Cryptanalysis of Stream Cipher DECIM

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC
{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. Stream cipher DECIM is a hardware oriented cipher with
80-bit key and 64-bit IV. In this paper, we point out two serious flaws
in DECIM. One flaw is in the initialization of DECIM. It causes about
half of the key bits being recovered bit-by-bit when one key is used with
about 2%° random IVs, and only the first two bytes of each keystream are
needed in the attack. The amount of computations required in the at-
tack is negligible. Another flaw is in the keystream generation algorithm
of DECIM. It causes the keystream heavily biased. Any two adjacent
keystream bits would be equal with probability about % +27% A mes-
sage could be recovered from the ciphertexts if that message is encrypted
by DECIM for about 2'® times. The DECIM with 80-bit key and 80-bit
IV is also vulnerable to the attacks.

1 Introduction

DECIM [1] is stream cipher submitted to the ECRYPT stream cipher project.
In this paper, we point out two flaws in DECIM, one in the initialization, and
another one in the keystream generation algorithm. The flaw in the initialization
causes the key being easily recovered from the keystreams when one key is used
with about 22° random IVs. The flaw in the keystream generation algorithm
causes the keystream heavily biased, and thus vulnerable to the broadcast attack.

In Section 2, we illustrate the DECIM cipher. Section 3 presents the key
recovery attack on DECIM. The key recovery attack on DECIM is improved
in Section 4. The broadcast attack on DECIM is given in Section 5. Section 6
shows that the DECIM with 80-bit IV is also vulnerable to the attacks. Section
7 concludes this paper.

2 Stream Cipher DECIM

The main feature of the stream cipher DECIM is the use of the ABSG decimation
mechanism in the keystream generation.

2.1 Keystream Generation

The keystream generation diagram of DECIM is given in Fig. 1. DECIM has a
regularly clocked LFSR which is defined by the feedback polynomial

P(X) :X192 +X189 +X188 +X169+X156+X155+X132+
XL x99 L XTT 4 X464 X174 X164 X5 41

over GF(2). The related recursion is given as

5192+n = 5187+n D 517640 D 517540 D S1464n O S1154n D S98+n © S61+n
D S60+n D S37+n D 5364+n D S23+n D S44n D S34n D S

At each stage, two bits are generated from the LFSR as follows:

Y1 = f(8t+1, St+4+32, St4+405 St+1015 St+164, St+178) 3t+187)a

Y2 = f(5t+6a St+4+8, St4+605 St4+1165 St+145, St+181, 8t+191)7

where the Boolean function f is defined as

f(xi1a-~-,$i7) = Z Lij; Ty,

1<j<k<7
The binary sequence y consists of all the y;; and y; > as

Y = Y0,1Y0,2Y1,1Y1,2 """ Yt,1Yt,2 " -

The keystream sequence z is generated from the binary sequence y through the
ABSG decimation algorithm. The sequence y is split into subsequences of the

form (b, b',b), with i > 0 and b € {0,1}; b denotes the complement of b in {0, 1}.

For every subsequence (B, b%,b), the output bit is b for i = 0, and b otherwise.
The ABSG algorithm is given below as

Input: (yo,y1,...)
Set: i« 0; j « 0
Repeat the following steps:
€ — Yi, Zj < Yit1;
1 — 1+ 1;
while (y; =€) i — i+ 1;
1 — 1+ 1;
output z;
J—Jj+1

Remarks. The above description of the ABSG and the pseudo code of ABSG are
quoted from [1]. However the outputs of the pseudo code are the complements
of that of the ABSG algorithm. Anyway, this difference has no effect on the
security of DECIM. In the rest of the paper, we assume that the DECIM uses
the pseudo code of ABSG given above.

The DECIM is designed to output one bit every two stages. A 32-bit buffer is
used to ensure that the probability that there is output bit missing is extremely
small (2789).

2.2 Initialization

The secret key K is a 80-bit key. The 64-bit IV is expanded to a 80-bit length
vector by adding zeros from position 64 up to position 79. The initial value of
the LFSR state is loaded as follows

K;v1V; for 0 <i <55
si=14 Ki 56 NIV;_56 for 56 <i < 111
Ki_119® IV;_115 for 112 <4 < 191

The LFSR is clocked 192 times. After the LFSR being clocked linearly at the
t-th stage, the y; 1 and y; 2 are XORed to the x4 192 as

St4192 = St4+192 D Ye,1 D Yi,2

Then one of two permutations m; and 75 is applied to permute 7 elements s;5,
St431, 5t459, St4100, St+144, St+177, St+186- L wo bits y; 1 and yy 2 are input to the
ABSG, if the output of the ABSG is 1, then 7 is applied; otherwise the output
of the ABSG is 0 or no output, then 7o is applied. The two permutations are
defined as

m=(163)(4527),m=(1473526).

T - M
r—] |
sl | [T [] [[T T T [s]
' ' '
~ 7
o - /
- —
AN o ﬁ e
2 | y=(y1Ly2) | »1
i
A
B
5
G
4 -.\.
Py — I_ c
Buffer

Fig. 1. Keystream Generation Diagram of DECIM [1]

3 Key Recovery Attack on DECIM

In this section, we develop attacks to recover the secret key of DECIM. The
attack applies when the same secret key is used with a number of random IVs,
and the first 3 bytes of each keystream are known.

3.1 The effects of the permutations m; and 72

The two permutations in the initialization stage of DECIM provide high non-
linearity to the initialization process. However, the permutations also cause some
bits in the LFSR being updated improperly. The consequence is disastrous.

The permutation 7; is poorly designed. To investigate the effects of this
permutation, we analyze a weak version by assuming that only this permutation
is used in the initialization process, i.e., we replace my with 7. The values of
140 elements in the LFSR would never be updated by the initialization process.
Those 140 elements are ss,Sg,. . .,S58, and $100,5101,- - - ,S185. For example, Sop
would always become s19216. The details are given below. We trace the bit sa1,
after 16 steps it becomes s1645 due to the shift of the LFSR. Then it becomes
s16+177 due to the permutation ;. After 33 steps, it becomes s494144 due to the
shift of the LFSR. Then it becomes s49131 due to the permutation 7;. After 26
steps, it becomes s7545 due to the shift of the LFSR. Then it becomes s75.4177 due
to the permutation m;. This process repeats and at the end of the initialization
process, it becomes s19246.

The first bit of the keystream is given as yi922, it is computed as y1922 =
(819246, S192+48, $192460, S192+1165 $192+145, S192+181, S192+191). By tracing the bits
of LFSR during the initialization process, we know that s1921¢ < Sa21, S192+8 <
523, 51924+116 <= 5132, 51924145 < 5160, S192+181 <= 833. If every key and IV pair is
randomly generated, then according to the loading of the key and IV, we know
that s21, s23, and s33 are with value 1 with probability 0.75. Thus according to
the definition of the function f, the value of y;92 2 is 0 with probability 0.582.
So the first bit of the keystream is heavily biased. It shows that the effect of the
permutation 7y is terrible.

In DECIM, there are two permutations, 7, and 7s. They are chosen according
to the output of ABSG: 7 is chosen with probability %, w9 with probability %
Due to these two permutations, the number of bits that are not updated by the
initialization process is reduced to 54.5 (obtained by running 2'6 random key
and IV pairs). It shows that the permutations 7; and mo which are chosen by
the output of ABSG cause severe damage to DECIM.

3.2 Recovering Ka;

In the initialization process, we trace the bit s9;. s9; would become s19246 with
probability % If s19246 is with value 0, and assume all the other bits in the
LFSR at the 192-th step are random, then the value of the first bit of the
keystream is 0 with probability ¢y = %68. If 519246 is with value 1, and assume
all the other bits of the LFSR at the 192-th step are random, then the value

of the first bit of the keystream is 0 with probability ¢ = %. Denote the
probability that the value of the first keystream bit is 0 when so; = 0 as pg, and
the probability that the value of the first keystream bit is 0 when s9; = 1 as p;.
Then Ap = p1 —po = 5= X (q1 — qo) = 2777 In the experiment, we carried out
220 initializations with random IVs for so; = 0, and another 220 initializations
for so1 = 1, we found that Ap = 27799, The experiment result confirms that the
theoretical result Ap = 27775 is correct.

The above property can be applied to recover Ks; as follows. Suppose that the
same key is used with N random IVs to generate keystreams. For the keystreams
with I'Vo; = 0, we compute the probability that the value of the first bit is 0,
and denote this probability as pj,. For the keystreams with I'V2; = 1, we compute
the probability that the value of the first bit is 0, and denote this probability as
Py I ph —ph > % = 27875 we consider that K2, = 0; otherwise, Ko = 1. For
N = (42)72 x 2 = 2'85 the attack can determine the value of Ky, with success

2
rate 0.977.

3.3 Recovering K22K23 e K30

By tracing the bits in the initialization process, we notice that each soo.; is
mapped to sjge474; with probability % for 0 < i < 8 (each of them is only
mapped by 71 at s,15). We know that spoi; = Kooy V IVaoq; , and S192474i,
519249+ are used in the generation of y193442 for 0 < 4 < 10. In this subsec-
tion, we show that the key bits Ko Ko3Koy ... K39 can be recovered from the
keystream.

The attack similar to that given in Subsection 3.1 can be applied to recover
the value of Ky from the first keystream bits generated from 2'%:% I'Vs.

To determine the values of Koo and Koy, we observe the second bit of the
keystream. Due to the disturbance of the ABSG, 1932 becomes the second
keystream bit with probability 0.5. Thus Ap’ = 0.5 x Ap = 27875, To recover
Ko and Ks4, we need 220° TVs in order to obtain the success rate 0.977.

To determine the value of K5, we observe the second and third bits of the
keystream. 31942 would become the second bit of the keystream with probability
L and become the third bit of the keystream with probability %. Thus Ap” =
sx(+ %) x Ap = 2710165 To recover Kas, we need 2223 IVs in order to obtain
the success rate 0.977.

We omit the details of recovering Kog - - - Kog. To recover Kjzi, we observe
the fifth, sixth and seventh bits of the keystream. 31992 would become one of
these three bits with probability 5. Thus Ap” = & x & x Ap = 2711068 To

256 ° 256
recover Kyg, we need 223-5°14 [Vs in order to obtain the success rate 0.977.

3.4 Recovering KgKig...Kig

Tracing the bits in the initialization process, we notice that each sg4; is mapped

to S1924166+; With probability L for 0 < i < 10 (each of them is only mapped
+ + 27

by T at St+5). We know that 8944 = Kg_H‘ \/1%4_1', and 51924166414 is used in the

generation of yj944;1 for 0 < ¢ < 10. The attacks given in this subsection are
similar to those given in the above subsection. We only illustrate how to recover
Kg and Klg.

To determine the value of Kg, we observe the second bit of the keystream.
y194,1 would become the second bit of the keystream with probability %. Thus
Aph = i x Ap = 27975, To recover Ky, we need 222'° IVs in order to obtain
the success rate 0.977.

To determine the value of K19, we observe the 8-th, 9-th and 10-th bits of the
keystream. y204,1 would become one of these three bits with probability 0.25966.
Thus Ap® = 1 x 0.25966 x Ap = 271128, To recover K19, we need 22398 TVs

3
in order to obtain the success rate 0.977.

3.5 Recovering K32K33 e K46

Tracing the bits in the initialization process, we notice that each s1444; is mapped
to S192+16+¢ With probability 2—17 for 0 < i < 14 (each of them is only mapped
by 71 at s¢45). We know that s1444; = Ksoy; V V324, and s192416+i is used in
the generation of y20044,1 for 0 <7 < 14.

Since for s1444; (0 < i < 14), the key bits are XORed with the IV bits, the
attack is slightly modified. For example, if the probability of 0 in the keystream
for I'V3s = 0 is higher than the probability of 0 in the keystream for I'V3y = 1,
then we predict that K3o = 1; otherwise, K3s = 0.

We only illustrate how to recover K3, and Kyg.

To determine the value of K39, we observe the sixth, seventh and eighth bits
of the keystream. ya00,2 would become one of these three bits with probability
0.28027. Thus Ap(®) = % x 0.28027 x Ap = 2717 To recover Ko, we need
223755 TVg in order to obtain the success rate 0.977.

To determine the value of K6, we assume that starting from the fourth bit
of the sequence y, each bit would become the output with probability % Then
Y214,2 would become one of the 12th, 13th, ..., 18th bits of the keystream with
probability 0.16637. Thus Ap(7?) = % % 0.16637 x Ap = 2713145 To recover Koy,
we need 226482 Vs in order to obtain the success rate 0.977.

The attacks given in this section recover 36 bits of the secret key with about 226
random IVs. For each IV, only the first 3 bytes of the keystream are needed in
the attack.

4 Improving the Key Recovery Attack

In the above attacks, we only deal with the bits permuted only by w1 at s;45.
To improve the attack above, we trace all the possibilities for each bit s; (0 <
i < 175) during the initialization process to find out the distribution of that bit
at the end of initialization. Then we search the optimal attack for that bit. We
performed the experiment, and found that 44 key bits can be recovered with
less than 22° IVs, and only the first 2 bytes of the keystream are required in the
attack. The preliminary experiment results are given in Table 2 in Appendix A.

5 The Keystream of DECIM Is Heavily Biased

The improperly designed function f in DECIM results in heavily biased keystream.

5.1 The keysteam is biased

We start with analyzing the function f.

f(xiu"'axlﬁ) = Z xlgxlk

1<j<k<7

If any one bit of the input of f is with value 1, then f generates ‘1’ with proba-
bility -~ 128, otherwise it generates ‘1’ with probablhty 128 Thus for f(zi,, ..., Ti,)
and f(z},,...,x;), if one bit of one input is always equal to one bit of another
inputs (i.e., z;, = xj, where 0 < a,b < 7), then the outputs related to these two
inputs would be equal with probability ($5)2 + (1%)% = 2.

Note that y; 1 and y; 2 are computed as follows

Yg,1 = f(3t+17 St+4+32, St4+40, St4+101 St+164, St+178, St+187)

Yt,2 = f(3t+67 St+4+8, St+60, St4+1165 St+145, St+181, St+191)

Denote A = {1,32,40,101,164, 178,187}, B = {6,8,60,116, 145,181,191}, and
denote each element of A as a;, and each element of B as b; (1 <i<7). Then
Yt,1 = Yt+a;—a;,1 a0d Yp2 = Ypib,—p; 2 With probab1hty 128 for 1 <14,5 <7 and
i # j. And Yiyp,—a;1 = Yr,2 With probability -5 128 for 1 <i4,5 < 7. It shows that
the binary sequence y is heavily biased.

The heavily biased sequence y is used as input to the ABSG decimation
algorithm. It results in heavily biased output. In the attack, we are interested in
those biases in y that would not be significantly reduced by the ABSG Algorithm.
Thus we will analyze the bias of (yi+31,¥¢.2); (Yr+a,1,ye,2) and (Ye.2, Yit2,2) to
find out how they affect the randomness of the output of ABSG.

For example, We analyze the effect of the bias of (Yi+3,1,Yt,2)- Vs, 1= Y2
with probability 2% . Denote the i-th bit of the sequence y as y*. Thus y* = y”‘5
with probability B% (y%, y*) would affect the bias of the output of the ABSG

256 ° U
in two approaches. One approach is that (y*,y""®) would become (2, zj12) with

probability § (case 1: y; = yi—1, Yiy2 7 Yit1 and yirz = yipo; case 2: y; # yi_1,
Yir1 = yi—1 and y; 13 = ¥;+2). Thus for this approach, the bias of (7, y**5) causes
that z; = zj4o with probability %. Another approach is that if y; = y;—1 and
Yito = Yit1, then (y;, yi+a) would become (z;, zj42). Note that y;+4 = y;—1 with
probability 52, S0 zj = zj4+2 with probability 229 This approach happens with
probability 7. Thus the bias of (y*,y""®) causes that z; = z;,o with probability
513 Combining these two approaches, we know that z; = zj4+2 with probability

3021
Gk
We continue analyzing the above example since the output of ABSG dec-

imation algorithm should pass through the buffer before becoming keystream.
By analyzing the ABSG decimation algorithm and the buffer, we notice that

if (y',y"™) becomes z; = zjo after the ABSG decimation algorithm, then
it would become z; = z, 41 With probability 0.6135 after passing through the
buffer; if (y',y"™) becomes z; = zj 1o after the ABSG decimation algorithm,
then it would become z;, = z;, with probability 0.5189 after passing through
the buffer. Thus after passing through the buffer, the two approaches lead to
2}, = 2}, with probability § +0.6135 x 157 + 0.5189 X 1557 = 5 + 27752,

The similar analysis can be applied to the biases resulting from (yi14,1,yt,2)
and (yt,2, Y¢+2,2)- The bias of (y1 2, ys12,2) would cause z;, = 25, | with probability
about 1 + 271984 and the bias of (Yi+a,1,yr2) would cause 2z}, = 241 With
probability about % + 271173,

Combining the effects of (y¢43,1,¥t,2), (Yita,1,ye,2) and (y¢,2, Ye42,2), the bias
of zj, = 2z}, is about § 4 27982 4 271084 4 9=11L.78 — L 4 9=9.00,

Now we verify the above analysis with experiment. We generated about
keystream bits from DECIM and found that z; = z;_ , is about 1 +27867 The
experiment result shows that the analysis result is close to that obtained from
the experiment.

230

5.2 Broadcast attack

Due to the bias in the keystream, part of the message could be recovered from
the ciphertexts if the same message is encrypted for many times using DECIM
with random key and IV pairs. The similar attack has been applied to RC4 [2].

Suppose that one message bit is encrypted for NV times, and each keystream
bit is 0 with probability % + Ap with Ap > 0. Denote ng as the number of ‘0’ in
the ciphertext bits. If ng > %, we conclude that the message bit is with value
0; otherwise, we conclude that the message bit is with value 1. For N = Ap~2,
the message bit could be recovered with success rate 0.977.

Thus if one message is encrypted with different keys and IVs for about
times, the message could be recovered from the ciphertexts.

218

6 Attacks on DECIM with 80-bit IV

The keystream generation algorithm of DECIM with 80-bit IV is the same as
DECIM with 64-bit IV. Thus DECIM with 80-bit IV still generates heavily
biased keystream and vulnerable to the broadcast attack.

The initialization process of DECIM with 80-bit IV is slightly different from
the 64-bit IV version. The key and IV are loaded into the LFSR as

0 for 0 <i <31
S; = Ki732 D IV;‘,32 fOI‘ 32 § 7 S 111
Ki7112 for 112 S) S 191

Similar to the attack given in Section 4, we carry out the experiment to
compute the IVs required to recover each bit. With 22! IVs, 41 bits of the secret
key could be recovered. Only the first 2 bytes of the keystream are required in
the attack. The experiment results are given in Table 3 in Appendix A.

7 Conclusion

DECIM is insecure.

References

1. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin and H. Sibert.
“Decim - A New Stream Cipher for Hardware Applications”. ECRYPT Stream
Clipher Project Report 2005/004. Available at http://www.ecrypt.eu.org/stream/

2. I. Mantin, A. Shamir. “A Practical Attack on Broadcast RC4”. Fast Software
Encryption (FSE2001), LNCS2335, pp. 152-164, Springer-Verlag, 2001.

A The Amount of IVs Required to Break DECIM

Table 2 gives the amount of IVs required to break DECIM with 64-bit TV. 44
key bits can be recovered with less than 220 IVs. Table 3 gives the amount of IVs
required to break DECIM with 80-bit IV. 41 key bits can be recovered with less
than 22! IVs. Only the first 2 bytes of the keystream are required in the attack,
and the amount of computations required in the attacks is negligible.

We explain Table 2 with Ky as an example. K is related to si12 since s112 =
Ko @ IVh. s112 is mapped to sigeye0 with probability 0.0318 (this probability
is obtained by tracing sj12 through the initialization process). Thus Ky could
be recovered by observing the first bits of the keystreams. About 2!%9 IVs are
required to achieve the success rate 0.977.

Table 1. Amount of IVs required to recover the key bits (64-bit IV)

Affected Bits

Amount of

Affected Bits

Amount of

IVs (Log,) IVs (Log,)
Ko [s112 = $192+60 18.95 Ky |s57 = 51924122 20.83
K> |ss8 = s192+116 18.80 K3 |s115 = S1921104 20.46
K4 |s116 = 51924105 21.41 Ks |s117 = S1921106 21.54
Ko |s118 = S1924107 21.67 K7 |s119 = 51924108 21.72
Kg |s120 = S1921145 21.21 Ky |s121 = S1921110 21.92
Kio |s10 = 51924116 17.69 K11 |s11 = s192+4117 19.62
K12 |s68 = S192+6 18.88 K13 |s69 = S19247 20.82
K14 |570 = S192+48 18.82 K15 |s127 = S1921116 16.66
Ki6 |S128 = S1924117 18.70 Ki7 |s17 = S192+6 16.92
Kig |s18 = S19247 18.82 Kig |s19 = S19248 16.80
Koo |820 = 519249 18.73 Koy |s21 = 519246 18.59
Koo |520 = S8192+7 20.67 K3 |s23 = 519248 18.70
Ka4 |S80 = S192+146 20.80 Koas |S25 = S1924116 17.97
K26 S138 = S192+6 17.79 K27 S$139 = S192+7 19.87
Kog 8140 = S19248 17.86 Kog 8141 = S19249 19.67
K30 |S142 = S192410 21.46 K31 |31 = S1924182 18.36
K32 |532 = 51921183 20.70 K33 |33 = S1924113 20.97
K34 |5314 = 51924114 21.03 K35 |s91 = s1924116 19.95
K36 |s36 = S1924116 15.55 K37 |s37 = s1924117 17.56
K3g |S04 = S1924145 18.94 K39 |539 = S192+104 19.62
Ko |S152 = 5192460 16.43 K41 |5153 = S1921116 17.90
Kz |S154 = S1924117 19.93 K3 |543 = S1924108 20.61
K4 |S156 = S192+145 16.90 Kus |s157 = S192+146 18.96
Kue |546 = 8192435 20.45 Ky7 |s47 = S$192+46 16.68
Kig |s160 = S1924145 18.68 Ki9 |5161 = S1924181 15.59
K0 |s162 = S192+182 17.59 Ks1 |s51 = S192+116 15.62
Ks2 |s52 = s1924117 17.64 K3 |s53 = 51924118 19.47
K54 |s54 = S1924119 20.05 K55 |s55 = S1924120 20.61
K6 |s168 = 5192476 22.27 K7 |s169 = S192+103 18.43
K58 |s170 = 51924104 18.17 Ks9 |S171 = 51921105 18.93
Koo |S172 = S192+106 19.11 Ke1 |5173 = S1924107 19.24
Koo |S174 = S192+108 19.42 Ke3 |s175 = S192+109 19.58

10

Table 2. Amount of IVs required to recover the key bits (80-bit IV)

Affected Bits

Amount of

Affected Bits

Amount of

IVs (Log,) IVs (Log,)
Ko [s32 = S192+183 20.70 K1 |s33 = S192+113 20.97
K> |s314 = s192+4114 21.03 K3 |s35 = s192+4115 21.13
Ky |s36 = S192+116 15.55 Ks |s37 = s1924117 17.56
Ke |s38 = 51924118 19.43 K7 |s39 = 51924104 19.62
Kg |s10 = S1924105 20.37 Ky |s41 = S1024121 20.30
Kio [sa2 = S192+107 20.48 K11 |s43 = S192+108 20.61
K12 844 = S192+109 20.77 K13 845 = S192+434 20.70
K14 |516 = S192435 20.45 K15 |s47 = S19246 16.68
K6 |848 = 519247 18.72 Ki7 849 = 519248 16.68
Kis [s50 = S192+9 18.66 K19 [s51 = S192+116 15.62
Koo |52 = S1924117 17.64 Ko |s53 = S1924118 19.47
Koz |54 = S1924119 20.05 K23 |s55 = 51924120 20.61
Kos 856 = S192+121 20.63 Kos |s57 = S192+122 20.83
Ko |s58 = S1924116 18.80 Ko7 |s50 = S102412 23.00
Kos [s60 = S192+13 23.41 Kog [s61 = S192+14 23.66
K30 |S62 = S$192+15 23.78 K31 |se3 = S5192+16 24.09
K3a |S64 = S192+17 24.00 K33 |s65 = S192+18 24.19
K34 |s66 = $192+19 24.22 Kss |s¢7 = 519245 23.44
ng S8 = $192+6 18.88 K37 S69 = S$192+7 20.82
K3g |s70 = S19248 18.82 K39 |s71 = S192460 16.77
K40 S72 = S192+61 18.75 K41 S73 = S192+62 20.59
Kio 874 = S192+463 21.11 K43 875 = S192+64 21.71
K4 |s76 = S192465 21.67 K5 |s77 = s192466 21.85
Kue |s78 = S192+67 21.81 Ka7 |s79 = S192+145 18.82
Kius 880 = S192+146 20.80 Kag 881 = S192+470 22.05
Ks0 |s82 = S192471 22.18 Ks1 |s83 = S192472 22.40
K52 S84 = S192+73 22.43 K53 S85 = S192+74 22.42
Ks4 |S36 = 8192475 22.43 Kss |ss7 = S$192+4-76 22.55
K56 |sss = S1924154 24.02 K57 |ss9 = S1924155 24.04
Kss |s00 = S192+156 24.15 K9 |S01 = S192+116 19.95
Koo |S92 = S1924117 21.97 Ke1 |S93 = S1924118 23.77
Koz |594 = S1924145 18.94 Ke3 |s95 = S1924146 20.91
Kea |S06 = S1924147 22.79 Kes |so7 = 51924148 23.33
Kee |s98 = S192+149 23.77 Ko7 899 = S192+150 23.64
Kes 5100 = $192463 22.65 Koo |s101 = S19244 23.12
Ko |Ss102 = S192+465 23.66 K71 |5103 = S192+178 23.80
K72 8104 = S192+4179 23.77 K73 8105 = S192+4145 20.94
K74 |S106 = S1924181 18.24 Krs |s107 = S192+182 19.97
K76 |5108 = S192+183 21.81 K77 |s100 = S19246 20.86
Krg |S110 = S19247 22.83 K79 |S111 = S192+48 20.94

11

