
Practical Attacks on one Version of DICING

Gilles Piret

Ecole Normale Supérieure, Département d’Informatique,
45, Rue d’Ulm, 75230 Paris cedex 05, France

http://www.di.ens.fr/∼piret/

Gilles.Piret@ens.fr

Abstract

DICING is a synchronous stream cipher submitted to the ECRYPT
stream cipher project. Two versions of the cipher actually exist: the
first one can be found in the proceedings of the SKEW conference,
while the second is available from the web site. In this paper we de-
scribe practical distinguishing and key recovery attacks against the first
version. These attacks do not apply as such to the web site version of
DICING.

1 Introduction

The ECRYPT stream cipher project [1] aims at identifying new stream
ciphers that might become suitable for widespread adoption. For this
purpose, a public call for primitives has been made in November 2004.
In May 2005, it resulted in 34 stream cipher submissions.

DICING is one of them. It is based on four Galois-style LFSRs, two
of which are used to clock the other two. While such irregular clocking
is a good means of obtaining non-linearity at a low cost, the security
of primitives based on this principle is often difficult to analyze.

It happens to be two versions of DICING. The first one [2] can be
found in the proceedings of the SKEW conference, that took place in
Åarhus, Denmark, on May 26-27, 2005. The second [3] is available
from the ECRYPT web site; it differs from [2] by several changes to
the output function. In this paper, we are concerned with the security
of the first version. We show that the way variable clocking is applied
in it leads to very serious weaknesses.

2 Notations

Throughout this paper, we use the following notations:

• F2n is the Galois field with 2n elements.

• ⊕ denotes exclusive or, that is bitwise addition.

1



• & denotes bitwise AND.

• ∼X denotes the bit by bit complement of X.

• X � a denotes the right shift of X by a bits.

• X[a, b] denotes the substring of binary string X, going from bit
position a to bit position b.

3 Description of DICING

3.1 State Update Function

The DICING stream cipher is based on four Galois-style LFSRs Γ1, Γ2,
Γ3, Γ4. Let αt ∈ F2127 , βt ∈ F2126 , ωt ∈ F2128 , τt ∈ F2128 denote the state
of LFSR Γ1,Γ2,Γ3,Γ4 respectively. We can represent the elements of
a Galois field of characteristic 2 as polynomials in F2[x]/p(x), where
p(x) is an irreducible polynomial over F2. As an example, αt will be
denoted as αt,126 ·x126⊕αt,125 ·x125⊕ ...⊕αt,0. If the polynomial taken
corresponds to the feedback polynomial of the LFSR, then shifting the
LFSR is equivalent to multiplication by x in F2[x]/p(x). We do not
give the feedback polynomials pi(x) of LFSRs Γi(i = 1...4) here as they
are not relevant for our attacks. Moreover, we often omit the modulo
in our equations, as it is obvious from the context.

LFSRs Γ1 and Γ2 are shifted 8 bits per clock cycle, and are used to
clock the other two LFSRs. More precisely, the state update process
is the following:

1. The last eight bits of αt and βt are stored in dices D′
t and D′′

t :

D′
t = (αt,126, ..., αt,119) ∈ F8

2

D′′
t = (βt,125, ..., βt,118) ∈ F8

2

(1)

Then Γ1 and Γ2 are updated:

αt+1 = x8 · αt mod p1(x)

βt+1 = x8 · βt mod p2(x)
(2)

2. Dt = D′
t ⊕D′′

t , at = Dt&15 ∈ F4
2, bt = Dt � 4 ∈ F4

2

3. Two memories ut, vt ∈ F2128 are updated by XORing the states
ωt and τt to them:

ut = ut−1 ⊕ ωt

vt = vt−1 ⊕ τt

(3)

4. Γ3 and Γ4 are updated by shifting them from 0 to 15 bits de-
pending on the value of at and bt:

ωt+1 = xat · ωt mod p3(x)

τt+1 = xbt · τt mod p4(x)
(4)

2



3.2 Output Function

At each clock cycle, the output function produces a 128-bit value zt,
depending on values ut, vt, D

′
t, D

′′
t . The function used depends on how

D′
t and D′′

t compares:

zt =


C0(ut)⊕ vt if D′

t > D′′
t

C0(vt)⊕ ut if D′
t < D′′

t

ut ⊕ vt if D′
t = D′′

t

(5)

where C0 is a non-linear and key-dependent function.

3.3 Initialization

The initialization of the generator is done in four phases:

1. The key and IV material are used to compute the initial states
α−64, β−64, ω−64, τ−64 of the four LFSRs.

2. The state update function is applied to them 32 times without
output.

3. The resulting state is used to construct the function C0 used in
the output function (see [2] for more details).

4. The state update function is applied another 32 times. We obtain
α0, β0, ω0, τ0, the initial states of Γ1,Γ2,Γ3,Γ4 before keystream
generation.

The key and IV loading proceeds as follows:

1. KI = K ⊕ IV

2. K ′ =

{
KI if K has length 256
KI |(∼ KI) if K has length 128

3. KICS = S0(K ′ ⊕ c), where S0 denotes the parallel application of
a fixed S-box S0 : F28 → F28 and c is a constant.

4. α−64 = KICS [0, 126] β−64 = KICS [128, 253]

5. s =
⊕

0≤i<32 KICS [i]byte ∈ F8
2 σ = (s, s, ..., s) ∈ F256

2

6. KII = S0(KICS ⊕ σ ⊕ (∼ c))

7. ω−64 = KII [0, 127] τ−64 = KII [128, 255]

It is remarkable that knowledge of ω−64 and τ−64 is enough to re-
trieve KI .

4 A Practical Distinguisher

Assume that during cycle t both dices D′
t and D′′

t have the same value.
Due to statistical properties of the LFSRs this event happens exactly
with probability 1/256. Then (at, bt) = Dt = D′

t ⊕D′′
t = 0. Therefore

states ωt and τt do not change during this cycle: ωt+1 = ωt and τt+1 =
τt. It implies ut+1 = ut⊕ωt+1 = ut−1⊕ωt⊕ωt+1 = ut−1 and similarly

3



vt+1 = vt−1. Finally if the output function used is the same for cycles
t− 1 and t+1, we have zt+1 = zt−1. It will happen whenever (D′

t−1 <
D′′

t−1 and D′
t+1 < D′′

t+1), or (D′
t−1 = D′′

t−1 and D′
t+1 = D′′

t+1), or

(D′
t−1 > D′′

t−1 and D′
t+1 > D′′

t+1), thus with probability 2 ·
(

28−1
29

)2

+
1

216 ' 1
2 .

The conclusion is that two 128-bit output words produced at cycles
t− 1 and t + 1 are equal with probability ' 1

512 (instead of 2−128 for a
truly random sequence). So the amount of keystream necessary for our
distinguisher to work is about 512 · 128 bits = 64 Ko. The processing
time is negligible.

5 A Key Recovery Attack

Instead of assuming D′
t = D′′

t , suppose that D′
t and D′′

t agree on their
4 right-most (or left-most) bits only. Then (assuming the first case,
the second is similar) {

ωt+1 = ωt

τt+1 = xbt · τt 6= τt

, (6)

which implies {
ut+1 = ut−1

vt+1 6= vt−1

. (7)

If D′
t−1 > D′′

t−1 (resp. D′
t+1 > D′′

t+1) then zt−1 = C0(ut−1) ⊕ vt−1

(resp. zt+1 = C0(ut+1)⊕ vt+1). As both events occur with probability
' 1/2, and at = 0 with probability 1/16, we conclude that

zt−1 ⊕ zt+1 = vt−1 ⊕ vt+1 = τt ⊕ τt+1 = τt · (1⊕ xbt) (8)

is satisfied with probability ' 1/64. Similarly (considering the case
bt = 0 instead of at = 0),

zt−1 ⊕ zt+1 = ut−1 ⊕ ut+1 = ωt ⊕ ωt+1 = ωt · (1⊕ xat) (9)

is satisfied with probability ' 1/64 as well.
Assume the attacker has got a long enough keystream sequence

(zt)t≥0. The idea of the attack is the following: each time at = 0
(resp. bt = 0) and the conditions on D′

t−1, D
′′
t−1, D

′
t+1, D

′′
t+1 are satis-

fied, by guessing correctly the value of bt (resp. at), we can obtain the
actual value of τt (resp. ωt) by using equation (8) (resp. equation (9)).
From this value we can compute the sequence of the past states of the
LFSR (with two consecutive elements of the sequence differing by one
bit shift of the LFSR). As equations (8) and (9) are satisfied relatively
often, by considering enough positions t we will observe several similar
sequences (provided we “align” them correctly). On the other hand,
when equation (8) (resp. (9)) is not satisfied, or we do not guess cor-
rectly, the value τt (resp. ωt) we deduce can be considered as random
(see Appendix A). So the observed similar sequences highly probably

4



correspond to the right one. The best way to identify them is to use
two hash tables (or sorted lists) Ω and T.

Once the actual past history of Γ3 and Γ4 has been identified, it
remains to identify the actual initial states ω−64 and τ−64 of these
registers. Knowing the state of one LFSR at cycle t, the number of
bit shifts separating it from the initial state could roughly go from 0
to 15 · (t + 64) depending on how the LFSR has been clocked, with
an expectancy of 7.5 · (t + 64). So we guess this distance for both
LFSRs, beginning with values close to the expectancy (which are the
most probable ones, as the distance is a random variable with roughly
a normal distribution). The computed initial states allow us to retrieve
the key from which we can compute a keystream. Comparison with the
actual keystream is used to accept or reject the guess on the distances.

More precisely, the attack goes as follows:

1. Ω,T = ∅. For t = 1, 2, ...:
(a) Compute zt−1 ⊕ zt+1.
(b) Assume at = 0. For bt = 1, 2, ..., 15:

Deduce the supposed value τ
(bt)
t using (8). Use it to com-

pute the history of Γ4: more precisely, we compute a se-
quence of values (τ (bt)

t,s )−15t+15≤s≤0, such that τ
(bt)
t,0 = τ

(bt)
t

and τ
(bt)
t,s = x · τ (bt)

t,s−1. The bound on s is chosen such that,
assuming the guesses on at and bt were right, all values in
the actual sequence (τt)t≥1 are also in (τ (bt)

t,s )−15t+15≤s≤0.
The difference between both sequences is that the latter is
regularly clocked (shifts of one bit at a time), while the for-
mer results from variable clocking. For −15t + 15 ≤ s ≤ 0,
check whether τ

(bt)
t,s is in the hash table T.

• If yes, let (τ (bt∗ )
t∗ , t∗) ∈ T be this element. It is probably

part of the true history of Γ4. From (τ (bt∗ )
t∗ , t∗) recon-

struct the history (τ (bt∗ )
t∗,s )−15·(t∗+64)≤s≤0.

• Else store (τ (bt)
t , t) in T.

(c) Similarly, we can assume bt = 0 and compute a supposed
value ω

(at)
t for each at ∈ {1, 2, ..., 15} using (9). We de-

duce candidate sequences (ω(at)
t,s )−15t+15≤s≤0, and use an-

other hash table Ω to identify similar sequences. The only
difference with step (b) is that computations are performed
modulo p3(x), instead of modulo p4(x).

(d) Stop the loop as soon as the true history of both Γ3 and Γ4

has been found.
2. Let (τ∗s )s and (ω∗

s )s be the two sequences we computed at step 1,
and t′, t′′ be the respective corresponding indexes of the clock
cycle corresponding to s = 0. Let s′ := b−7.5 · (t′ + 64)c and
s′′ := b−7.5·(t′′+64)c. Let us denote by Try(s1, s2) the following
computation:
• Assume that s1 and s2 are the indexes of the initial state of

Γ4 and Γ3 in (τ∗s )s and (ω∗
s )s respectively.

5



• Deduce the initial key.
• Check it by generating keystream from it and comparing it

to the actual keystream.

First we perform Try(s′, s′′). Then we set i = 1 and repeat:

(a) For j = s′′ − i to j = s′′ + i, Try(s′ − i, j) and Try(s′ + i, j).
(b) For j = s′ − i + 1 to j = s′ + i− 1,

Try(j, s′′ − i) and Try(j, s′′ + i).
(c) i++

We stop as soon as Try gives a positive answer.

Remark that step 1 is another distinguisher for DICING: as a mat-
ter of fact, performing this computation on a truly random sequence
is very unlikely to lead to discovery of a collision in Ω or T. As we
will see, this distinguisher requires less data than the previous one, but
more computation.

We now look at the complexity of the attack. For it to succeed, we
need equations (8) and (9) to be satisfied in two distinct positions t.
As these equations are satisfied with probability 1/64, a keystream of
about 128 words= 16 Ko is necessary.

Regarding the time complexity of the first phase of the attack (and
hence of the distinguisher), about 128 · 15 sequences (τ (bt)

t,s )−15·t≤s≤0

and 128 · 15 sequences (ω(at)
t,s )−15·t≤s≤0 need to be computed. Their

average length is 15 · 64, so the total time complexity of this phase is
about 27 · 15 · 2 · 15 · 64 ' 222 LFSR shifts and 222 hash table lookups
(which are assumed to be feasible in constant time).

As for the second phase, assuming the first occurrence of the actual
history roughly took place for t = 64, the number of pairs of initial
states we have to test is at most (15 · 128)2 ' 222, which is still practi-
cal (each test requires computation of the initialization of the stream
cipher, and of a few words of keystream). Note that most of the time
less than 216 pairs will be tested before finding the right combination
of indexes, and hence the key (as the right index is a random normal
variable).

6 The Other Version of DICING

The second version of DICING, available from the ECRYPT web site [3],
differs from the description made in section 3 in its output function,
which becomes

zt =


C(ut, vt) if D′

t−1 > D′′
t−1

C(vt, ut) if D′
t−1 < D′′

t−1

∅ if D′
t−1 = D′′

t−1

(10)

We remark three changes:

• The choice of the output function no longer depends on the com-
parison of the current dices, but rather of the previous ones. Note

6



that although it does not formally change the state update func-
tion, its computation order is modified. As a matter of fact, this
change amounts to updating LFSRs Γ3 and Γ4 before updating
memories ut and vt.

• If both dices are equal, the output function outputs nothing (in-
stead of ut ⊕ vt).

• The new output function C used whenever both dices are dif-
ferent is no longer linear in any of its component; it is still key-
dependent.

The first two changes prevent use of the distinguisher described in
section 4. As a matter of fact, we still have D′

t = D′′
t ⇒ (ut−1 =

ut+1 and vt−1 = vt+1). But as D′
t = D′′

t , there is no output corre-
sponding to ut+1 and vt+1. Otherwise said, one of the two repeating
values does not appear anymore.

Our second attack (in section 5) obviously exploits partial linearity
in the output function. As this linearity has been removed, it no longer
works.

7 Conclusion

In this paper we have shown that one of the two versions of DICING is
so weak that practical attacks can be mounted against it. The second
version, which obviously appears more secure, is not vulnerable to these
attacks as such.

References

[1] ECRYPT Stream Cipher Project. Part of the ECRYPT Network
of Excellence in Cryptology, European Commission project IST-
2002-507932. http://www.ecrypt.eu.org/stream/.

[2] Li An-Ping. A New Stream Cipher: DICING. In Proceedings of
the Symmetric Key Encryption Workshop. Åarhus, Denmark, May
2005.

[3] Li An-Ping. A New Stream Cipher: DICING. Available at http:
//www.ecrypt.eu.org/stream/dicing.html.

A About Possible False Alarms

In this appendix, we consider the case where the attacker falsely as-
sumes at = 0 (resp. bt = 0), or falsely guesses the value of bt (resp.
at) when the first assumption is correct.

In the first case, i.e. if neither at nor bt equals 0, zt−1⊕zt+1 is non-
linear in either ωt or τt, which makes very unlikely that the computed
candidates for τt and ωt have anything to do with their actual values.
They can be considered as random.

7



The case where the assumption at = 0 (resp. bt = 0) is correct and
equation (8) (resp. (9)) is satisfied, but the guess on bt (resp. at) is
wrong, is more interesting. Consider two cycles t and t′ such that (8)
is satisfied. For the actual values bt and bt′ we have{

τt = (zt−1 ⊕ zt+1) · (1⊕ xbt)−1

τt′ = (zt′−1 ⊕ zt′+1) · (1⊕ xbt′ )−1
(11)

with
τt = xn · τt′ (12)

for some n. For false guesses b∗t and b∗t′ , the attacker computes wrong
values τ∗t and τ∗t′ :{

τ∗t = (zt−1 ⊕ zt+1) · (1⊕ xb∗t )−1

τ∗t′ = (zt′−1 ⊕ zt′+1) · (1⊕ xb∗
t′ )−1

(13)

Putting equations (11), (12), (13) together, we obtain:

τ∗t ·
1⊕ xb∗t

1⊕ xbt
= xn · τ∗t′ ·

1⊕ xb∗
t′

1⊕ xbt′
(14)

So when bt = bt′ , there are 14 wrong guesses on the history of Γ4: those
corresponding to b∗t = b∗t′ 6= bt. However it happens with probability
1/15 only, and this problem can be solved by neglecting cycle t′, and
finding another clock cycle t′′ such that (8) is satisfied, with bt 6= bt′′ .

8


