Draft.

PROVING PRIMALITY
IN ESSENTIALLY QUARTIC EXPECTED TIME

DANIEL J. BERNSTEIN

ABSTRACT. This paper presents a randomized algorithm that, given a prime
n, finds and verifies a proof of the primality of n in expected time (Ign)4+o(1).

1. INTRODUCTION

This paper presents a randomized algorithm that proves primality in (4 + o(1))-
power expected time:

e Section 2 defines certificates, and proves that n is a prime power if it has a
certificate.
e Section 3 presents a randomized algorithm that, given a prime n, finds a
reasonably small certificate for n in expected time (lg n)2+"(1).
e Section 4 presents an algorithm to verify a reasonably small certificate in
time (Ign)*to().
One can check whether 7 is a perfect power in time (Ign)!'*°(1) as explained in [6],
SO prime-power proving is tantamount to prime proving.

For comparison: The cyclotomic primality-proving method in [2] and [9] has time
exponent on the scale of 1glglgn. The elliptic-curve primality-proving method in
[11] and [5] is conjectured to take polynomial expected time, but with a larger
exponent than 4 + o(1). The hyperelliptic-curve primality-proving method in [3]
takes polynomial expected time, but with a larger exponent and a much more
difficult run-time proof.

The algorithm in this paper is inspired by the recent Agrawal-Kayal-Saxena
algorithm in [4], which proves primality in polynomial time. The improvement of
the time exponent to 4 + o(1) relies on an idea by Berrizbeitia in [8], twisting z — s
into (z — s, {2z — s, etc. Berrizbeitia used this idea to prove primality in (44 0(1))-
power expected time for a sparse set of primes, namely the n’s for which n? — 1 is
divisible by some power of 2 near (lgn)?2.

Qi Cheng in [10] proposed a primality-proving algorithm that is conjectured to
take (4 + o(1))-power expected time. Cheng adapted Berrizbeitia’s idea to prove
primality in (4 4 o(1))-power expected time for a larger set of primes, namely the
n’s for which n — 1 is divisible by a prime e ~ (Ign)?; Cheng then used one elliptic-
curve primality-proving step to prove primality of any n, using an auxiliary prime

Date: 20030306.

1991 Mathematics Subject Classification. Primary 11Y16.

The author was supported by the National Science Foundation under grant DMS—0140542, and
by the Alfred P. Sloan Foundation. He used the libraries at the Mathematical Sciences Research
Institute and the University of California at Berkeley.

2 DANIEL J. BERNSTEIN

in the larger set. The conjecture is that the elliptic-curve primality-proving method
will not take long to find a suitable auxiliary prime.

The best case for the algorithm in this paper is an even larger set of primes,
namely the n’s for which n — 1 has any divisor e ~ (Ign)?. Perhaps the algorithm
will set speed records in that case for tractable values of n. See Section 5.

The 4+ o(1) theorem in this paper relies on a further generalization from n — 1
(and n% — 1) to n? — 1 for any d € n°(); a standard result from analytic number
theory implies that every prime n has a suitable divisor of n? — 1 for some small
d. Unfortunately, the time grows quite noticeably as d increases; I doubt that the
case d > 1 will be better in practice than using Cheng’s approach to reduce to the
case d = 1.

Historical notes. My generalization was independent of Cheng’s paper. I read
Berrizbeitia’s paper on 26 January 2003 and promptly sent email to a few people
saying how I expected it to generalize to any n. I was then told about Cheng’s
paper, which had been published on 16 January 2003. I published a draft of this
paper, with a detailed proof of Theorem 2.2, on 28 January 2003, and announced
the result on the NMBRTHRY mailing list on 29 January 2003.

Mihailescu and Avanzi then published a much longer proof of Theorem 2.2, in
the special case S = {—1}, c. =0, ¢ = 0. They claimed incorrectly that my result
was “not proved to work on any input n” and that my result was only for d = 1.

2. CERTIFICATES

Definition 2.1. Let n, d, and e be positive integers. Let ¢ and c_ be nonnegative
integers. Let f be a monic polynomial in (Z/n)[y] of degree d. Define R as the ring
(Z/n)[y]/f. Letr be an element of R. Let S be a subset of R. Assume that
e divides n¢ —1;
=l =1 in R;
r(n'=1/a _ 1 js q unit in R for each prime q dividing e;
s is a unit in R for all s € S;
s¢ — (s')¢ is a unit in R for all distinct s,s' € S;
s¢ —risaunitin R for all s € S;
() () (#5550717) 2 VL and
o (z— s)”d = r(n*=V/eg _ s in the ring Rlz])/(x®—7r) for all s € S.
Then (d,e,c,c_, f,r,S) is a certificate for n.

For example, (1,840,419,246,y,17,{1}) is a certificate for
31415926535897932384626433832795028841,
and (1,2430,1214,928,y,2, {1,2}) is a certificate for

2718281828459045235360287471352662497757247093699959574966967627724076630353547594571.

Theorem 2.2. Let n, d, and e be positive integers. Let ¢ and c_ be nonnegative
integers. Let f be a monic polynomial in (Z/n)[y] of degree d. Define R as the
ring (Z/n)[y]/f. Let r be an element of R. Let S be a subset of R. Assume that
(d,e,c,c, f,r,S) is a certificate for n. Then n is a power of a prime.

In particular, if n has a certificate and is not a perfect power, then n is prime.
This theorem improves on the theorems of Berrizbeitia and Cheng in two basic
ways:

PROVING PRIMALITY IN ESSENTIALLY QUARTIC EXPECTED TIME 3

e d is allowed to be any positive integer. Berrizbeitia considered only d €
{1,2}, and Cheng considered only d = 1. Larger d’s are important for
the (Ign)**t°(!) theorem in this paper. On the other hand, as discussed in
Section 1, the case d = 1 is the fastest case, and might end up being the
only case used in practice.

e e is allowed to be any positive divisor of n¢ — 1. Berrizbeitia considered
only powers of 2 (although with slightly more general moduli z%¢ —),
and Cheng considered only primes e; the proofs relied on e having only one
prime divisor. Arbitrary e’s are important for the (Ign)**°(}) theorem in
this paper, and also save time in practice, because they allow many more
n’s to be handled with d = 1.

This theorem also incorporates several smaller time-saving features. It uses negative
powers (i.e., allows ¢ > 0) as suggested by Voloch, with the optimization suggested
by Vaaler. It uses \/e/_3 as suggested by Lenstra, instead of 24/e or /e or \/e/2.
It allows #S to vary; Berrizbeitia and Cheng considered only #S = 1 (or #S = 2
for modulus z2°¢ — 7).

Proof. If n = 1 then n is a power of a prime, so assume that n > 2. Let p be a
prime divisor of n.

Find an irreducible polynomial g in F[y] dividing the image of f. Then k =
F,ly]/g is a field.

Write N = n? and P = #k = pi°89. Note that P divides N. If N = P then n
must be a power of p, so assume that N > P.

Define ¢ as the image of 7V =1/€ in k. Then ¢ has order e in k; consequently e
divides P — 1. (Indeed, 7V~ = 1 in R by hypothesis, so (¢ = 1 in k. Furthermore,
if ¢ is a prime dividing e, then r(N=1/¢ — 1 is a unit in R by hypothesis, so its
image (/7 — 1 in k is a unit; hence (¢/9 # 1 in k.)

If s € S then (z — s)V = r(N-"D/eg — 5 in R[z]/(x® — r) by hypothesis, so
(x —)N = (z — s in k[z]/(z® — 7). Substitute (™z for = for any integer m:
(Cmx —s)N = ¢(™Flz — s in k[z]/((("x)® —r) = k[z]/(z® —r). Thus ((™z —s)N =
(m*ix — s in k[z]/(z® — r) for any integer i > 0.

The nonzero element 7(P~1/¢ of k has eth power rf~! = 1, so r(P~1/e = (¢
in k for some integer £. Thus z¥ = 2P 1z = r(FP-V/ex = ¢’z in k[z]/(z° —7);
consequently ((™z — s)N' P’ = ¢m+itily — s in k[z]/(z® — r) for any integer j > 0.
Define T = {(™x — s : 5 € S,m € Z} C k[z]; then tNV' P’ = ¢(¢**7%z) in k[z]/(z® —7)
forallteT,7>0,and j > 0.

Note that #T = e#S. (There are e powers of { and #5S choices of s.) Note also
that distinct elements of T are coprime in k[z]. (If (™z — s and (™ z — s’ are not
coprime then s¢™ = §'¢™ in k, so s¢ = (s')¢ in k. If s # & then s¢ — (s')¢ is a unit
in R by hypothesis, so it is a unit in k; contradiction. Thus s = s’; so s(m' = s(™;
also s is a unit in R by hypothesis, so Cm’ ={™m)

Define L as the set of (a,8) € Z x Z such that e divides a + (8 — a)¢; then
L is a lattice of determinant e. Define C as the set of (a,3) € R x R such that
max {|a|lg(N/P),|B|1g P, |alg(N/P) + Blg P|} < 1/e/3lgN; then C is a closed
convex symmetric set of area 3(e/3)(lg N)?/(lg P)1g(N/P) > 4e. By Minkowski’s
theorem, there is a nonzero point (o,) € LNC. Assume without loss of generality
that a > 0.

4 DANIEL J. BERNSTEIN

Z/n — > F,

If 3 > 0, define uw = (N/P)*P? and v = 1; then u and v are positive integers,
lgu = alg(N/P) + Blg P < /e/31g N by definition of C, and ¢*P* = tN"P’ =
t(¢otPle) = t(¢¥x) = tP° = t*P° in k[z]/(z¢ —r) for all t € T. If B < 0,
define u = (N/P)* and v = P~P; then u and v are positive integers, lgu =
alg(N/P) < /e/3lgN and lgv = —Blg P < 1/e/31lg N by definition of C, and
uP® = N = p(¢og) = t(¢(cPg) = tP*" = tvP* in kz]/(z® —r) for all t € T.

Find an irreducible polynomial h in k[z]| dividing the image of #® — r. Then
k[z]/h is a field, and t*F" = P in k[z]/h for all t € T. Thus t* = ¢ in k[z]/h
for all t € T, since Pth powering is invertible in k[z]/h.

Each element of T is a unit in k[z]/h. (The remainder (z° — r) mod ({"™z — s)
is (s¢™™)¢ —r = s — r, which is a unit in k by hypothesis; so z¢ — r and ("z — s
are coprime in k[z]; so h and (™ — s are coprime in k[z].)

Consider functions a : T — Z such that, first, #{t € T : a(t) < 0} = c_; second,
> —a(t)a(t) < 0] < ¢ and, third, D ,a(t)[a(t) > 0] < e —1 —c. There are
FETV(SE)(FT e > NIVersl > NvVers s |u — v| such functions.

c_ e—1l-c

Assume that a, b are two such functions with [T, t*® =[], t*® in (k[z]/R)*.
Clear denominators to obtain polynomials A = [, p t*(Va®20=bBBO<0] ¢ [z)
and B = [[, t?®b®)20-a®et)<0) ¢ k[z] with A = B in k[z]/h. Each element
t € T satisfies tV = t(¢'z) in k[z]/h, so A(('z) = AN = BN = B(¢'z) in k[z]/h.
Thus A — B has roots z, (z, (%z, ..., (¢ 'z in k[z]/h; these roots are distinct, since
z is invertible in k[z]/h; but A — B has degree at most c+e—1—c < e, so it cannot
have e roots unless it is zero. Thus A = B in k[z]; so a(t)[a(t) > 0]—b(¢)[b(t) < 0] =
b(t)[b(t) > 0] — a(¢)[a(t) < 0] by unique factorization into coprimes; so a(t) = b(t).

Thus there are more than |u — v| products [[,.r t*®*) in (k[z]/h)*. Each product
7 satisfies 7% = 7 in (k[x]/h)*, hence 7l“*~?l = 1; but a field cannot have more
than |u — v| roots of 7l*~%l = 1 if |[u —wv| > 0. Thus u = v. In other words,
N® = P* B, If « = 0 then P~# = 0 so § = 0, but (a,3) was nonzero by
construction; contradiction. Hence n is a power of p. d

PROVING PRIMALITY IN ESSENTIALLY QUARTIC EXPECTED TIME 5

Notes on the proof. If N = P2 then n must be a power of p; if N # P? then the
area of C cannot equal 4e; so one can use a slightly simpler form of Minkowski’s
theorem.

The proof would still work if N [Vers] were replaced by N Vel3 in the definition
of a certificate. However, this change would complicate certificate testing, and
would have very little benefit.

The Agrawal-Kayal-Saxena proof considered the subgroup of (k[z]/h)* generated
by images of elements of T’; the subgroup has size larger than |u — v|, so a generator
g of the subgroup has order larger than |u — v|, so the equation g* = g* implies
that u = v. Kiran Kedlaya pointed out to me the simpler argument that 7% = 7"
has at most |u — v| nonzero roots in a field unless u = v; this avoids constructing a
generator.

Can we prove better lower bounds on the group size, i.e., on the number of
products [],2*® in (k[z]/h)*? This is the same as the number of products in
k[z]/(z® —r): if A = B in k[z]/h then A — B has roots z,(z,(*z,...,(* !z in
k[z]/h as above, so A — B is divisible by 2 — r. It would be surprising for the
number of products to be much smaller than P¢. A lower bound close to P¢, with
#S small, would accelerate the algorithm from essentially quartic time to essentially
cubic time.

3. FINDING A CERTIFICATE

Every prime n has a certificate of the form (d, e, 0,0, f,r,{1}) with d € (Ign)°®*)
and e € (Ign)?t°()). Furthermore, this certificate can be found in expected time
(1gn)2*t°(1). This section discusses the construction of d and e, then the construction
of f, and finally the construction of r.

As discussed in Section 4, one can then verify that this is a certificate for n in
time (lgn)*te®),

As discussed in Section 5, one can reduce the o(1) by choosing certificates more
carefully.

Finding d and e. There is a positive integer d such that n¢ — 1 has a divisor e > 6
between d? [Ilgn]® and (d+1)d2 [Ign]”, by Theorem 3.1. The smallest such d is in
exp(O(lglglgnlglglglgn)) by Theorem 3.2.

To compute the smallest d, one can try d = 1, then d = 2, etc.; success will occur
within (Ign)°(") tries. For each d, there are (Ign)?+°() possible divisors e between
d2ign]? and (d + 1)d2 [Ign]?, each e having (Ign)°(") bits. One can compute
n% — 1 modulo all these e’s simultaneously in time (Ign)2t°(); see, e.g., [7, Section
18).

Theorem 3.1. Let n be an integer with n > 2. Then there exists a positive integer
d such that n® — 1 has a divisor € > 6 with d2 [Ilgn]” < e < (d+ 1)d2 [ign]>.

Proof. Observe that n2—1 > [lgn]” and n® +n*+n2+1 > 64. Thus e > 64 [Ign]’
where e = n8 — 1. Define d as the largest multiple of 8 with d? < e/ [Ilgn]?. Then
d > 8, and e divides n®—1. Furthermore, d® > 16d+64, so d*+d? > d?>+16d+64 =
(d+8)*> e/ [lgn]”. O
Theorem 3.2. There are constants ng and o such that, for every prime number

n > ng, there is a positive integer d < exp(alog(3loglgn)loglog(3loglgn)) such
that n® — 1 has a divisor e > 6 with d2 [Ign]® < e < (d+ 1)d? [ign]>.

6 DANIEL J. BERNSTEIN

This is a typical application of a well-known theorem of Adleman, Pomerance,
Rumely, and Odlyzko; see [2, Theorem 3]. The point is that the product of the
small primes dividing n¢ — 1 grows, at a minimum, almost exponentially with d.
Older theorems suffice for the bound d € (Ign)°(%).

It is overkill to assume that n is prime; what matters is that n has no tiny prime
divisors.

Proof. Choose a such that d below always exists, and choose ng > 8 such that H
below always exists.

Given n > ng, select a real number H > 16 such that H < (lgn)®, D+ 1 < n,
and H/D? > [Ign]?, where D = exp(aloglog H logloglog H). Asymptotically one
can take H in (Ign)2t°(®), and thus D in (Ign)°(D), satisfying H/D? > [lgn]?, so
the extra constraints H < (Ign)® and D + 1 < n are automatically satisfied for n
large enough. Note that D < exp(alog(3loglgn)loglog(3loglgn)).

By [2, Theorem 3], there is a positive integer d < D such that H < 7, where 7
is the product of the primes ¢ with ¢ — 1 dividing d.

Now d2 [lgn]*® < D2[lgn]> < H < 7. Find the smallest positive integer e >
d* g n12 dividing 7; note that e > 6 since n > 8. Each prime ¢ is at most d + 1,
s0 e must be smaller than (d + 1)d? [1gn]”.

Finally, e divides n? — 1. Indeed, each prime ¢ is at most d+1 < D +1 < n, so
g does not divide n, so ¢ divides n?~ ! — 1, hence n? — 1. O

Finding f. For every prime number n and positive integer d, there is a monic
irreducible polynomial f € (Z/n)[y] of degree d.

One standard way to find f is to generate a uniform random monic polynomial
f of degree d, see if it is irreducible, and try again if not. There are many choices of
f that work: the expected number of trials is approximately d, which is in (Ig n)"(l)
in Theorem 3.2.

Another standard way to find f is to search systematically through polynomials
with small coefficients. This avoids randomness, and produces polynomials f that
take very little space to write down. It has the disadvantage that the number of
trials is no longer guaranteed to be small.

One way to check the irreducibility of a single f is to see whether f has factors

in common with &" — z,a"" —x,...,2"" — z. Bach nth powering in (Z/n)y]/f
takes time (Ign)?+°() if d € (1gn)°()), so the total time for an irreducibility test is
(Ign)>*+oth).

There is much more to say about the construction of irreducible polynomials. I
should cite some recent survey. I should say a little about the impact of GRH, and
about the improvements available as d grows.

Finding r. For every prime number n, positive integer d, positive integer e dividing
n? — 1, and monic irreducible polynomial f € (Z/n)[y] of degree d, there is an
element r of the field R = (Z/n)[y]/f such that r(n*=1)/e has order e; for example,
any generator r of R*. Furthermore, if e > 6 and e > d? [Ig n]2 as in Theorems 3.1
and 3.2, then (d,e,0,0, f,r,{1}) is a certificate for n by Theorem 3.3.

Finding elements of specified order is analogous to (and in many ways tied to)
finding irreducible polynomials of specified degree. One standard way to find r is
to generate a uniform random element r of R — {0}, see if r(n“=1/e has order e,
and try again if not. There are many choices of r that work: the expected number

PROVING PRIMALITY IN ESSENTIALLY QUARTIC EXPECTED TIME 7

of trials is the product of ¢/(q — 1) for primes ¢ dividing e, which is in (Ign)°®) if
e € (Ign)2ro®).

Another standard way to find r is to search systematically through elements of
(Z/n)]y]/ f with small coefficients. This avoids randomness, and produces r’s that
take very little space to write down; the reader may have noticed that the examples
of certificates in Section 2 are very short. It has the disadvantage that the number
of trials is no longer guaranteed to be small.

One way to check whether r(n“=1)/¢ has order e is to check that r»*~! = 1 and
that r("*~1)/2 £ 1 for each prime g dividing e. There are only (Ign)°") such primes
qif e € (Ign)?t°() and all of them are easy to find since e is small; the main work
is to compute r(™“~1)/¢ in the first place, which takes time (gn)2+e),

I should, again, point to the literature: combining orders, using GRH, merging

exponentiations, etc.
Theorem 3.3. Let n be a prime number. Let d be a positive integer. Let e > 6 be a
divisor of n® —1 such that d? [lg n'|2 <e. Let f be a monic irreducible polynomial in
(Z/n)[y] of degree d. Let r be an element of the ring (Z/n)[y]/f such that p(ni=1)/e
has order e. Then (d,e,0,0, f,r,{1}) is a certificate for n.

Proof. Write R = (Z/n)[y]/f. Observe that R is a field.

By hypothesis, n, d, and e are positive integers; e divides n? — 1; R -
(r(”d_l)/e)e = 1; if ¢ is a prime dividing e, then r(**~1D/9_1 = (r(”d_l)/e)e/q—l #0,
so r(*=1/4 _ 1 ig a unit; and e > 1, so r(n*~1)/e #1l,sor#1,s01°—r=1—ris
a unit.

Furthermore, e > 6, so (2::11) > 2¢ and e > (1/e/3 + 1)2. Thus (Ig (2::11))2
e2 > (ve/3+ 1)2% > (y/e/3 +1)2d% [ign]”> > [\/e/3]° d*(lgn)?; ie., (7}
nd|—1/e/3—|.

Finally, (z — 1)"d =z"

>
>

‘1=2"""1g—1=r®"-D/eg _1in R[z]/(z° —r).

O

4. CHECKING A CERTIFICATE

This section presents an algorithm that decides whether (d,e,c,c_, f,r,S) is a
certificate for n, given positive integers n,d, e, nonnegative integers ¢ and c_, a
monic degree-d polynomial f € (Z/n)[y], an element r of R = (Z/n)[y]/f, and a
subset S of R.

This algorithm takes time (lg n)4+”(1) for reasonably small inputs. “Reasonably
small” means that d is in (Ign)°M); #S is in (Ign)°(; e is at most (Ign)?T°M); and
the product (eﬁs) () (e#sfecjltec*l*c) has at most (Ign)2+°() digits.

Note that the certificates (d, e, 0,0, f,r,{1}) constructed in Section 3, with d €
(1lgn)°® and e € (Ign)?t°() are reasonably small. The product of binomial
coefficients is (2:__11), which has O(e) digits.

The reader is assumed to be familiar with fast multiplication. See, e.g., [7].

The basic conditions. Computing n¢ — 1, and checking that it is divisible by e,
takes time (Ign)+e(),

Multiplying in Z/n takes time (Ign)'+°(1). Thus multiplying in R takes time
(g n)*+°(), Computing the n? —1 power of 7 in R takes (Ign)'T°(") multiplications
in R, hence time (Ign)2to().

8 DANIEL J. BERNSTEIN

The units. There are (Ign)°(!) primes ¢ dividing e; finding them by trial division
takes time (lgn)'T°(Y). Computing the (n? — 1)/q power of 7 in R takes time
(Ign)>t°(), Checking whether r(®*~1/2 — 1 is a unit in R takes time (Ign)+°(®).

Computing s¢ in R for each s € S takes time (lgn)'*°(). Checking all the
remaining units takes time (Ign)!*To().

The binomial coefficients. Computing the product of binomial coefficients takes
time (lgn)2+°(M). T should say more about the binomial-coefficient computation;
maybe I should simplify the definition of “reasonably small.”

Computing ndlVe/3] takes time (1gn)2te(),

The big exponentiation. Multiplying in R[z]/(z¢ — r) takes time (Ig n)3+a(1)_
Computing each (z — s)n"’ in Rlz]/(z° — r) takes (Ig n)1+o(1) multiplications in
R[z]/($e - 7'), hence time (lg n)4+0(1)_

5. OPTIMIZATIONS AND PRACTICAL PERFORMANCE
This section looks at verification speed more closely in the important case d = 1.

Choosing ¢ and c_. The choice ¢ = ¢ = 0 in Section 3 is far from optimal. If
¢~ ae and c_ =~ Be then the product (efs)(2) (e#s;‘i—lte;l*c) is approximately
exp(ey) where v = (#S — B+ 1—a)log(#S —B8+1—a)+ #Slog#S + aloga —
2(#5 — B) log(#5 —) — 2Blog B — (a —) log(a —) — (1 —) log(1 — a).

One can, either with a computer program or by hand, easily find « and § that
maximize vy for any given #S. Any choice of ¢ = ae and c_ = (e is reasonable; a
small amount of additional searching will locate the optimal ¢ and c_.

It turns out that the optimal o and S have simple expressions: o = 1/2 and
B=(#S+1-+/#5%+1)/2. For example, say #S = 1. The product of binomial
coefficients is about 5.828427...¢ if one takes ¢ ~ e/2 and c_ ~ (2 — V/2)e/2 =
(0.2928932. . .)e. For comparison: The product of binomial coefficients is about 4¢
if one takes c =0 and c_ = 0.

Choosing e and #S. Say there are many possibilities for (e, #5)—or, in Cheng’s
method, many possibilities for an auxiliary (n,e,#S5)—such that the maximized

product of binomial coefficients exceeds n(\/e/_ﬂ . One should choose the possibility
that minimizes verification time.

As a first approximation, this means minimizing e#.5S: verification time can be
crudely modeled as (Ign)?e#S. The following table shows e#S/(Ign)? as a function
of e/(Ign)?, when #5S is chosen as small as possible:

works for e/(lgn)? so e#S/(Ign)?
#S between about| and about |is between about | and about
1 0.051540... 00 0.051540... 00
2 0.027664 . ..|0.051540... 0.055328.../0.103081 ...
3 0.020415...|0.027664 . .. 0.061247.../0.082992...
4 0.016832...|0.020415. .. 0.067328.../0.081663 ...
5 0.014653...|0.016832... 0.073269.../0.084160...
6 0.013169...(0.014653 ... 0.079017.../0.087923...
7 0.012082...(0.013169... 0.084575.../0.092187...
8 0.011244...|0.012082... 0.089958.../0.096658 ...

PROVING PRIMALITY IN ESSENTIALLY QUARTIC EXPECTED TIME 9

If e drops substantially below 0.01(Ign)? then e#S explodes: #S = 100 works
for e/(lgn)? down to about 0.004037...; #S = 1000 works for e/(lgn)? down to
about 0.002164...; #S = 10000 works for e/(Ign)? down to about 0.001347...;
and so on.

A more precise model of verification time includes logarithmic factors that grow
with e but not with #S. Reducing e at the expense of #S often saves time even if
it increases e#S.

Multiplying quickly. One can square an element of (Z/n)[z]/(z® —r) as follows:

o Lift to Z[z], obtaining polynomials of degree at most e — 1 with coefficients
between —n/2 and n/2.

e Choose p so that 27 > e(n/2)?, and map to Z[z]/(z — 2P) = Z, obtaining

an integer with approximately 2elgn bits.

Square in Z.

Recover the product in Z[z].

Reduce modulo z¢ — r. This is particularly easy if r is small.

Reduce each coefficient modulo .

The overall speed of certificate verification depends crucially on the details of these
steps.
For example, one might square a polynomial with the following C code, using
the GMP 4.1.2 library:
mpz_set_si(t1,0);
for (j = 0;j < e;++j)
for (b = 0;b < nbits;++b)
if (mpz_tstbit(poly[jl,b))
mpz_setbit(tl,j * padbits + b);
mpz_mul(tl,t1,t1);
for (j = 0;j < e;++j) {
mpz_set_si(t2,0);
for (b = 0;b < padbits;++b)
if (mpz_tstbit(tl,(j + e) * padbits + b))
mpz_setbit(t2,b);
mpz_set_si(t3,r);
mpz_mul (t2,t2,t3);
mpz_set_si(t3,0);
for (b = 0;b < padbits;++b)
if (mpz_tstbit(tl,j * padbits + b))
mpz_setbit (t3,b);
mpz_add(t2,t3,t2);
mpz_mod (poly[j],t2,n);
}
This code uses approximately 2-10'! clock cycles on a Pentium III-800 to verify the
aforementioned certificate (1,2430,1214,928,y,2, {1,2}) for the prime |10%%exp1].
A large fraction of the time is spent testing and setting bits; GMP does not offer
any good way to copy a stretch of bits from one number to another. Another large
fraction of the time is spent in integer squaring, which can be sped up considerably.
I would not be surprised to see an order of magnitude speed improvement.

10

1

2

DANIEL J. BERNSTEIN

REFERENCES

| —, Proceedings of the 18th annual ACM symposium on theory of computing, Association for
Computing Machinery, New York, 1986. ISBN 0-89791-193-8.

Leonard M. Adleman, Carl Pomerance, Robert S. Rumely, On distinguishing prime numbers
from composite numbers, Annals of Mathematics 117 (1983), 173—-206. ISSN 0003-486X. MR
84e:10008.

[3] Leonard M. Adleman, Ming-Deh A. Huang, Primality testing and abelian varieties over

[4

5

finite fields, Lecture Notes in Mathematics, 1512, Springer-Verlag, Berlin, 1992. ISBN 3-

540-55308-8. MR 93g:11128.

Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P (2002). Available from

http://www.cse.iitk.ac.in/news/primality.html.

| A. O. L. Atkin, Francois Morain, Finding suitable curves for the elliptic curve method of fac-
torization, Mathematics of Computation 60 (1993), 399-405. ISSN 0025-5718. MR 93k:11115.

[6] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of Com-

[7
8
[9

[10

[11

[12

putation 67 (1998), 1253-1283. ISSN 0025-5718. MR 98j:11121. Available from http://cr.
yp.to/papers.html.

] Daniel J. Bernstein, Fast multiplication and its applications. Available from http://cr.yp.
to/papers.html.

| Pedro Berrizbeitia, Sharpening PRIMES is in P for a large family of numbers (2002). Avail-
able from http://arxiv.org/abs/math.NT/0211334.

| Wieb Bosma, Marc-Paul van der Hulst, Primality proving with cyclotomy, Ph.D. thesis,
Universiteit van Amsterdam, 1990.

| Qi Cheng, Primality proving via one round in ECPP and one iteration in AKS (2003).
Available from http://wuw.cs.ou.edu/~qcheng/.

] Shafi Goldwasser, Joe Kilian, Almost all primes can be quickly certified, in [1] (1986), 316-329;
see also newer version in [12].

| Shafi Goldwasser, Joe Kilian, Primality testing using elliptic curves, Journal of the ACM 46
(1999), 450-472; see also older version in [11]. ISSN 0004-5411. MR 2002e:11182.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), THE UNI-

VERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045

E-mail address: djb@cr.yp.to

