
Cycle counts for authenticated encryption

Daniel J. Bernstein ⋆

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago, Chicago, IL 60607–7045

djb@cr.yp.to

Security System Cipher Cipher MAC Total
conjecture key key

bits bits
256 aes-256-poly1305 256 14-round AES Poly1305 384
256 cryptmt-v3-poly1305 256 CryptMT 3 Poly1305 384
256 dicing-p2-poly1305 256 DICING P2 Poly1305 384
256 dragon-poly1305 256 Dragon Poly1305 384
256 hc-256-poly1305 256 HC-256 Poly1305 384
256 salsa20-poly1305 256 Salsa20 Poly1305 384
256 salsa20-12-poly1305 256 Salsa20/12 Poly1305 384
256 salsa20-8-poly1305 256 Salsa20/8 Poly1305 384
224 sosemanuk-poly1305 256 SOSEMANUK Poly1305 384
128 aes-128-poly1305 128 10-round AES Poly1305 256
128 cryptmt-v3-poly1305 128 CryptMT 3 Poly1305 256
128 dicing-p2-poly1305 128 DICING P2 Poly1305 256
128 dragon-poly1305 128 Dragon Poly1305 256
128 grain-128-poly1305 128 Grain-128 Poly1305 256
128 hc-128-poly1305 128 HC-128 Poly1305 256
128 mickey-128-2-poly1305 128 MICKEY-128 2.0 Poly1305 256
128 phelix 128 Phelix built-in 128
128 polarbear-2-poly1305 128 Polar Bear 2.0 Poly1305 256
128 rabbit-poly1305 128 Rabbit Poly1305 256
80 grain-v1-poly1305 80 Grainv1 Poly1305 208
80 trivium-poly1305 80 TRIVIUM Poly1305 208

low abc-v3-poly1305 128 ABC v3 Poly1305 256
low lex-v1-poly1305 128 LEX v1 Poly1305 256
low nls-ae 128 NLS built-in 128
low nls-poly1305 128 NLS Poly1305 256
low py6-poly1305 256 Py6 Poly1305 384
low py-poly1305 256 Py Poly1305 384
low pypy-poly1305 256 Pypy Poly1305 384

⋆ Date of this document: 2007.01.11. Permanent ID of this document:
be6b4df07eb1ae67aba9338991b78388.



Abstract. How much time is needed to encrypt, authenticate, verify,
and decrypt a message? The answer depends on the machine (most
importantly, but not solely, the CPU), on the choice of authenticated-
encryption function (and in particular its conjectured security level), on
the message length, on the level of competition for the instruction cache,
on the number of keys handled in parallel, et al. This paper reports, in
graphical and tabular form, measurements of the speeds of a wide variety
of authenticated-encryption functions on a wide variety of CPUs.

This paper reports speed measurements for the secret-key authenticated-
encryption systems listed on the first page. I included all of the “hardware focus”
ciphers in phase 2 of eSTREAM, the ECRYPT Stream Cipher Project: Grain,
MICKEY, Phelix, and Trivium. I also included all of the “software” ciphers in
phase 2 of eSTREAM: not just the “focus” ciphers DRAGON, HC, LEX, Phelix,
Py, Salsa20, and SOSEMANUK, but also ABC, CryptMT, DICING, NLS, Polar
Bear, and Rabbit.

I did not exclude ciphers for which there are claims of attacks, although I
marked them as “low” in the “security conjecture” column on the first page.
For LEX, I chose version 1 (for which there is a claim of an attack) rather
than version 2 (for which there are no such claims) because I’m not aware of
functioning software for version 2 of LEX; my impression is that the versions
will have similar speeds, but speculation is no substitute for measurement.

I included counter-mode AES, the Advanced Encryption Standard, as a basis
for comparison.

Non-authenticating stream ciphers

Most of the selected stream ciphers do not include message authentication. I
converted the non-authenticating stream ciphers into authenticated-encryption
systems by combining them in a standard way with Poly1305, a state-of-the-art
message-authentication code. Here are the details: The key for the authenticated-
encryption system is (r, k) where r a 16-byte Poly1305 key and k is a key for the
non-authenticating stream cipher F . The authenticated encryption of a message
m with nonce n is (Poly1305r(c, s), c) where (s, c) = Fk(n)⊕ (0,m), both s and
0 having 16 bytes. Here Fk(n) is the “keystream” produced by F using key k

and nonce n; this keystream is implicitly truncated to same length as (0,m).
Previous eSTREAM benchmarks did not include separate authenticators;

they simply reported encryption timings for non-authenticating ciphers along
with encryption timings for authenticating ciphers. The reality is that users
need authenticated encryption, not just encryption, so they need to combine non-
authenticating ciphers with message-authentication codes, slowing down those
ciphers. How quickly do these combined systems handle legitimate packets, and
how quickly do they reject forged packets? Are they faster than ciphers with
built-in authentication? To compare the speeds of authenticating ciphers and
non-authenticating ciphers from the user’s perspective, benchmarks must take
the extra authentication time into account.



“Isn’t this a purely academic question?” one might ask. “Haven’t all the
authenticating ciphers been broken? Frogbit flunks a simple IV-diffusion test.
Courtois broke SFINKS. Cho and Piperzyk broke both versions of NLS. Wu
and Preneel broke Phelix. Okay, okay, VEST is untouched, but it’s much too
expensive for anyone to want to use.” The simplest response is that, in fact,
Phelix has not been broken. (The Wu-Preneel “attack” ignores both the concept
of a nonce and the standard definition of cipher security; the “attack” assumes
that senders repeat nonces. The same silly assumption easily “breaks” every
eSTREAM submission.) Phelix remains one of the top eSTREAM submissions.

I’m planning future work to extend my database of timings to cover other
authenticated-encryption systems. I plan to include more ciphers, for example;
I plan to include other modes of use of Poly1305; and I plan to include UMAC,
VMAC, CBC-MAC, and HMAC-SHA-1 as alternatives to Poly1305. I will also
endeavor to incorporate improved implementations of systems already covered:
for example, I’m planning a 64-bit implementation of Poly1305. But the existing
data should already be useful in comparing eSTREAM candidates.

“Why is it necessary to time authenticated encryption?” one might ask. “If
you want a table of authenticated-encryption timings, why not simply add a
table of authentication timings to a table of encryption timings?” Response: The
existing tables are deficient. This paper’s timings are much more comprehensive
than previous encryption timings. This paper systematically measures all packet
lengths in a wide range, for example, and systematically measures multiple-key
cache-miss costs. Furthermore, adding all the contributing times isn’t as easy
as it sounds; for example, if the authentication software uses more than half of
the code cache, and the encryption software uses more than half of the code
cache, authenticated encryption will need time for cache misses. Component
benchmarks can be interesting and informative, but whole-function benchmarks
are the simplest way to ensure that no components are forgotten.

API for authenticated-encryption systems

What does a secret-key authenticated-encryption system do for the user? It
takes keys; it encrypts and authenticates each outgoing packet; it verifies and
decrypts each incoming packet. So I specified an authenticated-encryption API
with three functions: makekey to generate a key (and an “expanded key,” the
output of any desired precomputation); encrypt to authenticate and encrypt an
outgoing packet, and decrypt to verify and decrypt an incoming packet.

The encrypt function includes an authenticator in its encrypted output
packet. The decrypt function is given an encrypted packet allegedly produced
by encrypt; it rejects the packet if the authenticator is wrong. Many systems can
limit their decryption work for long messages when the authenticator is wrong.
In particular, for the Poly1305 combination described above, an authenticator
can be checked as soon as 16 bytes of keystream have been generated; if the
authenticator is wrong then one can skip the work of generating the remaining
bytes of keystream.



In contrast, in the official eSTREAM stream-cipher API, both encrypt and
decrypt put an authenticator somewhere else. It is the responsibility of the
decrypt user to verify authenticators. Having decrypt write an authenticator,
rather than read it, means that rejection of forged packets is necessarily just
as slow as decryption of legitimate packets. This doesn’t seem to have been a
problem for the authenticating stream ciphers submitted to eSTREAM, but it
unnecessarily slows down other authenticated-encryption systems.

There are many other details of the API, but this paper can be read without
regard to those details. Example: encrypt and decrypt receive lengths as 64-bit
integers (long long in C). On many CPUs, using fewer bits for lengths would
save a few cycles, marginally shifting the graphs in this paper.

Tools for benchmarking

Previous eSTREAM speed reports use the official eSTREAM benchmarking
toolkit. The toolkit includes (1) software written by Christophe de Cannière
to measure the speeds of stream-cipher implementations that follow the official
eSTREAM stream-cipher API and (2) stream-cipher implementations collected
from cipher authors.

To collect the timings reported in this paper I wrote a new benchmarking
toolkit, ciphercycles, available from http://cr.yp.to/streamciphers.html.
I wrote a separate tool to convert stream ciphers from the official eSTREAM
stream-cipher API to my new API (and in particular to add authentication
to the non-authenticating stream ciphers); the resulting implementations are
included in the toolkit. Subsequent updates to the implementations in the official
eSTREAM benchmarking toolkit will be easy to reflect in ciphercycles.

Many portions of ciphercycles are derived from BATMAN (Benchmarking
of Asymmetric Tools on Multiple Architectures, Non-Interactively), a public-
key benchmarking toolkit that I wrote for eBATS (ECRYPT Benchmarking
of Asymmetric Systems). I’m planning future work to integrate benchmarking
projects. The new speed reports produced by ciphercycles, like the eBATS
speed reports, are in a simple format designed for easy computer processing.

The timings collected by ciphercycles include (authenticated) encryption,
(verified) decryption of legitimately encrypted packets, and rejection of forged
packets. Decryption times are usually almost identical to encryption times, but
rejection times are often much smaller, for the reasons discussed above. The
official eSTREAM timings include only encryption times.

The timings collected by ciphercycles systematically cover each packet
length between 0 bytes and 8192 bytes. By superimposing graphs one can easily
see the message-length cutoffs between different ciphers. The official eSTREAM
timings include only a few selected lengths (40 bytes, 576 bytes, 1500 bytes,
long), hiding block-size penalties and many other length-dependent effects.

The timings collected by ciphercycles include benchmarks for encryption
of short packets bouncing between multiple keys: for example, when there are
1024 active keys, how many cycles are used for encryption of a 775-byte packet
under a random choice of key, including the cache misses needed to access the



key? The official eSTREAM timings include one fuzzy “agility” number for each
cipher but are otherwise dedicated to single-key benchmarks.

The timings collected by ciphercycles also include makekey timings, but
those timings are not reported in this paper.

Sample graphs

The graph on the left below shows timings for the abc-v3-poly1305 system on a
2137MHz Intel Core 2 Duo computer named katana.

The horizontal axis is message length, between 0 bytes and 8192 bytes. The
vertical axis is time, between 0 cycles and 98304 cycles. The diagonal from the
lower left corner of the graph to the upper right corner is 12 cycles per byte.

Blue is encryption, roughly 8 cycles per byte. Green is decryption, essentially
overlapping blue. Red is rejection, roughly 5 cycles per byte. Orange, a much
higher slope faintly visible in the bottom left of the graph, is encryption bouncing
between multiple keys: message lengths between 0 bytes and 1024 bytes for 1024
keys, message lengths between 0 bytes and 960 bytes for 512 keys, message
lengths between 0 bytes and 896 bytes for 256 keys, etc.

There are 15 timings for each message length. Initial timings are slightly
slower because of cache misses, producing faint lines above the main lines.

The graph on the right shows timings for the pypy-poly1305 system on the
same computer. The wide spread of the dark line shows a considerable variance
in Pypy’s stream-generation time, perhaps because of cache-timing effects. Note
also the relatively large cost of handling small packets.



More graphs

Sorry, this is still a draft! But I do have timings for all ciphers on a few machines,
and I need only a little more scripting to quickly produce a bunch of graphs.
Graphs will be small here, large online.

Tables

Sorry, this is still a draft! Plans: one table of decryption cycle counts for various
message lengths, one table of rejection cycle counts for various message lengths,
and one table of encryption cycle counts for various numbers of active keys.


