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Abstract

Grain is one of the simplest ECRYPT Stream Cipher project
Candidates which deals with key and IV of length 80 and 64
respectively. Using the linear sequential circuit approximation
method, introduced by Golic in 1994, we derive a linear function of
consecutive keystream bits which is held with correlation coefficient
of about 27, Then using the concept of so-called generating
function, we turn it into a linear function with correlation coefficient
of 2% which shows that the output sequence of Grain can be
distinguished from a purely random sequence using about O(2°')
bits of the output sequence with the same time complexity. A
preprocessing phase for computing a trinomial multiple of a certain
primitive polynomial with degree 80 is needed which can be
performed using time and memory complexities of O(2*").
Keywords. Stream Cipher, Distinguishing Attack, Linear Sequential
Circuit Approximation, Grain, ECRYPT, Security Evaluation.

1. Introduction

Golic [2,3] has shown that for a binary keystream generator with M bits of memory
whose initial state is uniformly chosen in a random way, there exists a linear function of
at most M+1 consecutive output bits which is an unbalanced function of the initial state
variables. He also developed an effective method for the linear model determination
based on linear sequential circuit approximation of autonomous finite-state machines.
The linear function of consecutive output bits produces an unbalanced sequence to which
one can apply the standard chi-square frequency statistical test. The test is successful if
and only if the length of the sequence is chosen to be inversely proportional to the square
of the correlation coefficient'. If the key length is k, the statistical weakness is effective if

! The correlation coefficient of the random variable X is defined as =1 — 2Pr{x =1}.



and only if the correlation coefficient is greater than 252 n this paper, using Golic’s
method, we extract the linear sequential circuit approximation of the Grain stream cipher
[4] - one of the simplest ECRYPT Stream Cipher project Candidates [1]. We first derive
a linear function of consecutive output bits which is held with correlation coefficient of
about 27, Then using the generating function concept, we turn it into a linear function
with correlation coefficient of about 27%°. A chi-square test could be applied to distinguish
the output sequence of Grain from the output sequence of a truly binary random number
generator. The required time and data complexity is O(2°'*) for achieving the
distinguishing error probability equal to 0.001.

The paper is organized as follows. In Sections 2 and 3 a brief description of the Grain
stream cipher and linear sequential circuit approximation are respectively given. The
linear sequential circuit approximation of Grain is derived in Section 4. The details of the
attack come in Section 5 and the paper is concluded in Section 6.

2. A Brief Description of Grain

Grain [4] is a very simple hardware oriented synchronous stream cipher proposed as a
candidate to the ECRYPT Stream Cipher Project [1]. Grain consists of an LFSR and a
NFSR of length 80 and generates its key stream from an 80-bit secret key and a 64-bit
initial value (IV). The proposed design uses an 1l-input Boolean function g as the
feedback function of the NFSR, and a 5-input Boolean function 4 to filter the contents of
five fixed cells of LFSR and NFSR. The output of the feedback function is masked with
the output bit of the LFSR to update the NFSR and the output of the filter function is
masked with the output bit from the NFSR to produce the keystream z;, see Figure 1.
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Figure 1. Schematic of the Grain stream cipher.

A complete description can be given by the following pseudo-code for producing N bits
of the keystream. The initial state of LFSR and NFSR denoted by (so, $1,..., $79) and (b,
bi,..., byy) are determined through a certain key-IV setup procedure [4].



fort=1to N do
Iy <= S0+ 813 T 523 8538 T 551 + 862
ty <= 5o + g(be3, beo, bs2, bas, b37, b33, bag, ba, bis, bo, by)

z; <= bo + h(be3, Sea, S46, S25, S3)

(80, S15 +-+r 879) <= (S1, S2, .., 879, L5)
(bo, b1, ..., b79) <= (b1, by, ..., byo, tp)
end for

The g and /4 functions come in the following.

h(Xa, ..., Xo) = X1 + X4 + Xox3 + X203 + X3x4 + Xox1x2 + Xox2x3 +
XoX2X4 T X1X0X4 + X2X3X4. (2-1)
g(x10, .5 X0) =X10 T X9 + X5+ X7+ X6 T X5 T X4 T X3+ X2 + X3

+ Xo + X10X9 T Xex5 + Xox1 T Xoxgx7 + X5x4x3 +
X10X7X4X1 T X9XgX6X5 1 X10X9X3X2 T X10X9X8X7X6
+ X5X4X3X0X] + X§X7X6X5X4X3. (2-2)

3. A Brief Description of the Linear Sequential Circuit Approximation

Keystream generators for stream cipher applications can generally be realized as
autonomous finite-state machines whose initial state and may also the structure depend
on a secret key. A binary autonomous finite-state machine is defined by

Si=F(S.) t>1 (3-1)
Z=fS) t=1 (3-2)

where F: GF(2)" — GF(2)" is the next-state vector Boolean function, £ GF(2)” — GF(2)
is the output Boolean function, S; = (s.1, S12, ..., s,,M)T is the state vector at time ¢, Sy =
(50,15 $025 -5 so,M)T is the initial state, and {z;} is the output keystream sequence (the
superscript © denotes the matrix transposition operation).

We just consider the case that the key merely controls the initial state, and therefore, next
state function and output function are known.

Golic has shown that there exists a linear function of at most M+1 consecutive output bits
L(z,z,,,...2,,,)which is an unbalanced function of the initial state variables. Its
probability distribution is independent of time t if the next state function is balanced. This
statement has been proposed as a Theorem in [3], which is mentioned in the following.
Theorem Let the next-state function of a binary autonomous finite state machine with M
bits of memory be balanced. Then there exists a linear function L of at most M+1
consecutive output bits L(z,,z,,,,...,Z,,,,) which is an unbalanced function of the initial
state variables for each ¢>1. Moreover, the correlation coefficient between
L(z,,z,,,.--,2,,, ) and the constant zero function is the same for each 7.



The linear function L of consecutive output bits produces an unbalanced sequence to
which one can apply the standard chi-square frequency statistical test to make a
distinguishing attack. The test is successful if and only if the length of the sequence is
chosen to be inversely proportional to the square of the correlation coefficient. If the key
length is £, the statistical weakness is effective if and only if the correlation coefficient is
greater than 2k,

Golic has also developed an efficient procedure for finding unbalanced linear functions of
the output which is based on the linear sequential circuit approximation approach. To this
end, he first decomposes the output Boolean function and each of the Boolean functions
in the next-state function of the keystream generator into the sum of linear functions and
an unbalanced Boolean function. Then, by virtue of the obtained linear approximations,
the basic equations (3-1) and (3-2) are put into the following form.

S =4S, +A(S,) t>1 (3-3)
z,=BS +y(S) t=1 (3-4)

where, considering S; as an Mx1 vector, 4 is an MxM matrix and B is a 1xM vector, A is
an Mx1 noise vector and y is a scalar noise component.

By using the generating function technique, Golic then solves the linear recurrence
equations and thus reaches to his desire, that is, a linear function of at most M+1
consecutive output bits that is expressed as the sum of unbalanced functions of the initial
state variables. He shows that the linear function corresponds to the minimal polynomial®
of A4, the state transition matrix of the linear sequential circuit.

The next state function and the output function of the Grain are independent of the secret
key. The balance condition of next state function is also well satisfied. Thus, its linear
sequential model can be investigated.

4. Linear Sequential Circuit Approximation of Grain

In this Section, we derive the linear sequential circuit approximation of the Grain stream
cipher from basis. For the Grain stream cipher we have M = 160. Let S, be an 160 bit
binary column vector which contains the state of LFSR and NFSR of Grain at time ¢, that
is (S0, S1,-.., S79, bo, b1,..., b79)T in the pseudo-code introduced in Section 2. The function
g is the only nonlinear part of the next-state function. The filter function % is also
nonlinear. We utilize the linear approximation L, (X9, **,X,) = WoX;q + - + WX, for the

feedback function g and linear function L, (x,,--,X))=v,x, +---+v,x, for the filter
function 4. Using these decompositions of g and % functions, the linear approximations
(3-3) and (3-4) for the Grain could be written as follows

S =AS, +Hs, — t=1 (4-1)

2 The minimal polynomial of a given square matrix A, is the least degree non-zero polynomial

o(x) = Zgokxk where ¢(A4) = ZgakA" =0. Conceptually, it is assumed that x’ =1and similarly, 4°=1
k=0 k=0

where [ is the identity matrix whose dimension is the same as 4.



z,=BS, +7, 1 (4-2)

where, H = [h;] is a 160 bit binary column vector with all entries equal to zero except
hiso, O, and y, are respectively the scalar noise terms corresponding to the linear

approximation L,,, of gand L, of f, and 4 and B are as follows.

A= (4-3)

and
B=ey +v,e,; tVieq +Vv,6, +Viess +V 05 (4-4)
where e; (0< i <159) denotes the (i+1)™ row of the 160x160 identity matrix and

Wy =€)+ W €5 + Woeyyy + Weep3, +W;€,5 +Weey, (4-5)

T W€y 3 T W85 + W3€)) T W,855 + W €4 + W€y

Using the decomposition (4-1), it then follows that S; satisfies the following relation.

t—1
S,=A'S,+ Y AHs,_,, t>1 (4-6)

=0

m

Denote the minimal polynomial of 4 by ¢(x) =Y @x". Since Y ¢, 4" =0, it follows
k=0 k=0

that

t+k-1

Z(DkSHk = Z¢k(At+kSo + ZAIH5t+k—I)
k=0 k=0 =0

m t+k-1

= z(ﬂkAHkSo + 2(% ZAIH5t+k—l
! (k-1 e (4-7)
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for t>1.
Multiplying both the most right and the most left sides of (4-7) by B and using (4-2), we
have

Z@k(zﬁ-k + 7t+k) = Z¢kBSt+k
k=0 k=0

m m-—t

= zz¢r+1BArH5t+r (4-8)
=0 r=0
= créHr
=0
where
A m—t
c, =)@, BAH (4-9)

I
[=1

r

are scalar binary values for =0, 1, ..., m.
The following relation which is the same as (4-8) is what we were looking for.

m m

Z¢kzt+k = Z(Dkywk + Zcr5t+r (4'10)
k=0 k=0 =0

Note that the coefficients ¢ (0 <k <m) depend on the coefficients w; (0<i <10) and
the coefficients ¢, (0<7<m) depend on both the coefficients w; (0<i<10) and v;
(0<j<4).

5. Details of the Attack
5.1. Generating Function Concept

Every linear function of a given sequence can be defined as a polynomial in the
generating function domain. Let {a,} be an arbitrary binary sequence, and let {b,} be a

linear function of {a,} defined by b, =Z p.a

k=0

... - In generating function domain, the

linear function b, = Z p.a,.,. 1s denoted by b, = p(D)a, where P(D)= Z p, D" . It can

k=0 k=0

be easily shown that for an arbitrary polynomial k(x) we have k(D)b, = k(D)p(D)a, .

5.2. Correlation Coefficient Analysis

In general, the sum of unbalanced Boolean functions can be balanced. However, Golic
has proved that if the functions are picked independently at random, then with high
probability their sum is unbalanced with the correlation coefficient very close to the



product of the individual correlation coefficients [3]. Using this fact, it can be inferred

that the relation (4-10) produces an unbalanced sequence u, = Zgosz , if the errors of
k=0

both linear approximation L, and L;, of g and /4 have non-zero correlation coefficients.

In the generating function domain, introduced in Section 5.1, the relation (4-10) can be

rewritten in the following way.

u, = (D(D)Zz = ¢(D)7t + C(D)5z (5'1)

where g(x) =Y @.x" and c(x)=>c.x".
k=0 7=0

The weight of a given polynomial k(x), denoted by wh(k), is defined as the number of its
non-zero coefficients. Let ¢, , and ¢,, denote the correlation coefficients of &, and y,-

the noise terms corresponding to the linear approximation L,,, of g and L;, of f. Under
the independence assumption of the noise terms in (5-1), the correlation coefficient of u,

denoted by ¢, ,is equal tog,,, = g;ﬁi") N

We carried out exhaustive search over all of the 2''x2° possible choices for w and v to
find the one with the greatest correlation coefficient. The greatest correlation coefficient
is achieved by the following choice for w and v,

w=[wg-w]=[0 - 0 1] (5-2)
v=[v,--v,]=[0 1T 0 1 0] (5-3)
in accordance with the linear approximations Ly ,(X10, ..., Xo) = Xo and Ly (X4, ..., Xo) = X3

+ x) for g and 4 respectively. The correlation coefficient of noise terms corresponding to
these linear approximations are &, ,=5/256 and ¢,,=1/4. The corresponding

@(x) and c(x) are as follows.

(o(x)=1+x13+x23+x38+x51+x62

103 118 131 142

i e i e o S (5-4)

c(x)=x+xl4+x24+x39+x52+x63+x8] (5-5)

Since wh(¢) = 12 and wh(c) = 7, the corresponding correlation coefficient of u, is equal
to ¢,,=(1/4)?(5/256)" ~277. The standard chi-square frequency statistical test can

then be applied to {u,} to distinguish this sequence from a purely random binary
sequence. The distinguishing error probability is less than about 107, if the segment
length is about 10/ gi’v ~2""® The computational complexity of processing this amount
of keystream is O(2"**®) which is much higher than the exhaustive key search O(2*°). In

the next Section we explain how to achieve a sequence with correlation coefficient
greater than 2°%.



5.3. Linear Equation with Greater Correlation Coefficient

Given a linear equation of consecutive output bits of the form (5-1), linear equations with
greater correlation coefficients may be found using the generating function concept. To
this end, we must multiply both sides of (5-1) by an appropriate polynomial k(D) to
obtain

u =k(D)u, = K(D)p(D)z,
— K(D)p(D)y, + K(D)e(D)S,

such that the correlation coefficient of {u,} is greater than that of {u,}. The less wt(k)
and wt(kc) are, the greater the correlation coefficient of {u,} will be. In general, it is not

easy to manage to keep both w#(kp) and wt(kc) low. However, for the aforementioned
values of w and v in (5-2) and (5-3), the corresponding polynomials ¢(x) and c¢(x) in (5-
4) and (5-5) have very special forms and can be factorized in the following way.
2(0) = (1 + 301 +x1% + 32 + 33 + x50 4 x2 4 8 (5-6)
c(x) =x(1 +x” +x2 + 8+ 2" + 57 + %) (5-7)
Therefore, trying to find k(x) is much easier in this case. Suppose that
p(x) =1+ x" +x', 1<b<1), is a trinomial multiple of p(x) where

p(X): 1 +xl3+x23+x38+x51 +x62+x80 (5-8)

Then choosing k(x) = p"(x)/p(x) leads to

u; =k(Du, = (D" +1)p"(D)z,
— (D +1)p" (D), + Dp’ (D)5,

If b = 80 then wh((x* +1)p"(x)) =4, otherwise wh((x** +1)p"(x))=6. In the worst
case, that is b # 80, the correlation coefficient of {u} is equal to

&=(1/4)°(5/256) ~ 27 Therefore, the required output length and computational time
complexity for distinguishing the Grain output sequence from a purely random sequence
with error probability less than 107 is about 10/ & ~ 2°'#.

Remark. The problem of finding a low weight multiple of a randomly chosen irreducible
polynomial of degree n has been well considered in [5] and [6]. In sort, a trinomial
multiple of degree about 2"% could be found using 0(2”/ %) time and space. Therefore, we

expect that the required trinomial multiple p (x) of the primitive polynomial p(x) be
found using time and memory complexities of O(2*).



6. Conclusion

In this paper using the forgotten linear sequential circuit approximation method, we
mounted a distinguishing attack on Grain which needs about O(2°'*) bits of the
keystream. A preprocessing phase for computing a trinomial multiple of a certain
primitive polynomial with degree 80 is also needed which can be performed using O(2*°)
time and space.
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