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FROM COMPOSITE NUMBERS:
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Abstract. This paper compares 21 methods to distinguish prime numbers
from composite numbers. It answers the following questions for each method:
Does the method certify primality? Conjecturally certify primality? Certify
compositeness? Are certificates conjectured to exist for all inputs? Proven
to exist for all inputs? Found deterministically for all inputs? Is a certificate
verified in essentially linear time? Essentially quadratic time? Et cetera. Is a
certificate found immediately? In essentially linear time? Essentially quadratic
time? Et cetera. In brief, how does the method work? When and where was
the method published?

1. Introduction

This paper summarizes fourteen methods to prove that an integer is prime, three
additional methods to prove that an integer is prime if certain conjectures are true,
and four methods to prove that an integer is composite. The summary is presented
in a compressed chart and in a comprehensive table.

The table has five columns for each method:

• “Method”: a brief summary of a theorem encapsulating the method. For
example, one method is “if n is not a b-prp, i.e., does not divide bn − b,
then n is composite.” The target integer is always n. An auxiliary input,
such as b in this example, is called a certificate.

• “Effect of certificate”: what the method tells you about the target integer n.
Either “proves primality” or “conjecturally certifies primality” or “proves
compositeness.”

• “Certificate exists for”: which integers can be handled by the method.
Either “every prime” or “conjecturally every prime” or “every composite”
or “nearly every composite.”

• “Time to verify certificate”: how quickly one can check whether an auxiliary
input is, in fact, a certificate for n. For example, (lg n)1+o(1) or (lg n)2+o(1)

or (lg n)O(lg lg lg n). Time in this paper is measured on conventional von
Neumann computers, such as 2-tape Turing machines; space is ignored.

• “Time to find certificate,” at the same level of detail. Some certificate-
finding methods use randomness, as indicated by “random” in this column.
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The table includes various credits. For example, the original elliptic-curve primality-
proving method was published in 1986 by Goldwasser and Kilian in [38]; its proofs
of primality rely on a 1936 theorem of Hasse in [44]; it finds certificates using a
1985 algorithm of Schoof in [83]. These credits are listed under “Method,” “Effect
of certificate,” and “Time to find certificate” respectively.

The chart includes the following information for each method:

• Proven upper bounds for exponents in times to (provably deterministically)
verify certificates. These upper bounds are listed down the side of the chart.

• Proven upper bounds for exponents in times to (provably deterministi-
cally, or provably randomly, or conjecturally) find certificates. These upper
bounds are listed across the top of the chart.

• How reliably the method finds certificates: “d” if certificates are provably
deterministically found for every n (every prime n for primality-proving
methods, or every composite n for compositeness-proving methods); “r” if
certificates are provably found for every n but the algorithm uses random-
ness; or “?” if certificates are merely conjectured to be found for every n.
Certificates not believed to exist for every n are not included in the chart.

• What the method does: “p” for certificates that prove primality or “c” for
certificates that prove compositeness. (Empty certificates that prove either
primality or compositeness, depending on the input, are listed as “dpc”
in column 0 + o(1).) Certificates that are merely conjectured to imply
primality are not included in the chart.

• The year that the method was first published.

For example, the entry “?p 1990” in row 3 + o(1) and column 4 + o(1) refers to a
primality-proving method with the following features: certificates are conjectured
to be found for every prime n in time (lg n)4+o(1); certificates are deterministically
verified in time (lg n)3+o(1); verification of a certificate proves that n is prime.
This method is Shallit’s variant, published by Lenstra and Lenstra in [53], of the
elliptic-curve primality-proving method.

Thanks to Eric Bach for suggesting a 2-dimensional chart. A 3-dimensional chart
(with the third dimension labelled ?p, rp, dp, dpc, dc, rc, ?c) would be even better,
but would be difficult to compress comprehensibly onto a printed page.

Lower-level subroutines. Implementors should be aware of the state of the art
in algorithms to carry out various lower-level operations:

• Integer multiplication, division, and gcd can be done in essentially linear
time, as shown by Toom in [87], Cook in [32], and Knuth in [48] respectively.
Similar comments apply to various other arithmetic operations; see my
survey [16]. Additional constant-factor speedups in arithmetic are an active
research area.

• One can quickly find all divisors of n congruent to r modulo m, when m
is larger than roughly n1/4. This was proven by Coppersmith, Howgrave-
Graham, and Nagaraj in 1998, after earlier results by Lenstra, Konyagin,
and Pomerance; see [54], [49], [45, Section 5.5], and my survey [18].

Beware that slower subroutines for arithmetic, and larger bounds on m, appear
throughout the primality/compositeness literature—usually because the authors
were writing before the better results were known, but sometimes because the
authors inexplicably refused to take advantage of the best known results.
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2. The chart

0 + o(1) 1 + o(1) 2 + o(1) 3 + o(1) 4 + o(1) 5 + o(1) O(1) very big

1 + o(1) dc

2 + o(1) rc 1966 dp 1987

3 + o(1) ?p 1990 ?p 1988 rp 1992 dp 1914
?p 1986

4 + o(1) rp 2003 dc unp

5 + o(1)

6 + o(1) dpc unp
?pc 2002

O(1) dpc 2002

O(lg lg lg n) dpc 1979

Here are the methods listed—see the table for more information:

• 1 + o(1), very big, dc: proving compositeness with factorization.
• 2+o(1), 2+o(1), rc 1966: Artjuhov [9], proving compositeness with Fermat.
• 2+o(1), very big, dp 1987: Pomerance [77], proving primality with elliptic-

curve factors.
• 3+o(1), 4+o(1), ?p 1990: Shallit [53], proving primality with elliptic-curve

factors.
• 3+ o(1), 5+ o(1), ?p 1988: Atkin [66], proving primality with elliptic-curve

factors.
• 3 + o(1), O(1), rp 1992: Adleman Huang [4], proving primality with genus-

2-hyperelliptic-curve factors.
• 3 + o(1), O(1), ?p 1986: Goldwasser Kilian [38], proving primality with

elliptic-curve factors.
• 3 + o(1), very big, dp 1914: Pocklington [75], proving primality with unit-

group factors.
• 4 + o(1), 2 + o(1), rp 2003: Bernstein [17], proving primality with combi-

natorics.
• 4 + o(1), 6 + o(1) (shown as O(1)), dc unp: Lenstra Pomerance, to appear,

proving compositeness by not proving primality with combinatorics.
• 6+o(1), 0+o(1), dpc unp: Lenstra Pomerance, to appear, proving primality

with combinatorics.
• 6 + o(1), 0 + o(1), ?pc 2002: Agrawal Kayal Saxena [6], proving primality

with combinatorics.
• O(1), 0+o(1), dpc 2002: Agrawal Kayal Saxena [6], proving primality with

combinatorics.
• O(lg lg lg n), 0 + o(1), dpc 1979: Adleman Pomerance Rumely [5], proving

primality with unit-group factors.
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3. The table

Method Effect of
certificate

Certificate
exists for

Time to
verify
certificate

Time to find
certificate

proving

compositeness

with

factorization: if
b divides n and
1 < b < n then n
is composite

proves
compositeness

every
composite n

(lg n)1+o(1) very slow; but
(lg n)O(1) for most
n

proving

compositeness

with Fermat: if
n is not a b-prp,
i.e., does not
divide bn − b,
then n is
composite

proves
compositeness

nearly every
composite n;
however, there
are infinitely
many
composites n
that are
all-b-prp (1994
Alford
Granville
Pomerance [7])

(lg n)2+o(1) random
(lg n)2+o(1)

if n is not a
b-sprp, i.e., does
not divide any of
the most obvious
factors of bn − b,
then n is
composite (1966
Artjuhov [9])

proves
compositeness

every
composite n

(lg n)2+o(1) random
(lg n)2+o(1) (1976
Rabin [81],
independently
1980 Monier [64],
independently
1982 Atkin Larson
[11]; inferior
variant: 1976
Lehmer [52],
independently
1977 Solovay
Strassen [86];
other variants:
1998 Grantham
[41], 2001
Grantham [42],
2000 Müller [70],
2001 Müller [71],
2003 Damgard
Frandsen [33])
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Method Effect of certificate Certificate
exists for

Time to
verify
certificate

Time to
find
certificate

conjecturally

testing primality: if
n is a b-sprp for every
prime number b
between 1 and dlg ne2,
then n seems to be
prime (basic idea:
1975 Miller [62])

conjecturally
certifies primality;
conjecture follows
from GRH (1985
Bach [13];

35 dlg ne
2

announced but not
proven 1979
Oesterlé;

O(dlg ne
2
),

without explicit O
constant: 1952
Ankeny [8], 1971
Montgomery [65],
1978 Vélu [90])

every prime n (lg n)4+o(1) instant

if n is a b-sprp for the
first 2 dlg ne prime
numbers b, then n
seems to be prime
(folklore; simpler
variant giving prime
power: 1995 Lukes
Patterson Williams
[58])

conjecturally
certifies primality

every prime n (lg n)3+o(1) instant

if n is a 2-sprp and
passes a similar
quadratic test, then n
seems to be prime
(1980 Baillie Wagstaff
[14], 1980 Pomerance
Selfridge Wagstaff
[78]; variant also
including a cubic test:
1998 Atkin [10])

conjecturally
certifies primality;
conjecture is
implausible for
very large n (1984
Pomerance [76]),
but no
counterexamples
are known

every prime n (lg n)2+o(1) instant
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Method Effect of
certificate

Certificate
exists for

Time to
verify
certificate

Time to find
certificate

proving primality

with unit-group

factors: if bn−1 = 1
in Z/n, and
b(n−1)/q − 1 is
nonzero in Z/n for
every prime divisor q
of n − 1, then n is
prime (1876 Lucas
[56], [57], except that
the switch from
“divisor q > 1” to
“prime divisor q” is
from 1927 Lehmer
[50] by analogy to
1914 Pocklington
[75])

proves
primality

every prime n at most
(lg n)3+o(1);
usually
(lg n)2+o(1)

very slow; but
conjectured to be
(lg n)O(1) for
infinitely many n

if bn−1 = 1 in Z/n, F
is a divisor of n − 1,
and b(n−1)/q − 1 is a
unit in Z/n for every
prime divisor q of F ,
then every divisor of
n is in {1, F + 1, . . . },
so if (F + 1)2 > n
then n is prime (1914
Pocklington [75]);
similar test for F
down to roughly n1/4

proves
primality

every prime n at most
(lg n)3+o(1);
usually
(lg n)2+o(1)

very slow; but fast
for more n’s than
above; (lg n)O(1)

for infinitely many
n (1989 Pintz
Steiger Szemeredi
[74]; variant: 1992
Fellows Koblitz
[34]; another
variant: 1997
Konyagin
Pomerance [49])

Pocklington-type test
with quadratic
extensions of Z/n
(1876 Lucas [56],
1930 Lehmer [51],
1975 Morrison [69],
1975 Selfridge
Wunderlich [85], 1975
Brillhart Lehmer
Selfridge [24])

proves
primality

every prime n at most
(lg n)3+o(1);
usually
(lg n)2+o(1)

very slow; but fast
for more n’s than
above
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Method Effect of
certificate

Certificate
exists for

Time to verify
certificate

Time to find
certificate

Pocklington-
type test with
higher-degree
extensions of
Z/n (degrees 4
and 6: 1976
Williams Judd
[93]; general
degrees: 1983
Adleman
Pomerance
Rumely [5])

proves
primality

every prime n (lg n)O(lg lg lg n),
using
distribution of
divisors of
nd − 1 (1983
Odlyzko
Pomerance [5];
weaker bound:
1955 Prachar
[79]; best known
bound: 2000
Pelikan Pintz
Szemeredi [73]);
many speedups
available (1978
Williams Holte
[92], 1984 Cohen
Lenstra [31],
1985 Cohen
Lenstra [29],
1990 Bosma van
der Hulst [22],
1998 Mihăilescu
[60])

instant

proving

primality

with

elliptic-curve

factors:

similar test
using elliptic
curves (1986
Goldwasser
Kilian [38])

proves
primality,
using
bounds on
elliptic-
curve sizes
(1936 Hasse
[44])

nearly every
prime n;
conjecturally,
every prime n

(lg n)3+o(1) (lg n)O(1), using
polynomial-time
elliptic-curve point
counting (1985
Schoof [83]); many
speedups available
(1995 Atkin Elkies
[84]; 1995 Lercier
Morain [55])

similar test
with elliptic
curves having
order divisible
by a large
power of 2
(1987
Pomerance
[77])

proves
primality,
using
bounds on
elliptic-
curve sizes
(1936 Hasse
[44])

every prime n (lg n)2+o(1) very slow
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Method Effect of
certificate

Certificate
exists for

Time to verify
certificate

Time to find
certificate

similar test
with Jacobians
of genus-2
hyperelliptic
curves (1992
Adleman Huang
[4])

proves
primality,
using
bounds on
Jacobian
sizes (1948
Weil [91])

every prime n at most
(lg n)3+o(1)

random (lg n)O(1),
using distribution
of primes in
interval of width
x3/4 around x
(1979 Iwaniec
Jutila [46]), and
distribution of
Jacobian sizes
(1992 Adleman
Huang [4])

similar test
with small-
discriminant
complex-
multiplication
elliptic curves
(1988 Atkin
[66]; special
cases: 1985
Bosma [20],
1986
Chudnovsky
Chudnovsky
[28])

proves
primality,
using
bounds on
elliptic-
curve sizes
(1936 Hasse
[44])

conjecturally,
every prime n

at most
(lg n)3+o(1)

at most
(lg n)5+o(1)

similar test
with small-
discriminant
complex-
multiplication
elliptic curves,
merging
square-root
computations
for many
discriminants
(1990 Shallit
[53])

proves
primality,
using
bounds on
elliptic-
curve sizes
(1936 Hasse
[44])

conjecturally,
every prime n

at most
(lg n)3+o(1)

at most
(lg n)4+o(1); many
speedups available
(1988 Morain [66],
1989 Kaltofen
Valente Yui [47],
1990 Morain [67],
1993 Atkin Morain
[12], 1998 Morain
[68], 2003 Franke
Kleinjung Morain
Wirth [36])
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Method Effect of
certificate

Certificate
exists for

Time to verify
certificate

Time to
find
certificate

proving

primality with

combinatorics: if
we can write down
many elements of a
particular
subgroup of a
prime cyclotomic
extension of Z/n
then n is a power
of a prime (2002.08
Agrawal Kayal
Saxena [6])

proves
primality

every prime n (lg n)O(1), using
analytic fact that, for
some c > 1/2, many
primes r have prime
divisor of r − 1 above
rc (1969 Goldfeld
[37]); at most
(lg n)12+o(1), using
analytic fact that
many primes r have
prime divisor of r − 1
above r2/3 (1985
Fouvry [35]);
conjecturally
(lg n)6+o(1)

instant

variant using
arbitrary
cyclotomic
extensions (2003.01
Lenstra [15,
Theorem 2.3])

proves
primality

every prime n at most (lg n)12+o(1),
using crude bound on
distribution of primes
(1850 Chebyshev); at
most (lg n)8+o(1),
using analytic facts as
above; conjecturally
(lg n)6+o(1)

instant

variant using
cyclotomic
extensions with
better bound on
group structure
(2002.12 Macaj
[59], independently
2003 Agrawal)

proves
primality

every prime n at most
(lg n)10.5+o(1), using
crude bound on
distribution of primes
(1850 Chebyshev); at
most (lg n)7.5+o(1),
using analytic facts as
above; conjecturally
(lg n)6+o(1)

instant

variant using
random Kummer
extensions (2003.01
Bernstein [17];
independently
2003.03 Mihăilescu
Avanzi [61]; idea
and 2-power-degree
case: 2002.12
Berrizbeitia [19];
prime-degree case:
2003.01 Cheng [27])

proves
primality

every prime n (lg n)4+o(1), using
distribution of
divisors of nd − 1
(overkill: 1983
Odlyzko Pomerance
[5])

random
(lg n)2+o(1)
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Method Effect of
certificate

Certificate
exists for

Time to verify
certificate

Time to find
certificate

variant using
Gaussian
periods (Lenstra
Pomerance, not
yet published)

proves
primality

every prime n (lg n)6+o(1), using
various analytic
facts

instant

if n fails any of
the Fermat-type
tests in these
methods then n
is composite

proves
compositeness

every
composite n

at most
(lg n)4+o(1), using
analytic facts as
above

at most
(lg n)6+o(1),
using analytic
facts as above
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