Putnam Mathematical Competition, 3 December 2005

Problem A1l

Show that every positive integer is a sum of one or more numbers of the form 273%, where
r and s are nonnegative integers and no summand divides another.
(For example, 23 =9+ 8 +6.)

Problem A2
Let S ={(a,b) |a=1,2,...,n, b=1,2,3}. A rook tour of S is a polygonal path made
up of line segments connecting points p1,pa, ..., ps, in sequence such that (i) p; € 5,

(7) p; and p; 41 are a unit distance apart, for 1 < i < 3n, (7i) for each p € S there is a
unique ¢ such that p; = p. How many rook tours are there that begin at (1,1) and end
at (n,1)?

(An example of such a rook tour for n =5 is depicted below.)

Problem A3

Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the
complex plane. Put g(z) = p(z)/2"/2. Show that all zeros of ¢’(z) = 0 have absolute
value 1.

Problem A4

Let H be an n X n matrix all of whose entries are -1 and whose rows are mutually
orthogonal. Suppose H has an a x b submatrix whose entries are all 1. Show that
ab < n.

Problem A5
1
Evaluate / m(fi_l_l)dx.
o x=+1
Problem A6

Let n be given, n > 4, and suppose that Py, Ps,..., P, are n randomly, independently
and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are
the P;. What is the probability that at least one of the vertex angles of this polygon is
acute?



Problem B1

Find a nonzero polynomial P(x,y) such that P(|a],|2a]) = 0 for all real numbers a.
(Note: |v] is the greatest integer less than or equal to v.)

Problem B2
Find all positive integers n, k1, ..., k, such that k1 +--- 4+ k,, = 5n — 4 and

1+ +1—1
ky k,

Problem B3

Find all differentiable functions f : (0,00) — (0,00) for which there is a positive real
number a such that

for all z > 0.
Problem B4

For positive integers m and n, let f(m,n) denote the number of n-tuples (x1,x2,...,x,)
of integers such that |z1| + |x2| + - -+ + |zn| < m. Show that f(m,n) = f(n,m).

Problem B5

Let P(x1,...,x,) denote a polynomial with real coefficients in the variables z1,...,x,,
and suppose that

0? 02
(a) (8—1'% + -+ @) P(.Tl, ce ,I,Un) =0 (1dentlcally)
and that
(b) 23+ -+ 22 divides P(x1,...,2y,).

Show that P = 0 identically.

Problem B6
Let S,, denote the set of all permutations of the numbers 1,2,...,n. For 7 € S, let
o(m) = 1 if 7 is an even permutation and o(7w) = —1 if 7 is an odd permutation. Also,

let v(7) denote the number of fixed points of 7. Show that

o(m) a1 T
7r;Tlv(w)—i—l_( 1)+n—|—1’



Solutions

D. J. Bernstein, 4 December 2005

Problem A1l

Show that every positive integer is a sum of one or more numbers of the form 273%, where
r and s are nonnegative integers and no summand divides another.
(For example, 23 =9+ 8+ 6.)

Solution: For each n > 0 define a sequence E(n) of elements of 2N3N as follows:

e if n =0 then F(n) is the empty sequence ();

e if n > 0 and n is even then E(n) is 2F(n/2), the sequence obtained by doubling
each component of F(n/2);

e if n > 0 and n is odd then E(n) is (E(n — 3%),3%), the sequence obtained by
appending 3* to E(n — 3%), where k is the largest integer such that 3% < n.

I claim that the sum of E(n) is n; that each component of E(n) is even if n is even; and
that no component of E(n) divides another component. Proof:

e n =0: E(n) is empty so it has sum 0.

e n > 0 and n is even: Assume inductively that E(n/2) has sum n/2 and that no
component of F(n/2) divides another component. Then E(n) = 2E(n/2) has sum
2(n/2) = n; each component of E(n) is even; and no component divides another
component.

en > 0 and n is odd: Find the largest integer k£ such that 3* < n. Note that
n — 3% is even. Assume inductively that F(n — 3%) has sum n — 3¥; that each
component of E(n — 3%) is even; and that no component of E(n — 3%) divides
another component. Then E(n) = (E(n — 3%),3%) has sum (n — 3%) + 3% = n;
each component of F(n—3F), being even, does not divide 3¥; and each component
of E(n — 3%)/2, being at most (n — 3%)/2 < (3**1 — 3%)/2 = 3% is not divisible
by 3%, so each component of E(n — 3%) is not divisible by 3*.
In particular, for n > 1, the components of E(n) are one or more elements of 2N3N,
adding up to n, none dividing the others.

Problem A2

Let S ={(a,b) |a=1,2,...,n, b=1,2,3}. A rook tour of S is a polygonal path made
up of line segments connecting points p1,pa, ..., ps, in sequence such that (i) p; € 5,
(i) p; and p; 41 are a unit distance apart, for 1 <i < 3n, () for each p € S there is a



unique ¢ such that p; = p. How many rook tours are there that begin at (1,1) and end
at (n,1)?
(An example of such a rook tour for n =5 is depicted below.)

Solution: The answer is 0 for n = 1 and 2" 2 for n > 2.

For each n > 1, define r, as the number of n x 3 rook tours beginning at (1,1) and
ending at (n, 1), and define s,, as the number of n x 3 rook tours beginning at (1,1) and
ending at (n, 3).

One can obtain an n x 3 rook tour beginning at (1,1) and ending at (n, 1) as follows.
Choose k € {1,2,...,n —1}. Take a k x 3 rook tour beginning at (1,1) and ending at
(k,3). Step to the right n — k times to (n, 3); then down once to (n,2); then left n —k—1
times to (k 4 1,2); then down once to (k + 1,1); then right n — k — 1 times to (n, 1).

Every n x 3 rook tour beginning at (1,1) and ending at (n, 1) can be obtained uniquely
in this way. Indeed, the final step down on the tour must be from (k+1,2) to (k+1,1)
for a unique k € {1,2,...,n — 1}; it must be followed by n — k — 1 steps right to (n,1);
it must be preceded by n — k — 1 steps left from (n,2), since any earlier step up (or left)
would prevent the tour from reaching (n,2); (n,2) must be preceded by a step down
from (n,1); and (n,1) must be preceded by n — k steps right from (k,1).

Consequently 7, = s1 + $2 + -+ 4+ s,_1 for all n > 1. In particular, r; = 0.

Similarly, one can obtain an n X 3 rook tour beginning at (1,1) and ending at (n,3) by
choosing k € {1,2,...,n — 1}, taking a k x 3 rook tour beginning at (1,1) and ending at
(k, 1), stepping to the right n — k times, stepping up once, stepping left n — k — 1 times,
stepping up once, and stepping right n — k — 1 times; or by simply starting from (1,1),
stepping to the right n — 1 times, stepping up once, stepping left n — 1 times, stepping
up once, and stepping right n — 1 times. Every n x 3 rook tour beginning at (1,1) and
ending at (n,3) can be obtained uniquely in this way.

Consequently s, =ry +ro+---+1r,_1 + 1 for all n > 1. In particular, s; = 1.
Now 7, = s, = 2" 2 for all n > 2. Indeed, assume inductively that r, = s, = ok—2
for 2 <k <mn. Thenr, =s; +S9+ - +5,_1 =1+204... 4273 =272 and
Sp=T1+ro+ - Frp1+1=0+204... 4203 41 =272

Problem A3



Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the
complex plane. Put g(z) = p(z)/2"/2. Show that all zeros of ¢’(z) = 0 have absolute
value 1.

Solution: I'm annoyed by this problem, for two reasons.

First, the definition of g(z) is ambiguous when n is odd. Does z™/? mean the principal
branch of the n/2 power, applied to z7 Or does it mean the principal branch of the
square root, applied to 2?7 Or is z not actually a complex number, but an element of
a Riemann sheet chosen so that the square root does not need a branch cut? My proof
works for any of these choices of g, but I can imagine proofs that work with all the roots
of g and that occasionally break down for the first two choices of g. The problem should
have said “Show that all zeros of zp’(z) — (n/2)p(z) have absolute value 1.”

Second, the statement is false for n = 0. Consider, for example, p(z) = 1. This is a
polynomial of degree 0, and it has no zeros, so all of its zeros have absolute value 1. The
function g(z) = p(z)/2™? is then constant, so its derivative is 0, so its derivative has
every complex number (in the ambiguous domain) as a root, not just complex numbers
of absolute value 1.

Assume from now on that n > 1. Factor p(z) as p,(z —r1)(z —r2)--- (2 — rs). By
hypothesis each r; has absolute value 1. If |z| > 1 then, by Lemma 2, (z +1;)/(z — ;)
has positive real part for each j, so—since n > 1-—> (2 +r;)/(z — r;) has positive real
part. Similarly, if |z| <1 then > .(z 4+ r;)/(2 — r;) has negative real part. Either way
>_i(z 4+ 1;)/(z — rj) is nonzero; ie., >°;22/(z — 1) # >_,(2 —rj)/(z2 —rj) = n; ie,
22p'(2)/p(z) # m; e, g'(2) # 0.

Lemma 1: If z € C then (z+1)/(z — 1) has positive real part when |z| > 1 and negative
real part when |z| < 1.

Proof: Write z in polar coordinates as 7e?. Then (2 +1)/(z — 1) = (re?® +1)/(re? — 1)
has real part (r? —1)/((r cos@ — 1)% + (rsin #)?), which is positive if » > 1 and negative
ifo<r<l1.

Lemma 2: If r € C, |r| =1, and |z| € C, then (z+r)/(z —r) has positive real part when
|z| > 1 and negative real part when |z| < 1.

Proof: Apply Lemma 1 to z/r.

Problem A4

Let H be an n x n matrix all of whose entries are -1 and whose rows are mutually
orthogonal. Suppose H has an a x b submatrix whose entries are all 1. Show that
ab < n.

Solution: Write vy, vo,..., v, for the length-n row vectors covering H. By assumption



each entry of v; is +1, so v; has squared length n. By assumption vq,vs,...,v, are
pairwise orthogonal, so v1 + v3 + - - - + v has squared length nb. On the other hand, by
assumption v1 + vo + - - - + vy has a entries equal to b, so v1 + vo + - - - + vy has squared
length at least ab?. Thus ab?® < nb; consequently ab < n, whether or not b = 0.

Problem A5

1
| 1

Evaluate / %daj.
0 X +1

Solution: The answer is (7/8)log2. Fast proof by Bhargava, Kedlaya, and Ng: The

integral is foﬂ/4 log(tan® + 1) df = 077/4((1/2) log 2 + log cos(m/4 — 0) — logcos @) df =

fow/4((1/2) log 2) df = (m/8)log 2 since foﬂ/4 log cos(w/4 — 6) dO = foﬂ/4 log cos 0 df.

Problem A6

Let n be given, n > 4, and suppose that Py, Ps,..., P, are n randomly, independently
and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are
the P;. What is the probability that at least one of the vertex angles of this polygon is
acute?

Solution: The answer is (n? — 2n)/2" 1.

Define 0(p, q) € [0,27), where p and g are points on the circle, as the angle from p to ¢
in the clockwise direction.

Define a vertex as “happy” if it is immediately before an acute-angled vertex. In other
words, if v, w,x are consecutive vertices in clockwise order, then v is happy if and only
if the angle at vertex w is acute. Equivalently: v is happy if and only if 6(v,x) > .
Equivalently: v is happy if and only if at most one other vertex P has (v, P) < .

Critical fact 1: Py is happy with probability n/2"~!.

Indeed, here is a partition of P;’s happiness into n disjoint possibilities, each occurring
with probability 1/2"~:

e (P, P;) > m for all i # 1,

e (P, P;) > m for all i ¢ {1,2} while 8(Py, P») < m;

e O(P,P;) > m for all i ¢ {1,3} while 0(Py, P3) < m;

o ...

e O(Py,P;) > m for all i ¢ {1,n} while (P, P,) <.
Critical fact 2: P; and P are simultaneously happy with probability 1/2773(n — 1).
This probability is the average, over Py, P», of the conditional probability given Py, Py. 1



claim that the conditional probability is exactly ((7—a)" 2+ (n—2)a(r—a)"3)/(2m)" 2
where o = min {0(Py, Py),0(Ps, P1)}. The distribution of « is uniform over [0, ], so the
average of ((m — )" 2 + (n — 2)a(r —a)"73)/(27)" 2 is
l/” (r—a)" 2 + (n—2)a(r —a)” gda
T Jo (2m)n—2
1 [MB=n)m )"+ (n—2)n(r — )" P
o /0 (2m)n =2

do

™

1 7.(.n—1 7.(.n—2
= STzt ((3 — n)n — T (n— 2)7rn — 2>

B 3—n n n—1 B 1
Co2n2(p —1)  2n2(p—1) 2n3(p—1)

Proof of the claim: Assume without loss of generality that 6(P;, P) < m, i.e., that
a = 6(Py, P). Now P is happy if and only if 0(Py, Ps),...,0(Py, P,) are all > m; and
P, is happy if and only if at most one of §(Ps, P3),...,0(Ps, P,) is < m. Thus P; and
P, are simultaneously happy if and only if one of the following disjoint events occurs:

o T+ a<0(P,P;) < 2r for each i ¢ {1,2}—which, given P; and P5, occurs with
conditional probability (7 — a)"™2/(27)"%;

o T+ a < 0(P,P;) < 2r for each ¢ ¢ {1,2,3} while 7 < 6(P1, P3) < 7+ a—which,
given P; and P», occurs with conditional probability a(r — a)™=3/(27)"2;

o T+a < l(P,P) < 2n for each i ¢ {1,2,4} while 7 < 0(Py, Py) < m + a—which,
given P; and P», occurs with conditional probability a(r — )3 /(27)"2;

o ...

e T+a < 0(P,P;) <2 for each i ¢ {1,2,n} while 7 < §(Py, P,,) < 7+ a—which,
given P; and P,, occurs with conditional probability a(r — a)™™3/(27)" 2.

Add to obtain ((m — )" 2 + (n — 2)a(r — a)"3)/(2m)" 2 as claimed.
Critical fact 3: Py, P,, P3 are all happy with probability 0.

Indeed, in each of the above ways for P;, P> to be happy, Ps is visibly unhappy: either
T+ a < 0(P;,P;) < 27, in which case both §(Ps, P1) and §(Ps, P») are below m, or
T < (P, P3) <7+« while 7+ a < (P, Py) < 27, in which case both 8(Ps, P;) and
0(Ps, Py) are below 7. This is where the proof uses the hypothesis that n > 4.

Putting it all together: Permute indices to see that P; is happy with probability n/2"~1;
that P;, P; are simultaneously happy with probability 1/2"73(n — 1), if the indices 1, j
are distinct; and that P;, P;, P, are simultaneously happy with probability 0, if 4,7,k
are distinct. By inclusion-exclusion, the probability of at least one happy vertex is
n(n/2" ) — (5)(1/2"3(n — 1)) = (n? — 2n)/2"" .



Problem B1

Find a nonzero polynomial P(x,y) such that P(|a],|2a]) = 0 for all real numbers a.
(Note: |v] is the greatest integer less than or equal to v.)

Solution: One answer is the nonzero polynomial P(z,y) = (y — 2z)(y — 2z — 1).

Define i = |a]. Theni < a <i+ 1. Ifi <a < i+0.5then 2i < 2a < 2i+1 so
|2a] = 2i =2|a] so |2a] —2]a] = 0. Otherwise i +0.5 < a <i+1s02i+1<2a < 2i+2
so |2a] =2i+1=2[a] +1so |2a] —2|a] — 1 = 0. Either way P(|a],|2a]) = 0.

Problem B2
Find all positive integers n, k1, ..., k, such that k; +---+ &k, = 5n — 4 and

Ly oy
k1 kn

Solution: 1,1; 3,2,3,6; 3,2,6,3; 3,3,2,6: 3,3,6,2; 3,6,2,3; 3,6,3,2; 4,4,4, 4, 4.

By inspection each of these possibilities works. Conversely, assume that ky +--- 4+ k,, =
5n—4 and 1/k;+---4+1/k, = 1; I will show that n, k1,. .., k, is one of these possibilities.

If kq,...,k, are all equal then 1 = 1/ky +---+ 1/k, = n/k; so k; = n and bn — 4 =
ki+---+k, =nk; =n? Hence (n —4)(n —1) = n?> —5n+4 = 0. Either n =1, in
which case (n,ky,...,k,) = (1,1); or n =4, in which case (n,k1,...,k,) = (4,4,4,4,4).

Assume from now on that ki,...,k, are not all equal. The average of ki,...,k, is
(5n — 4)/n so the geometric average of ki,...,k, is below (bn —4)/n. The average of
1/k1,...,1/ky is 1/n so the geometric average of 1/k1,...,1/k, is below 1/n. Thus the
geometric average of ki,...,kn,1/k1,...,1/k, is below \/((5n —4)/n)(1/n); but this
geometric average is equal to 1. Therefore 1 < (5n — 4)/n?; so (n — 1)(n —4) < 0; so
l<n<4;son=2o0rn=23.

Ifn=2then k1 +ky=5n—4=6s01/ky+1/keisoneof 1/1+1/5,1/2+1/4,1/3+1/3,
none of which equal 1.

If n=3then k1 +ka+ks =b6n—4=11s01/ky +1/ka+1/kgisoneof 1/1+---,1/2+4

1/2+4-+,1/24+1/3+1/6,1/2+1/4+1/5,1/3+1/3+1/5,1/3+1/4+1/4. By inspection
none of these are 1 except 1/2+41/3+41/6. Thus (kq, k2, k3) is a permutation of (2, 3, 6).

Problem B3

Find all differentiable functions f : (0,00) — (0,00) for which there is a positive real
number a such that



for all x > 0.
Solution: Here are two classes of qualifying functions f:
e Define f(z) = z. Then f'(x) =1so f'(1/x) =1 =x/f(x).

e Choose positive real numbers a, 3 with 8 # 1, and define f(z) = az”. Then
f'(a/z)f(z) = aB(a/z)’taz? = a?Ba’ 'z = z where a = (1/a?3)Y/(P=1),

I claim that there are no other possibilities: if f’(a/z) = z/f(z) then f is one of the
above functions. Indeed, substitute a/z for z: f’(z) = a/xf(a/x). The right side is
differentiable, so the left side is too:

10) = s (o7 (00 + sGofa))

Substitute f(a/x) = a/zf'(x) and f'(a/z) = z/f(z):

o Coras)

L (3 i) 52

Define g(x) = log f(z). Then ¢'(z) = f'(x)/f(x); note that f'(x) > 0 so ¢'(z) > 0.
Differentiate again:

f@)f"(@) = f'(@)? _ —f@)f'@)/z _ —f'(x)  —g'(x)
f(x)? f(x)? zf(z) r

Define h(z) = logg¢’(xz). Then h'(z) = ¢”(x)/¢'(x) = —1/x. Integrate: there is a real
number d such that h(z) = d — logz. Exponentiate: ¢'(x) = B/x where § = expd.
Integrate again: there is a real number ¢ such that g(x) = ¢+ Slogz. Exponentiate:
f(x) = ax® where a = expe. If =1 then f(z) = axr so a = f'(a/z) = z/f(z) = 1/a
so a = 1so f(z) = x as claimed. Otherwise «, 8 are positive real numbers, § # 1, and
f(z) = ax? as claimed.

9" (x) =

Problem B4

For positive integers m and n, let f(m,n) denote the number of n-tuples (x1,x2,...,x,)
of integers such that ||+ |z2| + -+ + |z, < m. Show that f(m,n) = f(n,m).

Solution: Extend the same definition to all nonnegative integers m,n.

If n = 0 then there is exactly one n-tuple, and its sum of absolute values is 0 < m. Thus
f(m,0) = 1.



If m = 0 then the only qualifying n-tuple is (0,0,...,0). Thus f(0,n) = 1.

If n > 1 and m > 0 then one can construct a qualifying n-tuple as follows: choose
Tp in {—m,—m +1,...,m — 1, m}; choose an (n — 1)-tuple (x1,z2,...,x,_1) satisfying
|z1|+ |z2| + - -+ |zn_1]| < m—|x,|. Every qualifying n-tuple arises uniquely in this way.
Thus f(m,n) = f(m,n—1)+2f(m—1,n—1)+2f(m—2,n—1)+---+2f(0,n —1).

Consequently, f(m +1,n+1) = f(m,n+ 1)+ f(m+ 1,n) + f(m,n) if n > 0 and
m > 0. Indeed, f(m,n+1) = f(m,n)+2f(m—1,n)+2f(m—2,n)+---+2f(0,n). and
fm+1,n+1)=f(m+1,n)+2f(m,n)+2f(m—1,n)+2f(m—2,n)+---+2f(0,n);
subtract.

Theorem: f(m,n) ( n,m) for all nonnegative integers m,n. Proof: If m = 0 then
f(m,n) = f(O,n) =1 = f(n,0) = f(n,m) as claimed. If n = 0 then f(m,n) =
f(m,0)=1= (O,m) f(n,m) as claimed. So assume that m > 1 and n > 1. Then
f(mvn)_f( _17n)+f( ,n—1)+f(m—1,n—1)andf(n,m)=f(n—1,m)+
f(n,m—1)+ f(n—1,m —1). Induct on m + n.

Alternate approaches: One can, with marginally more work, prove the symmetric formula
fim,n) =14+2(m+n—1)!/(m—1)!(n—1)!. One can use other bijections; partitioning
by choices of x,, is straightforward but might not produce the shortest proof.

Problem B5

Let P(z1,...,x,) denote a polynomial with real coefficients in the variables z1,...,z,,
and suppose that

02 92
(®) (633% Tt 6:5%) (@1, an) =0 (identically)

(b) 22 + -+ 22 divides P(xy,...,2,).

Show that P = 0 identically.

Solution: Assume that n > 1. Define X = 22+ --+22 and D = 0%/023+---+0?%/0x2.
The problem is to show that if X divides P and D(P) = 0 then P = 0.

Suppose that P # 0. Find the maximum positive integer e such that X¢ divides P.
Write P/X¢ as )., H; where H; is homogeneous of degree 1.

Then 0 = D(P) = D(>_, X°H;) = Y, D(X“H;). The terms D(X°H,) are homogeneous
of different degrees, namely 2e — 2 + 4, so D(X°H;) = 0 for each i. Thus XD(H;) +
e(4(e—1)+4deg H; +2n)H; = 0 by Lemma 2. The coefficient e(4(e —1)+4 deg H; +2n)
is positive since n > 1 and e > 1; thus H; is a multiple of X. This is true for every 7, so
P/X¢ is a multiple of X, contradicting the definition of e.



Lemma 1: If H is homogeneous then D(XH) = XD(H) + (4deg H + 2n)H.

0’XH 0’H _0X 0H 0%X 0’H 0H :
Proof: Tﬂff = XW —1—28—% oz, +H 9 X 922 +4xi8—mi +2H. By homogeneity

> zi(0H/0x;) = (degZH)H. ’

Lemma 2: If H is homogeneous and e > 0 then

D(X°H) = X°D(H)+e(4(e — 1) +4deg H +2n) X ' H.

Proof: For e = 0: D(X°H) = D(H) = X°D(H) +e(---). Fore > 1: D(X°H) =
XD(X'H) + (4deg X°7'H + 2n)X°1H by Lemma 1. Assume inductively that
DX 'H)=X*"'D(H)+ (e —1)(4(e — 2) + 4deg H +2n) X °"2H. Then
D(X°H) = X°D(H)+ (e —1)(4(e — 2) +4deg H +2n) X 'H
+ (4deg X 'H +2n) X 'H
=X°DH)+ (4le—1)(e—2)+4(e—1)deg H +2(e—1)n
+4(e —1)deg X +4deg H +2n) X 'H
= X°D(H) + (4(e — 1)(e) + dedeg H + 2en) X' H

since deg X = 2.

Problem B6

Let S,, denote the set of all permutations of the numbers 1,2,...,n. For 7 € S5, let
o(m) = 1 if 7 is an even permutation and o(7w) = —1 if 7 is an odd permutation. Also,
let v(7) denote the number of fixed points of 7. Show that

S Ay

= (r)+1 n+1

Solution: Define e,, as the number of even permutations of {1,2,...,n}. Recall that
en=1ifn=0e,=1ifn=1;and e, =n!/2if n > 2.

Define fi as the number of even derangements of {1,2,...,k}, i.e., the number of even
permutations with no fixed points. Define g, as the number of odd derangements of
{1,2,...,k}, i.e., the number of odd permutations with no fixed points.

By choosing k elements of {1,...,n}, choosing an even derangement of those k elements,
and fixing the other n — k elements, one obtains an even permutation of {1,...,n} with
exactly n — k fixed points. Every such permutation arises in this way. Thus there are
exactly (Z) fx even permutations of {1,...,n} with exactly n — k fixed points. Sum over

k to see that Zogkgn (Z)fk =e,,.



Similarly, there are exactly (})gr odd permutations of {1,...,n} with exactly n— k fixed
points, and Y oo, (1) gk = nl — en.

I claim that f,, — g, = (—=1)""!(n — 1) for all n > 0. Proof: The point is that f,, — g, is
determined recursively by the equation ), (Z) (fx — gx) = 2e, —n!; so one simply has to
check that Y, (7)(—=1)*"'(k — 1) = 2e,, — nl. For n = 0 the latter sum is (—1)"!(-1) =
1 = 2eq — 0! as desired. For n = 1 the sum is (—=1)7}(=1) 4+ (=1)°(0) = 1 = 2¢; — 1!
as desired. For n > 2 one has Y, (7)(-1)" = (1 —=1)" =0 and Y, (})(-1)" 'k =
Yok (Zj)(—l)k_l =1-1)""t=0s0>, (1) (=11 (k—1) =0=2e, — n! as desired.

Now if n > 1 then ZOSkSn (”Zl) (fr — gr) = (=1)""n. Proof: (Zi})(fn_i'_l — gnt1) =
(=)™ and Y pcnsy ("5 (fe — 98) = 2en41 — (n+1)! = 0.

The problem asks for the sum of o(7)/(1 + v(m)) over all permutations 7 of {1,...,n}.
There are (}}) fi even permutations 7 with v(1) = n—k, contributing (}) fx/(14+n—k) =
("Zl)fk/(n—k 1) to the sum. There are also () g odd permutations 7 with v(r) = n—k,
contributing —(7)gr/(1 +n — k) = —("[")gr/(n + 1) to the sum. Overall the sum is

> 0<k<n ("I (fr —gr)/(n+1) = (=1)"n/(n+1) if n > 1.

Beware that this formula is wrong for n = 0. The problem should have said that n is a
positive integer.



