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Abstract 
Grain is one of the simplest ECRYPT Stream Cipher project 
Candidates which deals with key and IV of length 80 and 64 
respectively. Using the linear sequential circuit approximation 
method, introduced by Golic in 1994, we derive a linear function of 
consecutive keystream bits which is held with correlation coefficient 
of about 2-63.7. Then using the concept of so-called generating 
function, we turn it into a linear function with correlation coefficient 
of 2-29 which shows that the output sequence of Grain can be 
distinguished from a purely random sequence using about O(261.4) 
bits of the output sequence with the same time complexity. A 
preprocessing phase for computing a trinomial multiple of a certain 
primitive polynomial with degree 80 is needed which can be 
performed using time and memory complexities of O(240). 
Keywords.  Stream Cipher, Distinguishing Attack, Linear Sequential 
Circuit Approximation, Grain, ECRYPT, Security Evaluation. 

1.  Introduction 

Golic [2,3] has shown that for a binary keystream generator with M bits of memory 
whose initial state is uniformly chosen in a random way, there exists a linear function of 
at most M+1 consecutive output bits which is an unbalanced function of the initial state 
variables. He also developed an effective method for the linear model determination 
based on linear sequential circuit approximation of autonomous finite-state machines. 
The linear function of consecutive output bits produces an unbalanced sequence to which 
one can apply the standard chi-square frequency statistical test. The test is successful if 
and only if the length of the sequence is chosen to be inversely proportional to the square 
of the correlation coefficient1. If the key length is k, the statistical weakness is effective if 

                                                 
1 The correlation coefficient of the random variable x is defined as ε = 1 – 2Pr{x = 1}. 



and only if the correlation coefficient is greater than 2-k/2. In this paper, using Golic’s 
method, we extract the linear sequential circuit approximation of the Grain stream cipher 
[4] - one of the simplest ECRYPT Stream Cipher project Candidates [1]. We first derive 
a linear function of consecutive output bits which is held with correlation coefficient of 
about 2-63.7. Then using the generating function concept, we turn it into a linear function 
with correlation coefficient of about 2-29. A chi-square test could be applied to distinguish 
the output sequence of Grain from the output sequence of a truly binary random number 
generator. The required time and data complexity is O(261.4) for achieving the 
distinguishing error probability equal to 0.001. 
The paper is organized as follows. In Sections 2 and 3 a brief description of the Grain 
stream cipher and linear sequential circuit approximation are respectively given. The 
linear sequential circuit approximation of Grain is derived in Section 4. The details of the 
attack come in Section 5 and the paper is concluded in Section 6.  

2.  A Brief Description of Grain 

Grain [4] is a very simple hardware oriented synchronous stream cipher proposed as a 
candidate to the ECRYPT Stream Cipher Project [1]. Grain consists of an LFSR and a 
NFSR of length 80 and generates its key stream from an 80-bit secret key and a 64-bit 
initial value (IV). The proposed design uses an 11-input Boolean function g as the 
feedback function of the NFSR, and a 5-input Boolean function h to filter the contents of 
five fixed cells of LFSR and NFSR. The output of the feedback function is masked with 
the output bit of the LFSR to update the NFSR and the output of the filter function is 
masked with the output bit from the NFSR to produce the keystream zt, see Figure 1. 

 
Figure 1. Schematic of the Grain stream cipher. 

A complete description can be given by the following pseudo-code for producing N bits 
of the keystream. The initial state of LFSR and NFSR denoted by (s0, s1,…, s79) and (b0, 
b1,…, b79) are determined through a certain key-IV setup procedure [4].  
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for t = 1 to N do 
ts ← s0 + s13 + s23 + s38 + s51 + s62 
tb ← s0 + g(b63, b60, b52, b45, b37, b33, b28, b21, b15, b9, b0) 
zt ← b0 + h(b63, s64, s46, s25, s3) 
(s0, s1, …, s79) ← (s1, s2, …, s79, ts) 
(b0, b1, …, b79) ← (b1, b2, …, b79, tb) 

end for 

The g and h functions come in the following. 

h(x4, …, x0) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 +  
x0x2x4 + x1x2x4 + x2x3x4.     (2-1) 

g(x10, …, x0) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x1 
+ x0 + x10x9 + x6x5 + x2x1 + x9x8x7 + x5x4x3 + 
x10x7x4x1 + x9x8x6x5 + x10x9x3x2 + x10x9x8x7x6  
+ x5x4x3x2x1 + x8x7x6x5x4x3.    (2-2) 

3.  A Brief Description of the Linear Sequential Circuit Approximation 

Keystream generators for stream cipher applications can generally be realized as 
autonomous finite-state machines whose initial state and may also the structure depend 
on a secret key. A binary autonomous finite-state machine is defined by  

St = F(St-1)        (3-1) 1≥t

zt = f(St)             (3-2) 1≥t

where F: GF(2)M → GF(2)M is the next-state vector Boolean function, f: GF(2)M → GF(2) 
is the output Boolean function, St = (st,1, st,2, …, st,M)T is the state vector at time t, S0 = 
(s0,1, s0,2, …, s0,M)T is the initial state, and {zt} is the output keystream sequence (the 
superscript T denotes the matrix transposition operation). 
We just consider the case that the key merely controls the initial state, and therefore, next 
state function and output function are known.  
Golic has shown that there exists a linear function of at most M+1 consecutive output bits 

which is an unbalanced function of the initial state variables. Its 
probability distribution is independent of time t if the next state function is balanced. This 
statement has been proposed as a Theorem in [3], which is mentioned in the following. 

),...,,( 1 Mttt zzzL ++

Theorem Let the next-state function of a binary autonomous finite state machine with M 
bits of memory be balanced. Then there exists a linear function L of at most M+1 
consecutive output bits which is an unbalanced function of the initial 
state variables for each . Moreover, the correlation coefficient between 

 and the constant zero function is the same for each t. 

),...,,( 1 Mttt zzzL ++

1≥t
),...,,( 1 Mttt zzzL ++
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The linear function L of consecutive output bits produces an unbalanced sequence to 
which one can apply the standard chi-square frequency statistical test to make a 
distinguishing attack. The test is successful if and only if the length of the sequence is 
chosen to be inversely proportional to the square of the correlation coefficient. If the key 
length is k, the statistical weakness is effective if and only if the correlation coefficient is 
greater than 2-k/2. 
Golic has also developed an efficient procedure for finding unbalanced linear functions of 
the output which is based on the linear sequential circuit approximation approach. To this 
end, he first decomposes the output Boolean function and each of the Boolean functions 
in the next-state function of the keystream generator into the sum of linear functions and 
an unbalanced Boolean function. Then, by virtue of the obtained linear approximations, 
the basic equations (3-1) and (3-2) are put into the following form. 

)( 11 t-t-t SASS Δ+=       (3-3) 1≥t

)( ttt SBSz γ+=       (3-4) 1≥t

where, considering St as an M×1 vector, A is an M×M matrix and B is a 1×M vector, Δ is 
an M×1 noise vector and γ  is a scalar noise component. 
By using the generating function technique, Golic then solves the linear recurrence 
equations and thus reaches to his desire, that is, a linear function of at most M+1 
consecutive output bits that is expressed as the sum of unbalanced functions of the initial 
state variables. He shows that the linear function corresponds to the minimal polynomial2 
of A, the state transition matrix of the linear sequential circuit.  
The next state function and the output function of the Grain are independent of the secret 
key. The balance condition of next state function is also well satisfied. Thus, its linear 
sequential model can be investigated.  

4.  Linear Sequential Circuit Approximation of Grain 

In this Section, we derive the linear sequential circuit approximation of the Grain stream 
cipher from basis. For the Grain stream cipher we have M = 160. Let St be an 160 bit 
binary column vector which contains the state of LFSR and NFSR of Grain at time t, that 
is (s0, s1,…, s79, b0, b1,…, b79)T in the pseudo-code introduced in Section 2. The function 
g is the only nonlinear part of the next-state function. The filter function h is also 
nonlinear.  We utilize the linear approximation 001010010, ),,( xwxwxxL wg ++= LL  for the 
feedback function g and linear function 004404, ),,( xvxvxxL vh ++= LL  for the filter 
function h. Using these decompositions of g and h functions, the linear approximations 
(3-3) and (3-4) for the Grain could be written as follows  

tt-t HδASS += 1  t≥1     (4-1) 

                                                 
2 The minimal polynomial of a given square matrix A, is the least degree non-zero polynomial 

where . Conceptually, it is assumed that and similarly, ∑
=

=
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k
k xx

0

)( ϕϕ ∑
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==
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k
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0

0)( ϕϕ 10 =x IA =0  

where I is the identity matrix whose dimension is the same as A. 
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ttt BSz γ+=   t≥1     (4-2) 

where, H = [hi] is a 160 bit binary column vector with all entries equal to zero except 
h160, tδ  and tγ  are respectively the scalar noise terms corresponding to the linear 
approximation Lg,w of  g and Lh,v of  f , and A and B are as follows. 
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and 

30251462643143480 eveveveveveB +++++=   (4-4) 

where ei (0≤ i ≤159) denotes the (i+1)th row of the 160×160 identity matrix and  

800891952101310841135

1176125713281409143100

ewewewewewew
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  (4-5)  

Using the decomposition (4-1), it then follows that St satisfies the following relation. 
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for . 1≥t
Multiplying both the most right and the most left sides of (4-7) by B and using (4-2), we 
have 
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where 
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τm

r

r
τrτ ∑
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  ϕ      (4-9) 

are scalar binary values for .  , ..., m, τ 10=
The following relation which is the same as (4-8) is what we were looking for.  

∑∑∑
=

+
=

+
=

+ +=
m

τ
τtτ

m

k
ktk

m

k
ktk δcz

000

γϕϕ     (4-10) 

Note that the coefficients ϕk ( mk ≤≤0 ) depend on the coefficients wi ( ) and 
the coefficients cτ  (

100 ≤≤ i
m≤≤τ0 ) depend on both the coefficients wi ( ) and vj 

( ). 
100 ≤≤ i

40 ≤≤ j

5.  Details of the Attack 

5.1. Generating Function Concept 

Every linear function of a given sequence can be defined as a polynomial in the 
generating function domain. Let {at} be an arbitrary binary sequence, and let {bt} be a 

linear function of {at} defined by . In generating function domain, the 

linear function  is denoted by 

∑
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tt p(D)ab =  where . It can 

be easily shown that for an arbitrary polynomial k(x) we have 
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tt p(D)aDkbDk )()( = . 

5.2. Correlation Coefficient Analysis 

In general, the sum of unbalanced Boolean functions can be balanced. However, Golic 
has proved that if the functions are picked independently at random, then with high 
probability their sum is unbalanced with the correlation coefficient very close to the 
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product of the individual correlation coefficients [3]. Using this fact, it can be inferred 

that the relation (4-10) produces an unbalanced sequence  if the errors of 

both linear approximation Lg,w and Lh,v of g and h have non-zero correlation coefficients.  

∑
=
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k
ktkt zu

0

ϕ

In the generating function domain, introduced in Section 5.1, the relation (4-10) can be 
rewritten in the following way. 

tttt DcDzDu δγϕϕ )()()( +==     (5-1) 
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The weight of a given polynomial k(x), denoted by wh(k), is defined as the number of its 
non-zero coefficients. Let wg ,ε  and vh,ε  denote the correlation coefficients of tδ  and tγ - 
the noise terms corresponding to the linear approximation Lg,w of  g and Lh,v of  f. Under 
the independence assumption of the noise terms in (5-1), the correlation coefficient of ut 
denoted by vw,ε is equal to .  )(

,
)(

,,
ϕεεε wh

vh
cwh

wgvw ⋅=
We carried out exhaustive search over all of the 211×25 possible choices for w and v to 
find the one with the greatest correlation coefficient. The greatest correlation coefficient 
is achieved by the following choice for w and v, 

]100[][ 010 LL == www     (5-2) 

]01010[][ 04 == vvv L     (5-3) 

in accordance with the linear approximations Lg,w(x10, …, x0) = x0 and Lh,v(x4, …, x0) = x3 
+ x1 for g and h respectively. The correlation coefficient of noise terms corresponding to 
these linear approximations are 256/5, =wgε  and 4/1, =vhε . The corresponding 

)(xϕ and  are as follows. )(xc

ϕ(x) = 1 + x13 + x23 + x38 + x51 + x62  

+ x93 + x103 + x118 + x131 + x142 + x160   (5-4) 

c(x) = x + x14 + x24 + x39 + x52 + x63 + x81   (5-5) 

Since wh(ϕ) = 12 and wh(c) = 7,  the corresponding correlation coefficient of ut is equal 
to . The standard chi-square frequency statistical test can 
then be applied to {ut} to distinguish this sequence from a purely random binary 
sequence. The distinguishing error probability is less than about 10-3, if the segment 
length is about . The computational complexity of processing this amount 
of keystream is O(2130.8) which is much higher than the exhaustive key search O(280). In 
the next Section we explain how to achieve a sequence with correlation coefficient 
greater than 2-40. 

7.63712
, 2)256/5()4/1( −≈=vwε

8.1302
, 2/10 ≈vwε
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5.3.  Linear Equation with Greater Correlation Coefficient  

Given a linear equation of consecutive output bits of the form (5-1), linear equations with 
greater correlation coefficients may be found using the generating function concept. To 
this end, we must multiply both sides of (5-1) by an appropriate polynomial k(D) to 
obtain 

tt

ttt

DcDkDDk
zDDkuDku

δγϕ
ϕ

)()()()(
)()()(*

+=
==

Δ

 

such that the correlation coefficient of  is greater than that of {ut}. The less wt(kϕ) 
and wt(kc) are, the greater the correlation coefficient of  will be. In general, it is not 
easy to manage to keep both wt(kϕ) and wt(kc) low. However, for the aforementioned 
values of w and v in (5-2) and (5-3), the corresponding polynomials 

}{ *
tu

}{ *
tu

)(xϕ  and  in (5-
4) and (5-5) have very special forms and can be factorized in the following way. 

)(xc

ϕ(x) = (1 + x80)(1 + x13 + x23 + x38 + x51 + x62 + x80) (5-6) 

c(x) = x(1 + x13 + x23 + x38 + x51 + x62 + x80)  (5-7) 

Therefore, trying to find k(x) is much easier in this case. Suppose that 
 is a trinomial multiple of p(x) where  ),1(  ,1)(* tb x  x   xp tb ≤≤++=

p(x) = 1 + x13 + x23 + x38 + x51 + x62 + x80   (5-8) 

Then choosing )()()( * xpxpxk =  leads to 
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ttt

DDpDpD
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*80*
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If b = 80 then , otherwise . In the worst 
case, that is b ≠ 80, the correlation coefficient of  is equal to 

. Therefore, the required output length and computational time 
complexity for distinguishing the Grain output sequence from a purely random sequence 
with error probability less than 10-3 is about . 

4))()1(( *80 =+ xpxwh 6))()1(( *80 =+ xpxwh
}{ *

tu
2936 2)256/5()4/1( −≈=ε

4.612 2/10 ≈ε

Remark. The problem of finding a low weight multiple of a randomly chosen irreducible 
polynomial of degree n has been well considered in [5] and [6]. In sort, a trinomial 
multiple of degree about 2n/2 could be found using O(2n/2) time and space. Therefore, we 
expect that the required trinomial multiple  of the primitive polynomial  be 
found using time and memory complexities of O(240). 

)(* xp )(xp
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6.  Conclusion 

In this paper using the forgotten linear sequential circuit approximation method, we 
mounted a distinguishing attack on Grain which needs about O(261.4) bits of the 
keystream. A preprocessing phase for computing a trinomial multiple of a certain 
primitive polynomial with degree 80 is also needed which can be performed using O(240) 
time and space. 
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