
Better price-performance ratios
for generalized birthday attacks

Daniel J. Bernstein

Department of Mathematics, Statistics, and Computer Science (MC 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. Fix i and k with k = 2i−1. This paper presents a generalized-
birthday attack that uses a machine of size 22B/(2i+1) for time 2B/(2i+1)

to find (m1, . . . , mk) such that f1(m1) + · · · + fk(mk) mod 2B = 0. The
exponents 2/(2i + 1) and 1/(2i + 1) are smaller than the exponents for
Wagner’s original generalized-birthday attack. The improved attack also
allows a linear tradeoff between time and success probability, and an
ith-power tradeoff between machine size and success probability.

1 Introduction

Fix k ≥ 2. Let f1, f2, f3, . . . , fk be easy-to-compute functions producing B-
bit outputs. How difficult is it to find a vector (m1,m2,m3, . . . ,mk) such that
f1(m1)+ f2(m2)+ f3(m3)+ · · ·+ fk(mk) mod 2B = 0? How difficult is it to find
(m1,m2,m3, . . . ,mk) such that f1(m1)⊕ f2(m2)⊕ f3(m3)⊕ · · · ⊕ fk(mk) = 0?

Motivation. These “generalized birthday problems” arise in a surprisingly wide
variety of cryptanalytic tasks; see [8, Section 4]. The difficulty of solving these
problems has a heavy influence on the choice of parameters for fast incremental
hash functions, code-based public-key systems, etc. See my paper [2] for one
example.

Previous answers. The standard answer for k = 2 is that finding a collision
between f1(m1) mod 2B and −f2(m2) mod 2B takes time 2B/2.

The standard answer for k > 2 is that Wagner’s “generalized birthday attack”
in [8] takes time 2B/i if k = 2i−1; e.g., time 2B/5 if k = 16, improving on the time
2B/2 taken by traditional collision search. But this answer has several glaring
deficiencies:

• The standard answer fails to account for limits on the attacker’s time. The
generic success chance of traditional collision search is well known to drop
quadratically as the time spent drops; how badly does the generic success
chance of Wagner’s algorithm drop as the time spent drops? (“Generic suc-
cess chance” here means the average success chance for all functions; the
success chance for a particular choice of function could be different.)

* Date of this document: 2007.07.19. Permanent ID of this document:
7cf298bebf853705133a84bea84d4a07. This work was carried out while the
author was visiting Technische Universiteit Eindhoven.



• The standard answer fails to account for limits on machine cost. Wagner’s
algorithm needs a terrifyingly large machine with 2B/i blocks of memory—
for example, 2128 blocks if B = 512 and k = 8. For comparision, traditional
collision search can be carried out by a tiny circuit, only slightly larger than
a circuit to compute the functions f1, . . . , fk. How badly does the generic
success chance of Wagner’s algorithm drop with the machine cost?

• The standard answer relies on the assumption that each memory access in
Wagner’s algorithm takes constant time. In fact, speed-of-light delays force
each storage access to take time 2B/2i, so the 2B/i serial storage accesses in
Wagner’s algorithm take time 23B/2i.

The bottom line is that Wagner’s algorithm has a price-performance ratio on
the scale of 25B/2i: e.g., 2B/2 if k = 16. Wagner’s algorithm is advertised as
being faster than traditional methods for all k ≥ 4; however, for (e.g.) k = 8,
an attacker with any particular hardware budget and time budget has a much
better chance of finding the desired (m1,m2, . . . ,m8) with traditional methods
than with Wagner’s algorithm.

Wagner in [8, Section 5, “Open Problems,” under “Memory and communica-
tion complexity”] asked whether his algorithm’s memory requirements could be
reduced; asked whether the algorithm could be “parallelized effectively without
enormous communication complexity”; and advised designers “to assume that
such algorithmic improvements may be forthcoming.”

Contributions of this paper. This paper presents new upper bounds for the
price-performance ratio of generalized-birthday attacks. In particular, this paper
improves Wagner’s algorithm, drastically reducing the time to 2B/(2i+1) while
reducing the machine size from 2B/i to 22B/(2i+1).

More generally, for each c between 0 and 2B/(2i+1), this paper presents an
attack taking time 2B−ic on a circuit of size 2c. The price-performance ratio of
the circuit is 2B−(i−1)c, rising from 23B/(2i+1) for c = 2B/(2i + 1) to 2B/2 for
c = B/(2i− 2) and then higher as c drops. For c < B/(2i− 2) it is better to find
collisions between f1(m1) + · · · + fk/2(mk/2) mod 2B and −fk/2+1(mk/2+1) −
· · · − fk(mk) mod 2B using the parallel-collision-search circuit of van Oorschot
and Wiener in [6], taking time approximately 2B/2−c on a circuit of size 2c.

Even more generally, for each c between 0 and 2B/(2i + 1) and for each t
between c/2 and B− ic, this paper presents an attack taking time 2t on a circuit
of size 2c and having generic success probability approximately 2t+ic−B . For
t > (i−2)c it is better to use the parallel-collision-search circuit of van Oorschot
and Wiener, taking time 2t on a circuit of size 2c and having generic success
probability approximately 22t+2c−B .

Section 2 reviews Wagner’s attack. Sections 3, 4, and 5 present the new attack
as the result of three improvements upon Wagner’s attack.

I presented a preliminary version of this analysis, for the special case of 4-xor
collisions, as part of my paper [2] at the ECRYPT Hash Workshop 2007. This
paper supersedes [2, Section 2]. Exception: [2, Section 2] included an evaluation
and improvement of constant factors for 4-xor collisions; this paper does not
consider constant factors.



Open questions. The new success probability 2t+ic−B increases linearly with
the time spent but as the ith power of the circuit size (up to size 22B/(2i+1)).
For comparison, the van Oorschot-Wiener success probability 22t+2c−B increases
quadratically with time and quadratically with circuit size. What other functions
of t, c can be achieved? Can one achieve 2t+(i−1)c−B, for example, or 2t+ic−B,
or it + c−B?

The only obvious limit is 2kt+kc−B . A circuit of size 2c cannot generate
more than 2t+c values fj(mj) in time 2t; there exist at most 2kt+kc combi-
nations f1(m1) + f2(m2) + · · · + fk(mk) mod 2B ; there is a 0 among these
combinations with probability at most 2kt+kc−B . Is there any better upper
bound? The Brent-Kung theorem [3, Theorem 3.1] (predating [9, Theorem 1]
by more than twenty years) produces better-than-information-theoretic bounds
on the price-performance ratio of broadcast computations such as sorting; to
what extent can sorting be avoided in inversion algorithms for the function
(m1, . . . ,mk) 7→ f1(m1) + · · ·+ fk(mk) mod 2B?

2 Review of Wagner’s algorithm

This section reviews Wagner’s algorithm to find m1, . . . ,mk with f1(m1) +
f2(m2) + · · ·+ fk(mk) mod 2B = 0, when k = 2i−1.

Choose 2B/i different values of m1 and 2B/i different values of m2. There are
22B/i pairs (m1,m2), and on average (generically) there are 2B/i pairs such that
f1(m1) + f2(m2) mod 2B/i = 0. Find those pairs as follows: compute the 2B/i

values (f1(m1) mod 2B/i,m1) and sort them into lexicographic order; compute
the 2B/i values (−f2(m2) mod 2B/i,m2) and sort them into lexicographic or-
der; merge the sorted lists to find all pairs (m1,m2) for which f1(m1) mod 2B/i

matches −f2(m2) mod 2B/i.
Wagner states that the sorting takes “O(n log n) time” where n = 2B/i.

Presumably “O(n log n)” is meant to refer to heap sort or another standard
comparison-based sorting algorithm that sorts n items using O(n log n) compar-
isons and O(n log n) memory accesses.

One can object that a comparison of (B/i)-bit strings actually takes time
proportional to B/i, not constant time, so heap sort uses O(n(log n)2) bit com-
parisons, not merely the claimed O(n log n); one can, on the other hand, replace
heap sort with radix sort, eliminating a log n factor. Similarly, and more impor-
tantly, one can object that memory accesses do not take constant time; one can,
on the other hand, choose a sorting algorithm with much smaller communication
costs, as discussed in Section 4.

After finding 2B/i vectors (m1,m2) for which f1(m1)+f2(m2) mod 2B/i = 0,
use the same idea to find 2B/i vectors (m3,m4) for which f3(m3) + f4(m4) mod
2B/i = 0. Compute f1(m1)+f2(m2) mod 22B/i for each (m1,m2), and−f3(m3)−
f4(m4) mod 22B/i for each (m3,m4); sort and merge to find, on average, 2B/i

vectors (m1,m2,m3,m4) for which f1(m1) + f2(m2) + f3(m3) + f4(m4) mod
22B/i = 0.



Use the same idea for i−1 levels of recursion to find, on average, 2B/i vectors
(m1,m2, . . . ,mk) for which f1(m1) + f2(m2) + · · · + fk(mk) mod 2(i−1)B/i =
0. Finally, compute f1(m1) + f2(m2) + · · · + fk(mk) mod 2B for each vector
(m1,m2, . . . ,mk). There will be, on average, 1 vector for which f1(m1)+f2(m2)+
· · ·+ fk(mk) mod 2B = 0.

One can object that there is no reason for the chance of finding a vector to
be as large as the average number of vectors found; but a more detailed analysis
shows that the gap is negligible for large B/i. Limiting the intermediate lists to
exactly 2B/i vectors also makes very little difference in the success probability
of the algorithm.

Generalizations. The above description assumed for simplicity that B is divis-
ible by i. To handle the general case, replace B/i and 2B/i and so on by nearby
integers.

One can find m1, . . . ,mk with f1(m1) ⊕ f2(m2) ⊕ · · · ⊕ fk(mk) = 0 by es-
sentially the same algorithm; see [8]. The differences between the algorithms are
orthogonal to the speedups discussed in this paper.

3 Handling constraints on machine size

Wagner’s algorithm needs Θ(2B/iB/i) bits of memory to store Θ(2B/i) vec-
tors, each having Θ(B/i) bits. What if the attacker cannot afford to pay for
Θ(2B/iB/i) bits of memory? This section adapts Wagner’s algorithm to fit within
a smaller machine.

Assume that the attacker can afford to store only 2c vectors (f1(m1) mod
2B/i,m1) rather than 2B/i vectors, and only 2c vectors (−f2(m2) mod 2B/i,m2)
rather than 2B/i vectors. Here c is a parameter that will be reflected in the final
machine cost.

The attacker now finds, on average, 22c−B/i vectors (m1,m2) for which
f1(m1) + f2(m2) mod 2B/i = 0. Together with 22c−B/i similar vectors (m3,m4)
the attacker finds 24c−3B/i vectors (m1,m2,m3,m4) for which f1(m1) + · · · +
f4(m4) mod 22B/i = 0. After another level of recursion the attacker finds 28c−7B/i

vectors (m1, . . . ,m8) for which f1(m1) + · · · + f8(m8) mod 23B/i = 0. After
i− 1 levels of recursion the attacker finds 2kc−(k−1)B/i vectors (m1, . . . ,mk) for
which f1(m1) + · · ·+ fk(mk) mod 2(i−1)B/i = 0, and therefore 2kc−kB/i vectors
(m1, . . . ,mk) for which f1(m1) + · · ·+ fk(mk) mod 2B = 0.

Improvement: Increase the number of vectors (m1,m2) up to the machine
capacity 2c, by requiring only the bottom c bits (rather than B/i bits) of
f1(m1) + f2(m2) to be 0, Similarly increase the number of vectors (m3,m4).
This increase by a factor of 2c−B/i is reflected quadratically in the number of
vectors found at the next level of recursion, quartically at the next level, etc.,
outweighing the loss of c − B/i bits. Similarly increase the number of vectors
(m1,m2,m3,m4) up to the machine capacity 2c, and so on for each level of
recursion.

The revised attack is as follows:



• Generate and sort 2c vectors (f1(m1) mod 2c,m1).
• Generate and sort 2c vectors (−f2(m2) mod 2c,m2).
• Merge to find 2c vectors (m1,m2) for which f1(m1) + f2(m2) mod 2c = 0.
• Similarly find 2c vectors (m3,m4) for which f3(m3) + f4(m4) mod 2c = 0.
• Sort and merge again to find 2c vectors (m1,m2,m3,m4) for which f1(m1)+

f2(m2) + f3(m3) + f4(m4) mod 22c = 0.
• Repeat for i − 1 levels of recursion to find 2c vectors (m1,m2, . . . ,mk) for

which f1(m1) + f2(m2) + · · ·+ fk(mk) mod 2(i−1)c = 0, and therefore 2ic−B

vectors (m1,m2, . . . ,mk) for which f1(m1)+f2(m2)+· · ·+fk(mk) mod 2B =
0.

One can also view the revised attack as follows: truncate each fj to ic bits; use
the original attack to find (m1, . . . ,mk) for which f1(m1)⊕ f2(m2)⊕ f3(m3)⊕
f4(m4) mod 2ic = 0; hope that this equation modulo 2ic is actually an equation
modulo 2B .

4 Parallelization

This section improves the algorithm of Section 3 to take advantage of parallel
processing.

As mentioned in Section 1, a realistic model of computation cannot support
constant-latency random access to 2c bits of memory as c grows; one needs at
least 2c/2 time to reach a typical position in a 2-dimensional circuit of size 2c.
A sorting algorithm that issues 2c serial memory accesses ends up taking time
proportional to at least 23c/2.

Parallelism offers dramatic improvements. A circuit of size 2c can handle
a pipeline of 2c/2 parallel memory accesses from a single CPU; some sorting
algorithms can take advantage of this, reducing the sorting time from roughly
23c/2 to roughly 2c. Furthermore, a realistic circuit of size 2c can have roughly
2c tiny processors acting in parallel; some sorting algorithms can take advantage
of this, reducing the sorting time from roughly 2c to roughly 2c/2.

Specifically, Schimmler’s algorithm in [4] uses an n × n mesh of n2 small
processors to sort n2 small objects in approximately 8n steps. Each processor
has storage for one object, a small amount of comparison circuitry, and wires
connecting it to the four adjacent processors. In each step, each processor per-
forms a compare-exchange with an adjacent processor, sorting the two objects
in the two processors in an order specified by the algorithm. An alternative to
Schimmler’s algorithm is the Schnorr-Shamir algorithm in [5], which uses a more
complicated order of operations but reduces 8 to approximately 3.

In particular, one can sort 2c vectors (f1(m1) mod 2c,m1, 1) together with
2c vectors (−f2(m2) mod 2c,m2, 2) by applying Schimmler’s algorithm with n =
2(c+1)/2. The algorithm uses 2c+1 small processors to sort these 2c+1 objects in
approximately 2(c+7)/2 compare-exchange steps. Similar comments apply to the
other sorting steps required in Wagner’s algorithm.



The algorithm also needs 2c evaluations of f1, 2c evaluations of f2, etc., but
2c (or fewer) parallel processors can handle these evaluations at negligible cost
for any reasonable choice of f1, f2, . . . , fk.

Summary: This parallelized attack uses time on the scale of 2c/2; uses a
machine whose size is on the scale of 2c; and produces on the scale of 2ic−B

vectors (m1,m2, . . . ,mk) for which f1(m1)+f2(m2)+ · · ·+fk(mk) mod 2B = 0.

5 Precomputation

There is an imbalance in the parallelized algorithm of Section 4. This section
corrects the imbalance, making the algorithm much more cost-effective.

Imbalance: The computation of 2c values of f1(m1) takes very little time—
the same time as computing one value—because it is parallelized perfectly across
2c small processors. The sorting of those values takes much more time, the time
for roughly 2c/2 compare-exchange steps.

Improvement: Spend more time searching for useful values of m1. For ex-
ample, rather than taking the first m1 that comes to mind, each processor can
try 2c/2 values of m1, choosing the smallest f1(m1)—typically one smaller than
2B−c/2. Similarly spend more time searching for useful values of m2 etc.

This improvement increases the average number of solutions to the scale of
2c/2+ic−B . It increases the time for the attack to roughly 2c/2 compare-exchange
steps and roughly 2c/2 evaluations of fj ; still on the scale of 2c/2 overall, when
evaluation of fj is reasonably fast.

By repeating the same attack 2t−c/2 times one increases the time to the scale
of 2t and increases the average number of solutions to the scale of 2t+ic−B , as
advertised in Section 1.

References

1. — (no editor), Proceedings of the 18th annual ACM symposium on theory of com-
puting, Association for Computing Machinery, New York, 1986. ISBN 0–89791–
193–8. See [5].

2. Daniel J. Bernstein, What output size resists collisions in a xor of independent
expansions?, ECRYPT Workshop on Hash Functions 2007 (2007). URL: http://
cr.yp.to/papers.html#expandxor. Citations in this document: §1, §1, §1, §1.

3. Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication,
Journal of the ACM 28, 521–534. URL: http://wwwmaths.anu.edu.au/~brent/
pub/pub055.html. Citations in this document: §1.

4. Manfred Schimmler, Fast sorting on the instruction systolic array, report 8709,
Christian-Albrechts-Universität Kiel, 1987. Citations in this document: §4.

5. Claus P. Schnorr, Adi Shamir, An optimal sorting algorithm for mesh-connected
computers, in [1] (1986), 255–261. Citations in this document: §4.

6. Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptana-
lytic applications, Journal of Cryptology 12 (1999), 1–28. ISSN 0933–2790. URL:
http://members.rogers.com/paulv/papers/pubs.html. Citations in this docu-
ment: §1.



7. David Wagner, A generalized birthday problem (extended abstract), in [10] (2002),
288–303; see also newer version [8]. URL: http://www.cs.berkeley.edu/~daw/

papers/genbday.html.
8. David Wagner, A generalized birthday problem (extended abstract) (long ver-

sion) (2002); see also older version [7]. URL: http://www.cs.berkeley.edu/~daw/
papers/genbday.html. Citations in this document: §1, §1, §1, §2.

9. Michael J. Wiener, The full cost of cryptanalytic attacks, Journal of Cryptol-
ogy 17 (2004), 105–124. ISSN 0933–2790. URL: http://www3.sympatico.ca/

wienerfamily/Michael/. Citations in this document: §1.
10. Moti Yung (editor), Advances in cryptology—CRYPTO 2002: 22nd annual inter-

national cryptology conference, Santa Barbara, California, USA, August 2002, pro-
ceedings, Lecture Notes in Computer Science, 2442, Springer-Verlag, Berlin, 2002.
ISBN 3–540–44050–X. See [7].


