
Cryptanalysis of ABC v2

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC
{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. ABC v2 is a stream cipher with 128-bit key. In this paper,
we show that there are about 296 weak keys. The complexity to identify
each weak key and to recover the internal state is low. To identify a weak
key from about 232 random keys, we need 213 keystream bytes from each
key, and 213.5 operations are required for each keystream. Recovering
the internal state of a weak key requires about 229.5 keystream bytes
and 235.7 operations. The similar attack can be apply to break ABC v1
and its complexity is much lower than the previous attack on ABC v1.

1 Introduction

ABC v1 [2] is a submission to the ECRYPT eStream project. ABC v1 was bro-
ken by Berbain and Gilbert [1] (later by Khazaei [7]). That divide-and-conquer
attack on ABC v1 exploits the short LFSR length in component A and the non-
randomness in component C. To resist the attacks, the ABC designers modified
component A. In ABC v2 [3–6], the length of the LFSR is 127 bits instead of
the 63 bits in ABC v1.

In this paper, we analyze the weakness in component C of ABC v2 (com-
ponent C in ABC v1 is the same as that in ABC v2). Component C is a key-
dependent 32-bit-to-32-bit S-box. Vaudenay [10], Murphy and Robshaw [9] have
stated that there could be weak key-dependent S-boxes due to the weak keys.
Berbain and Gilbert’s attack on ABC v1 deals with the weak keys that are
related to the non-bijective S-box. That type of weak key exists with probabil-
ity close to 1. To recover the internal state of a weak key requires about 293

operations and 234 keystream bytes.
In this paper, we found another type of weak key that exists with probability

2−32. This new type of weak key is so weak that both the ABC v1 and ABC v2
fail completely. The identification of a weak key from 232 random keys requires
213 keystream bytes from each key, and 213.5 operations for each keystream.
Recovering the internal state of a weak key requires about 227.5 keystream bytes
and 235.7 operations.

This paper is organized as follows. In Section 2, we illustrate the ABC v2. In
Section 3, we define the weak key and show how to identify the weak key. Section
4 recovers the internal state of a weak key. Section 5 concludes this paper.

2 ABC v2

ABC v2 consists of three components – A, B and C. The keystream generation
of the cipher is given in Fig. 1.

Fig. 1. Keystream generation of ABC v2 [6]

Compnent A is based on a linear feedback shift register with primitive polyno-
mial g(x) = x127 +x63 +1. Denote the register in component A as (z3, z2, z1, z0),
where each zi is a 32-bit number. Note that this 128-bit register itself is not lin-
ear feedback shift register. This register is key and IV dependent. During each
step of ABC v2, 32 bits of this 128-bit regesiter are updated as follows:

ζ = z2 ⊕ (z1 << 31)⊕ (z0 >> 1) mod 232

z0 = z1, z1 = z2, z2 = z3, z3 = ζ

Component B is specified as B(x) = ((x ⊕ d0) + d1) ⊕ d2 mod 232, where
x is the 32-bit input, d0, d1 and d2 are key and IV dependent 32-bit numbers,
d0 ≡ 0 mod 4, d1 ≡ 1 mod 4, d2 ≡ 0 mod 4.

2

Component C is specified as C(x) = S(x) >>> 16, where x is the 32-bit
input, S(x) = e +

∑31
i=0(ei × x[i]), where x[i] denotes the ith least significant

bit of x, and e and ei are key dependent 32-bit random numbers, except that
e31 ≡ 216 mod 217. Note that e and ei are not related to the initialization vector.

The 32-bit keystream is given as y = C(x) + z0.

3 Weak Key and Identification

In Subsection 3.1, we introduce some observation related to the bias in the
keystream of ABC v2. Subsection 3.2 defines the ABC v2 weak key and gives
the attack to identify the weak keys.

3.1 How the bias occurs

Lemma 1. Denote a, b as two random and independent n-bit integers. Let cn =
(a+b) mod 2n, where cn denotes the carry bit at the n-th least significant bit po-
sition. Denote the most significant bit of a as an−1. Then Pr(cn⊕an−1 = 0) = 3

4 .

Proof. cn = (an−1 · bn−1) ⊕ ((an−1 ⊕ bn−1) · cn−1). If cn−1 = 0, then cn ⊕
an−1 = an−1 · bn−1, where bn−1 denotes the inverse of bn−1. If cn−1 = 1, then
cn ⊕ an−1 = an−1 · bn−1. Thus Pr(cn ⊕ an−1 = 0) = 3

4 .

Lemma 1 implies the bias given in the following theorem.

Theorem 1. Denote ai, bi (1 ≤ i ≤ 3) as n-bit integers. Denote ci (1 ≤ i ≤ 3)
as binary values satisfying ci = (ai + bi) mod 2n. Let a1, a2, b1, b2 and b3 be
random and independent, but a3 = a1 ⊕ a2. Then c1 ⊕ c2 ⊕ c3 is biased. For
n = 16, Pr(c1 ⊕ c2 ⊕ c3 = 0) ≈ 0.5714.

If we simply apply Lemma 1, we obtain that Pr(c1 ⊕ c2 ⊕ c3 = 0) = 1
2 + 1

16 =
0.5625. The small diffrence in the biases (0.5714 and 0.5625) is due to the fact
that a3 is not an independent random number.

We show the validity of Theorem 1 with numerical analysis. For small n, we
try all the values of a1, a2, b1, b2 and b3 and obtain the following table.

Table 1. The probability of c1 ⊕ c2 ⊕ c3 = 0 (denote the probability as 1
2

+ ε)

n ε n ε

1 0.125 5 0.071441650390625

2 0.078125 6 0.071430206298828125

3 0.072265625 7 0.071428775787353515625

4 0.071533203125 8 0.071428596973419189453125

3

From Table 1, we see that the bias converges to 0.5714 as the value of n in-
creases. For n = 16, we performed 232 tests, and the bias is about 0.571424152.
For n = 32, the bias is about 0.571434624 with 232 tests. The experiment results
show that Theorem 1 is valid.

Remarks. In Theorem 1, if a1, a2, a3, b1, b2 and b3 are all random and indepen-
dent, then Pr(c1 ⊕ c2 ⊕ c3 = 0) = 1

2 + 2−3n−1, which is is very small for n = 16,
and this bias could not be exploited to break ABC v2.

3.2 Identify the weak keys

We start the attack with analyzing the linear feedback shift register used in ABC
v2. The register (z3, z2, z1, z0) is updated according to the primitive polynomial
g(x) = x127 + x63 + 1. Take the 25th power of g(x), we obtain

g25
(x) = x127×32 + x63×32 + 1. (1)

Denote the z0 at the i-th step as zi
0, and denote the jth significant bit of zi

0 as
zi
0,j . Since each time 32 bits are updated, the distance between zi

0,j and zi+k
0,j is

|32(k − i)|. According to (1), we obtain the following linear recurrence

zi
0 ⊕ zi+63

0 ⊕ zi+127
0 = 0. (2)

The weak keys of ABC are related to the S(x) in component C. S(x) is
defined as S(x) = e +

∑31
i=0(ei × x[i]), where e and ei are key dependent 32-bit

random numbers, except that e31 ≡ 216 mod 217. If the least significant bits
of e and ei (0 ≤ i < 32) are all 0, then the least significant bit of S(x)
is always 0, and we consider that key as weak key. Note that the least
significant bit of e31 is always 0. Thus a weak key appears with probability 2−32.

In the following, we describe how to identify the weak keys. Denote the 32-bit
keystream at step i as yi, and denote the jth significant bit of yi as yi,j . And
denote xi as the input to function S at the i-th step. Then yi = (S(xi) >>>
16)+zi

0. Let ci,j denotes the carry bit at the j-th least significant bit of (S(xi) >>
> 16)+zi

0, i.e., ci,j = (((S(xi) >>> 16) mod 2j)+(zi
0 mod 2j)) mod 2j . Assume

that ((S(xi) >>> 16) mod 216 is random. According to Theorem 1 and (2), we
obtain that

Pr(ci,16 ⊕ ci+63,16 ⊕ ci+127,16 = 0) =
1
2

+ 0.0714. (3)

And due to the rotation of S(xi), we know that

yi,16 = S(xi)0 ⊕ zi
0,16 ⊕ ci,16, (4)

where S(xi)0 denotes the least significant bit of S(xi). Note that S(xi)0 is always
0 for the weak key. From (2) and (4), we obtain

yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = ci,16 ⊕ ci+63,16 ⊕ ci+127,16. (5)

4

From (3) and (5), we know that yi,16 is biased,

py = Pr(yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = 0) =
1
2

+ 0.0714. (6)

We use (6) to identify the weak keys. Approximate the binomial distribution
with the normal distribution. Denote the total number of samples as N , the
mean as µ, and the standard variance as σ. For random binary distribution,
p = 1

2 , µ = Np and σ =
√

Np(1− p). For (6), p′ = 1
2 + 0.0714, µ′ = Np′ and

σ′ =
√

Np′(1− p′). For the normal distribution, the cumulative distribution
function gives value 1 − 2−39.5 at 7σ, and value 0.023 at −2σ. If the following
relation holds

u′ − u ≥ 7σ + 2σ′, (7)

then in average, each strong key is wrongly identified as weak key (false posi-
tive) with probability 2−39.5, and each weak key is not identified as weak key
(false negative) with probability 0.023. It means that the weak keys could be
successfully identified since one weak key exists among 232 keys. Solving (7),
the amount of samples required is N = 3954. For each sample, we only need to
perform two XORs and one addition. Thus with 3594+127 = 4081 outputs from
each key, we could successfully identify the weak keys of ABC v2.

The amount of outputs could be reduced if we consider 2ith power of g(x)
for i = 5, 6, 7, 8. With 1615 outputs, we can obtain 3956 samples. Thus the
keystream required in the indentification of the weak keys is reduced to 1615
outputs.

The identification of a weak key implies directly a distinguishing attack on
ABC v2. If there are 232 keystreams generated from 232 random keys, and each
keystream is with 1615 outputs, then the keystream could be distinguished from
random. In order to find one weak key, the total amount of keystream required
are 232 × 1615 × 4 = 244.7 bytes, and the amount of computations required are
232 × 3956× 2 ≈ 245 XORs and 244 additions.

Experiment 1. In this experiment, we used the original ABC v2 source code
provided by the ABC v2 designers. After testing 234 random keys, we obtained
five weak keys. One of the weak key is (fe 39 b5 c7 e6 69 5b 44 00 00 00 00 00
00 00 00). From this weak key we generated 230 outputs, and the probability
py (6) is 0.5714573. The experiment results confirm that a weak key exists with
probability about 2−32, and that the bias of the weak key keystream is large.

4 Recovering the Internal State of the Weak Keys

Once a weak key is identified, the internal state of the cipher could be recovered.
The correlation between the keystream and the LFSR is disucssed in Subsection
4.1. In Subsection 4.2, we recover the internal state of the LFSR. The secret
variables in component B and C are recovered in Subsection 4.3.

5

4.1 Correlation between the keystream and the LFSR

From Lemma 1, we get

Pr(zi
0,15 ⊕ ci,16 = 0) =

3
4
. (8)

From (8) and (4), we obtain the following correlation:

Pr(zi
0,16 ⊕ zi

0,15 ⊕ yi,16 = 0) =
3
4
. (9)

Unfortunately (9) can not be used in fast correlation attack to increase the
chance of the prediction of zi

0,16 ⊕ zi
0,15. The rason is given as follows. From the

experiment, we found that

Pr(zi
0,16 ⊕ zi

0,15 = 0 | yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = 0) <
1
2

+ 2−17. (10)

It shows that such relation cannot be used in the fast correlation attack. We
need further study on this strange behavior.

According to (9), recovering the LFSR requires testing about 299.4 states. To
reduce the complexity, we need a correlation that can be exploited in the fast
correlation attack.

Theorem 2. Denote ai, bi (1 ≤ i ≤ 3) as n-bit (n ≥ 2)integers. Denote ci

(1 ≤ i ≤ 3) as binary values satisfying ci = (ai + bi) mod 2n. Denote hi

as hi = ai,n−1 ⊕ ai,n−2, where ai,j denotes the jth least significant bit of ai

(ai,n−1 is the most significant bit of ai). Let a1, a2, b1, b2 and b3 be ran-
dom, but a3 = a1 ⊕ a2. If c1 ⊕ c2 ⊕ c3 = 0, then hi is biased. For n = 16,
Pr(hi = 0 | c1 ⊕ c2 ⊕ c3 = 0) ≈ 0.541 (1 ≤ i ≤ 3).

We show the validity of Theorem 2 with numerical analysis. For small n, we
try all the values of a1, a2, b1, b2 and b3 and obtain Table 2. From Table 2,
we see that as n increases, the values of p0 converges to 0.541. For n = 16, we
performed 232 tests, and the values of p0 is 0.54103037. The experiment results
confirm that Theorem 2 is valid.

Table 2. The correlation Pr(hi = 0 | c1 ⊕ c2 ⊕ c3 = 0)

n correlation n correlation

2 0.54054054054 5 0.54101468625

3 0.54095563140 6 0.54101550765

4 0.54100811619 7 0.54101561033

Let hi = zi
0,15 ⊕ zi

0,14. From (2), (5) and Theorem 2, we obtain that

Pr(hi = 0 | yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = 0) = 0.541 (11)

6

(11) shows that there is strong correlation between the keystream and the LFSR.

Experiment 2. In this experiment, from the weak key (fe 39 b5 c7 e6 69 5b 44
00 00 00 00 00 00 00 00) we generated 230 outputs. Pr(hi = 0 | yi,16⊕ yi+63,16⊕
yi+127,16 = 0) = 0.54685 . The experiment result confirms that for a weak key,
there is strong correlation between the keystream and the LFSR.

4.2 Recovering the LFSR

The internal state of the LFSR could be recovered by exploiting the correlation
between the keystream and the LFSR given in (11). The basic idea in this attack
is similar to the fast correlation attack Algorithm A of Meier and Staffelbach
[8]. But the details are completely different.

From (6), (11) and Pr(hi = 0) = 1
2 (without knowing the keystream), we

obtain

p0 = Pr(yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = 0 | hi = 0) = 0.6183 (12)
p1 = Pr(yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = 0 | hi = 1) = 0.5246. (13)

Suppose N outputs are available. According to [8], the average amount of rela-
tions obtained for each hi (by repeatly squaring g25

(x)) can be computed as

m = m(N, k, t) = log2(
N

2k
)(t + 1), (14)

where k = 127 (the length of the LFSR), t = 2 (taps) for ABC v2. For the m
relations related to hi, if for v relations the XOR sum of those three yj,16 bits
are 0, then the probability that hi = 0 is given as

p∗0,v =
pv
0(1− p0)m−v

pv
0(1− p0)m−v + pv

1(1− p1)m−v
(15)

where p0 and p1 are defined in (12) and (13), respectively.
For hi, the probability that for more than w relations the XOR sum of those

three yj,16 bits are 0 is given by

qw =
m∑

i=w

(
m

i

)
pi

y(1− py)m−i (16)

where py is defined in (6).
With N outputs, the total number of hi for which the XOR sum of those

three yj,16 bits are 0 for more than w relations is given as

sw = N · qw (17)

For each hi satisfying that the XOR sum of those three yj,16 bits are 0 for more
than w relations, let hi = 0. Among those sw bits, the number of error bits is
given by

ew =
m∑

i=w

N ·
(

m

i

)
pi

y(1− py)m−i · (1− p∗0,i) (18)

7

For hi, the probability that for less than w′ relations the XOR sum of those
three yj,16 bits are 1 is given by

q′w′ =
w′∑

i=0

(
m

i

)
pi

y(1− py)m−i (19)

With N outputs, the total number of hi for which the XOR sum of those three
yj,16 bits are 1 for less than w′ relations is given as

s′w′ = N · q′w′ (20)

For each hi satisfying that the XOR sum of those three yj,16 bits are 0 for less
than w′ relations, let hi = 1. Among those s′w′ bits, the number of error bits is
given by

e′w′ =
w′∑

i=0

N ·
(

m

i

)
pi

y(1− py)m−i · p∗0,i (21)

The total number of guessed hi bits is given by sw+s′w′ . Among those sw+s′w′
guessed bits, the number of error bits is given by ew +e′w′ . For N = 221, m = 39,
w = 34, w′ = 9, we get sw + s′w′ = 149.65, and ew + e′w′ = 1.39. Choose 127 bits
from those 150 bits, there are about 1.2 bits are wrong. Each timing flipping one
bit of those 127 bits, The LFSR could be recovered by solving 127 linear equa-
tions. The LFSR is recovered correctly with probability about 1.03× 127

212 = 0.617.
Thus the LFSR is successfully determined with 220 outputs.

However, we found that there is big difference between our theoretical analy-
sis and the experiment. In the experiment, we always get much more guessed
hi bits but also with more error bits (especially the error rate for hi = 1 is too
high). The reason is due to the noise introduced by each hi bit to the other hi

bits. If one hi is with value 0, then all the other bits that are in hi’s relations
would tend to be guessed as 0. To compensate such noise, we need much more
outputs to recover the LFSR, as illustrated in the following experiment.

Experiment 3. From the weak key (fe 39 b5 c7 e6 69 5b 44 00 00 00 00 00 00
00 00) with different IVs, we generated about 231 outputs. We use 45 relations,
and set hi = 0 if more 43 relations are meet (the XOR sum of those three yi,16

bits in a relation is zero). We determined 1548 hi bits with 25 error bits.

Thus in order to find 127 bits of hi, we need about 2·127·2 45
3 +231· 1548127 = 227.5

outputs. Among those 127 hi bits, there are about 127 · 25
1548 = 2 error bits in

average. We obtain about 215 internal states of the LFSR by solving 215 sets of
linear equations. The wrong internal states could be filtered out by generating
a short binary sequence (less than 256 bits) and compare it with the keystream
according to (9).

8

4.3 Recovering the components B and C

After recovering the LFSR, we proceed to recover component B. In the previous
attack on ABC v1 [1], about 277 operations are required to recover the com-
ponents B and C. That complexity is too high. We give here a much simpler
method to recover B and C with about 233.3 operations.

In ABC v2, there are four secret terms in component B: x, d0, d1, and d2,
where d0, d1 and d2 are static, x is updated as

xi = (((xi−1 ⊕ d0) + d1)⊕ d2) + zi
2 mod 232. (22)

Note that the higher significant bits would never affect the less significant bits.
It allows us to recover x, d0, d1, and d2 bit-by-bit.

After knowing the LFSR, the value of each zi
0 can be determined, thus we

know the value of each S(xi). For a weak key, the least significant bit of S(xi)
is always 0. In average, the probability that xi = xj is about 2−32, and the
probability that S(xi) = S(xj) is about 2−32 + 2−31. Given 218 outputs, there
are about 8 cases that xi = xj for i 6= j, and about 24 cases that S(xi) = S(xj)
for i 6= j. From those 24 cases that S(xi) = S(xj) (i 6= j), we choose 4 cases
that S(xiu) = S(xju) (iu 6= ju and 0 ≤ u < 4). The probability that xiu = xju

for 0 ≤ u < 4 with probability (8
24)4 = 1

81 .
We know already the value of each zi

2. It is easy to solve the four equations
xiu = xju (0 ≤ u < 4) to recover x, d0, d1, and d2. We obtain those four secret
terms bit-by-bit from the least significant bit to the most significant bit. But
those four most significant bits could not be determined exactly. (We mention
here during this bit-by-bit approach, those four bits at each bit position may
not be determined exactly, and further filtering is required in the consequent
computations.) In average, we expect that solving those four equations gives
about 8 possible values of x, d0, d1, and d2. Also note that each set of those four
equations holds true with proability 1

81 , we have about 81 × 8 = 648 possible
values for x, d0, d1, and d2.

After recovering the component B, we know the input and output of each
S(xi), so the component C can be recovered by solving 32 linear equations. This
process needs to be repeated for 648 times since there are about 648 possible
values of x, d0, d1, and d2. The exact B and C could be determined by generating
some outputs and comparing them to the original keystream.

4.4 Complexity of the attack

Recovering the LFSR requires about 227.5 outputs. For each output we need to
perform 135 XORs, 90 additions to guess the value of hi. And we need about
127·2·227.5

32 XOR operations (32-bit microprocessor) to generate the linear equa-
tions from the LFSR. We need to solve about 215 sets of linear equations. About
127 · 2 · 5 XOR operations are required to solve a set of 127 binary equations on
the 32-bit microprocessor. Thus about 235.4 operations are required to recover
LFSR.

9

Recovering components B and C requires about 218 outputs. To recover com-
ponent B, solving 81 sets equations requires about 81 · 32 · 24 · 218 = 233.3 oper-
ations. To recover component C, solving 648 set of equations (each set consists
of 32 linear equations) requires about 648 · 32 · 2 operations. Thus about 233.3

operations are required to recover components B and C.
To recover the internal state of a weak key, 227.5 outputs, and about 235.4 +

233.3 = 235.7 operations are required.
There is tradeoff between the keystream length and the computation com-

plexity. The keystream length could be reduced, then a number of LFSRs need
to be tested with more computation.

5 Conclusion

Due to the large amount of weak keys and the severity of each weak key, ABC
v2 is practically insecure.

Similar attack can be applied to break ABC v1. The complexity to break
ABC v1 is almost the same as that to break ABC v2. ABC v2 is as insecure as
ABC v1.

References

1. C. Berbain and H. Gilbert,“Cryptanalysis of ABC”. Available at
http://www.ecrypt.eu.org/stream/papersdir/048.pdf.

2. V. Anashin, A. Bogdanov and I. Kizhvatov, “ABC: A New Fast Flexible Stream
Cipher”. Available at http://www.ecrypt.eu.org/stream/ciphers/abc/abc.pdf.

3. V. Anashin, A. Bogdanov and I. Kizhvatov, “Increasing the ABC Stream Cipher
Period”. Available at http://www.ecrypt.eu.org/stream/papersdir/050.pdf.

4. V. Anashin, A. Bogdanov and I. Kizhvatov, “ABC Is Safe And Sound”. Available
at http://www.ecrypt.eu.org/stream/papersdir/079.pdf.

5. V. Anashin, A. Bogdanov and I. Kizhvatov, “Security and Implementation Prop-
erties of ABC v.2”. SASC 2006 - Stream Ciphers Revisited, pp. 278-292, 2006.

6. V. Anashin, A. Bogdanov and I. Kizhvatov, “ABC: A New Fast Flexible Stream
Cipher (Version 2)”. Available at http://crypto.rsuh.ru/papers/abc-spec-v2.pdf

7. S. Khazaei, “Divide and Conquer Attack on ABC Stream Cipher”. Available at
http://www.ecrypt.eu.org/stream/papersdir/052.pdf.

8. W. Meier and O. Staffelbach, “Fast Correlation Attacks on Stream Ciphers”. Jour-
nal of Cryptology 1(3), pp. 159-176, 1989.

9. S. Murphy and M.J.B. Robshaw. “Key-dependent S-boxes and differential crypt-
analysis”. Designs, Codes, and Cryptography 27(3), pp. 229-255, 2002.

10. S. Vaudenay, “On the Weak Keys of Blowfish”, in Fast Software Encryption
(FSE’96), LNCS 1039, pp. 27-32, Springer-Verlag, 1996.

10

