function of MICKEY. Consider the following
procedure.

1. Choose random® states for both registers R and S.

2. Calculate the reverse clocking of register R, assuming control bit set to 0,
and call the new state Ry. Similarly, previous state of R assuming control bit
1 is calculated and named R;. The same is done for register S with results
named Sy and S;.

3. For each of the four possible (R;,S;) pairs, calculate the two control bits
(s27 @ 753,853 D rog) and check to see if these match with the control bits
(i,) actually used. Count the number of matches.

This procedure counts the number of internal states that map to the chosen
random state under the state update function f. We repeated this process for a
total of 22° times and have recorded the result in Table 1. Notice that a state may

inverse count || 0 | 1 | 2 | 3 | 4 ||t0tal
random states||307988[452017[279418] 0 | 9153 [|22°

Table 1. Random states according to f-inverse image counts

have from zero up to four pre-image states. Table shows, in particular, that of the
220 random states, only 740588-many were image points under f. This accounts
for about 0.7063 of the total states tried. Assuming that this proportion holds
true for all states, we can calculate EL(f) ~ —log,(0.7063) ~ 0.5017. Comparing
with 0.6617 entropy loss of a random functions stated by Lemma 2, we can see

! We used multiple invocations to rand() function provided by the C-language, ini-
tially seeded with current time.

that f loses less entropy and is closer to a one-to-one function than a random
function.

We next worked with fo f,i.e., f iterated twice, in seeing the distribution of
states according to inverse image counts. For every pre-image of a random state
under f, we checked if this pre-image again had a pre-image under f. Result of
twice iterated inverse image counting is given in Table 2. The total number of

inverse count|| 0 1 2 3 4] 5
218.81 217.95 217.92 215.82 214.65 210.35

random state H

6 | 7 | 8 | 9 |10 | 11 | 12 |13~ 16 total
’ 211.20‘27.93 9748 | 95.55 [93.32 [24.00‘ 0 H 920

Table 2. Random states according to (f o f)-inverse image counts

twice iterated images is 588990 and accounts for about 0.5617 of all 220 states
tried. As before, we can calculate EL(f o f) ~ 0.8321. From the view point of
entropy preservation, f o f is worse than random mappings.

Using the two comparisons, we conclude that, with respect to entropy preser-
vation matters, a random mapping behaves somewhere in between f and f o f.

4.3 State update iterations

Our goal for the moment is to see how much internal state entropy is lost through
240 jterated applications of state update function f. Notice that 239 applications
of fo fis equal to 20 applications of single f. As discussed in the previous
subsection, random mapping ¢ is, in some sense, in the middle of f and f o f,
and we can expect the behavior of a random mapping ¢ to be very much related
to that of f.

Hence, we shall study applications of random mapping ¢ instead of work-
ing with the state update function f of MICKEY. More justification for this
choice, given in terms of experiment data, will be given later.

240

Lemma 3. For a random mapping on N elements, the expectation value for
the number of k-th iterate image points has the asymptotic form (1 — 7)N, as
N — oco. Here, 11, is given by the recursion formula, 1o = 0, Tp4+1 = exp(1, — 1).

Let us denote the composition of k-many ¢, i.e., k-many iterations of ¢, by ok,
The above lemma, found in [7], allows us to iteratively calculate EL(¢*).

Lemma 4. For a random mapping @, acting on a large enough space, we have
EL(¢") ~ log,(k) — 1

for suitably large k.

We were careful not to state this as “EL(p*) — log, (k)—1 as k — oc”, since for a
fixed space, repeated application of ¢ usually ends in a loop and hence the above
is not true for all k. But as long as k is large enough, but not so large as to reach
close to space size, the above should be true. We have no proof for this lemma,
but experimental results given in Table 3 supports this very strongly The table
was created using Lemma 3, which allows us to assume EL(¢*) ~ —log, (1 —)
for random mappings acting on large spaces.

k ||1|2|22|23|24|25|26|27|28|29|210|211|212
#[|0.66]1.09]1.68]2.40(3.234.13[5.07]6.04|7.02(8.011]9.006]10.003]11.0016

Table 3. Entropy loss estimate for iterated random mapping

Based on Lemma 4, we may say that after 2%° iterations of f, the internal
state loses 39-bit entropy.

4.4 Test data
Let us calculate the entropy of Image(f). Going back to Table 1, one can assume

307988 .9160 _ 9158.23
920
internal states never appear as image point under f. Probability of any one of
these 2158:23_many states to be equal to a randomly produced image point under
fisO.

Similarly, 2'58-70 ~ 122017 . 9160 internal states have exactly one pre-image
under f. If we fix any one of these and are given a randomly produced image
point under f, then the two are equal with probability roughly 1/2'6°. There are
2158.09 , 279418 . 9160 jnternal states with two f pre-images. If we fix any one of
these, the probability of it coinciding with a randomly produced f-image state
is 2/2%60, Finally, for 2!53-16 ~ 921% - 2160 states, their probability of coinciding
with a randomly produced f-image is 4/2160.

The sum of all probabilities

1 2 3 4
158.23 158.79 158.09 153.16
0-2 + —2160 -2 + — 2160 -2 + —2160 -0+ —2160 2 ~ 0.99894

is not exactly 1, but we shall ignore this.
Placing all information into the definition (7) for entropy gives us

1 1 2 2
H(Image(f)) {2158 o 2160 IOgQ(W) 2158 09 2160 10g2(2160)

3 3 153.16 4 4
+ 05760 1082(5765) 27 5760 10%2(@)}

{279 18 0 9 53

=160 — 2108, 2+ 5531og, 3 + —5-4log, 4}

~ 160 — 0.6028.

We have calculated the entropy loss EL(f) = 0.6028 of state update function f.
As expected, this is greater than the rough measure EL(f) = 0.5017, which we
obtained earlier in Section 4.2. This process can be repeated for f o f to obtain
EL(f o f) = 0.9913.

Let us denoting k-many compositions of f as f¥. Through the method just
explained, we explicitly obtained EL(f*) values for many values of k and we also
did a similar job to find EL(f*). The results are given as a graph in Figure 1. The
graph shows four curves, namely, three rough entropy measures EL(f*), EL(*),
EL((f o f)*), and the curve EL(f*), which we are most interested in. The graph
for EL(¢*) is obtained through calculation, rather than experiment. The z-axis
gives the logarithm of k-values and the y-axis gives the entropy loss in bits. The
curve EL((f o f)*) is a left-shift of EL(f*) by one. As was argued in Section 4.2,
we can confirm that the curve EL(¢*), which gives a rough measure of entropy
loss for random mappings, sits comfortable in between respective curves for f
and fo f.

We can also see that (by accident) the real entropy loss EL(f*) for state
update function follows the rough entropy loss EL(*) of random mapping very
closely. Hence our use of EL(¢*) to approximate EL(f*) in Section 4.3 is justified
further. In any case, there is less than 1-bit entropy loss difference between any
of the four graphs, and the exact value is less important than the fact that all
graphs show logarithmic growth with respect to k.

In gathering the data points, we started out with 22° independently chosen
random states for small values of k, but with the increase of k, larger such
samplings were needed to obtain a meaningful figure. Also, as getting a data
point became increasingly time consuming with the growth of k, we worked for
data points that are farther apart for these large k. To obtain a feel for how
reliable our data points were, we did multiple tests with the same k. Multiple
tests indicated that our EL(f) data points were accurate enough for multiple
points to be almost undistinguishable on the graph, but this was not so for
EL(f) data points.

4.5 Security implications

We have, so far, confirmed that the state update function of MICKEY behaves
more like a random function than a bijection on the internal state. This, in itself,
is not a desirable property for a state update function.

Turning to more specific numbers, first recall that the designers restricted
keystream use to 240 bits for each key-IV setup. From discussions of Section 4.2,
we can expect EL(f(24U)) ~ 39. In plain terms, this means that we can expect
entropy loss of internal state to be equivalent to 39 bits after 240 iterations of the
state update function. Even if you were defending the designers, because f o f
behaves worse than a random mapping, one would have to admit that at least
38-bit entropy is lost. As the internal state started out with 160-bit entropy, at
the end of the keystream of length 24°, state entropy would be equivalent to
about 121 random bits.

. o
—~
S~
ce o o ~ ~ ~
Y = = =
. —~ S =
T ~— ~—
* @ _L _L — _L
. [C0 (<2 QN Al (€A}
oe @ = o . °
L]
< e oo
oe
<e an
Qe
oe @
oe
e @
oe
ve ©
°
© @0
°
<© @0
°
© o=
1 1 1 1 1 1 1 1 1 1
S o o ~ © 0 < e ™ —

sso] Adoxyuyg

11

10

Tterations (log, k)

Fig. 1. Entropy loss under iteration

Now, suppose we collect long keystreams, each of length 240 — ¢, where ¢
is small relative to 240, for example, ¢ = 229. We pair these keystreams with
their respective final internal states. If we collect 260-*-many of these, due to the
birthday paradox, we are highly likely to find two keystreams with identical final
internal states. Once the states are equal, keystreams of length € produced from
that point on will also be equal.

In short, if we collect large number of long MICKEY keystreams, we are
bound to find two keystreams that started out differently, but ends the same,
irrespective of whether the collected keystreams correspond to one or multiple
keys. This may not qualify as an attack, but does show that using multiple long
keystreams from MICKEY can be dangerous.

The huge number 20 may give a wrong impression about the related threat

level. Notice that any (k 4+ 1)-th iterate image state is also a k-th iterate image
state. This observation implies that multiple shifts of a single keystream all
qualify as a (slightly shorter) long keystream appearing in the above argument.

Let us try some more explicit numbers. One keystream of length 240 can be
shifted multiple times to produce (23 — £)-many keystreams, each of length (at
least) 239 4+ . A gathering of 222-many 2%°-length keystreams can thus also be
interpreted as about 26! ~ 222 . (239 — ¢) keystreams of length 23° + ¢. Since
entropy of state after 237 iterated state updates is about 122, one could say that
we are likely to obtain a matching state.

In reality, more than 222 base keystreams of length 240 will need to be gath-
ered before a match is found. This is because no matching will occur within
the set of shifted sequences originating from the same base sequence. The exact
analysis of these numbers seems to be complicated, but it is clear that the threat
caused by state entropy loss cannot be dismissed lightly.

So far, we have stated the entropy loss as an undesirable property, rather
than as an attack on MICKEY. But if one wants to consider the related data
complexity, it should be noticed that the whole keystream need not be stored.
Only the ending parts are used in looking for a match. The actual amount of
data that needs processing is C' - 2695 ~ 268 where constant C is the number of
keystream bits needed to reliably distinguish between different states. It is not
totally clear as to which number should be taken as data complexity.

To develop a concrete attack scenario, it could be worthwhile to think about
the case where an appropriate keystream set is pre-generated and compared with
target online data.

Before ending this section, we add a few words of explanation on the use of
EL versus EL. Some might believe that EL, which corresponds to iterated image
point counts, should be considered in these arguments. The difference between
the two measures is whether the uneven distribution within the image set was
taken into account. Given two sets of the same size, a collision is more likely
to appear in the one with a more uneven probability distribution. Hence, the
distribution within the set does matter in these arguments, with the conclusion
that EL(f), rather than EL(f), is the correct measure to look at.

5 A small class of weak keys

Let us first quote from the MICKEY specification [4].

There is a small class of arguably weak keys for MICKEY: namely, those
(K,IV), pairs for which the state of R after loading is all zeroes. It is
clear that, if an attacker assumes that this is the case, she can readily
confirm her assumption and deduce the remainder of the generator state
by analysing a short sequence of keystream. But, because this can be
assumed to occur with probability roughly 28° — the same probability
as for any guessed secret key to be correct — we do not think it necessary
to prevent it (and so in the interests of efficiency we do not do so).

Notice that the all-zero state of register R is fixed under either value of its control
bit.

Given the full specification for S, one can easily check that the following is
an S-state which is fixed under either value of its control bit. The state is given
in hexadecimal notation and the left end corresponds to sq while the right end
corresponds to S7g.

10£0 02a1 000b 853f fff8

This fixed S-state has been obtained as follows.2 The clocking for register S
works in a way so that fixing just two cell values s7g and s79 together with the
control bit determines updated s7g cell value completely. Since we are looking
for a fixed state, we try out all four possible values of (s7s,s79) cell pairs and
check if the updated s7g9 is equal to the chosen s79. Only one of the four pairs
satisfies this for both control bit values. Then successive choice of s; cell value
(1 < 78) determines updated s;4+1 and we choose these so that the new s;11 is
equal to the old s;41, which has already been determined.

If register S is ever set to the above fixed S-state, since the content of cell sq is
0, the keystream produced will be equal to whatever register R, with its irregular
clocking, produces. Those (key, IV) pairs, which sets register S to the above state
after loading, forms a weak key class in the sense given by the designers. The
probability of encountering one of these at random is roughly 2789,

We now have two weak key classes, and we can expect the probability of
encountering one of these to be roughly® 277°, which is strictly greater than
2780, Deciding not to prevent either of these in view of efficiency will be harder
to justify.

6 Conclusion

We have studied security aspects of a recent streamcipher proposal MICKEY.
Three undesirable properties have been discovered.

2 Tt turns out that the above S-state is the unique state fixed under both control bit
values.

3 Exact expectation value would be 277 — 27160,

1. Time-memory-data tradeoff is applicable with online complexity smaller
than exhaustive key search. Pre-computation needed is more demanding than
exhaustive search but this could be reachable in the near future.

2. The internal state loses entropy with repeated applications of the state up-
date function, resulting in keystreams that start out differently but merge
together towards the end.

3. There exists a small family of weak keys.

The first of these may be removed through internal state size increase, or with a
more complicated output filter. But neither method would be desirable in view
of efficiency. The second weakness seems more fundamental to the design of
MICKEY and does not seem to be easy to fix. The third can be avoided easily
with small extra cost.

It is plausible to say that none of these weaknesses are absolutely critical,
but these must be taken into account by anyone intending to use MICKEY.

References

1. ECRYPT, Call for stream cipher primitives. Version 1.3, April. 2004.
http://wwu.ecrypt.eu.org/stream/

2. ECRYPT, ECRYPT yearly report on algorithms and keysizes (2004). Version 1.1,
March, 2005. Available from http://wuw.ecrypt.org.

3. S. H. Babbage, Improved exhaustive search attacks on stream ciphers. European
Convention on Security and Detection, IEE Conference publication No. 408, pp.
161-166, IEE, 1995.

4. S. Babbage and M. Dodd, The stream cipher MICKEY (version 1). ECRYPT
Stream Cipher Project Report 2005/015, 2005. Presented at Symmetric Key En-
cryption Workshop, Arhus, Denmark, May, 2005. Available from
http://wwu.ecrypt.org/stream/.

5. A. Biryukov and A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream
ciphers. Asiacrypt 2000, LNCS 1976, pp. 1-13, Springer-Verlag, 2000.

6. A. Biryukov, A. Shamir, and D. Wagner, Real time cryptanalysis of A5/1 on a PC.
FSE 2000, LNCS 1978, pp. 1-18, Springer-Verlag, 2001.

7. P. Flajolet and A. M. Odlyzko, Random mapping statistics. Eurocrypt ‘89, LNCS
434, pp. 329-354, Springer-Verlag, 1990.

8. J. Dj. Goli¢, Cryptanalysis of alleged A5 stream cipher. Eurocrypt’97, LNCS 1233,
pp. 239-255, Springer-Verlag, 1997.

9. M. E. Hellman, A cryptanalytic time-memory trade-off. IEEE Trans. on Infor.
Theory, vol 26, pp. 401-406, 1980.

A General argument for TMD tradeoffs with BSW
sampling

Let us work with BS-tradeoff with BSW sampling in a more general way to find
the tradeoff point of minimal online complexity. Notation of Section 3 will be
used.

Set N' = |X’| = |Y'| = R-N so that given D random target points, D' = R-D
of them will belong to). The tradeoff curve will be

TM?*D”? =N, P=N'/D', with 1<D?<T,
or equivalently,
TM?D?*=N? P=N/D, D' =RD with 1<D?*<T. (10)
A typical point on this curve is
T=M=D=N?, D' =R=N35, and P=N§. (11)

Compared with (3), we have achieved lowered time and memory complexity at
the expense of higher data complexity. In all, the overall online complexity has
dropped from N 2 to N5. Notice that pre-computation time has decreased also.

We add a word of caution, as the complexities T and P of (3) are counted in
terms of number of applications of f, where as those of (11) refer to applications
of f', which is just f on smaller space, composed with h appearing in (6). So if the
efficiency of function h is not comparable to that of f, the two time complexities
cannot be compared in their raw form. Of course, similar remarks apply to M,
with (11) at an advantage this time, but its importance is smaller.

B MICKEY-128

It is quite clear that arguments we’ve given for MICKEY should be applicable
in much the same way to its 128-bit security cousin MICKEY-128. We briefly
write down the respective results concerning TMD tradeoff and weak keys. Due
to lack of time and computational power, we have not been able to study the
entropy loss of MICKEY-128 state under its update function.

B.1 TMD tradeoff with BSW sampling

TMD tradeoff is applicable to MICKEY-128 in the same way as with MICKEY.
Through BSW sampling, the search space size is reduced from 22°6 to 2213,
Keystream segments starting with 43-many zero bits are the data we should be
looking for.

A typical tradeoff point would be

T=29 AM=2" D=2 with P =2,

The D above refers to filtered data, and the total data needed before filtering
step is 296.
The tradeoff point giving minimal pre-computation time is

T=2%" M=2% D=2%% with P=2"""%

Again, the pre-filter data requirement is 21°6-3.

B.2 A small class of weak keys

There exists one fixed S-state which remains fixed under either value of the con-
trol bit. It is given below in hexadecimal notation with the left end corresponding
to sp-

05ff d071 d020 c3fc Oclc 037f 1£3f ef98

This S-state gives a small family of weak keys which may be encountered at
random with probability 27128,

