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FASTER SQUARE ROOTS IN ANNOYING FINITE FIELDS

DANIEL J. BERNSTEIN

ABSTRACT. Let ¢ be an odd prime number. There are several methods known
to compute square roots in Z/q: the quadratic-extension methods of Legendre,
Pocklington, Cipolla, Lehmer, et al., and the discrete-logarithm methods of
Tonelli, Shanks, et al. The quadratic-extension methods use (3 + o(1))lgq
multiplications and, on average, 2 + o(1) Jacobi-symbol computations mod gq.
The discrete-logarithm methods use only (1 + o(1)) lg g multiplications, after
an easy precomputation of one element of Z/q, if ord2(q — 1) € o(y/Igq).
This paper presents an algorithm that uses only (1+ o(1)) lg ¢ multiplications,
after an easy precomputation of (Igq)©(1) elements of Z/q, if ord2(qg — 1) €
o(V1gqlglgq). For example, the new algorithm can compute square roots
in Z/q for ¢ = 2224 — 296 | 1 using 364 multiplications in Z/q and 1024
precomputed elements of Z/q. The same technique speeds up the Silver-Pohlig-
Hellman algorithm for computing discrete logarithms in any cyclic group of
smooth order.

1. INTRODUCTION

This paper considers the problem of computing square roots in a finite field F'
of odd cardinality gq.

If ¢ € 3+47Z, and if u is a square in F, then u(91t1)/4 is a square root of u. Indeed,
if u = 22 then v = 91 = (a+1)/2 = (y(@+1)/4)2. One can compute u(?+1/* with
(14 o(1))1g ¢ multiplications in F' by Brauer’s exponentiation algorithm in [14].

One cannot expect such a simple algorithm to work for ¢ € 1 + 4Z: there are
square roots of —1 in F', but they are not powers of —1. Can we compute square
roots in F' as quickly as we can exponentiate?

For most prime powers g, the answer is yes, if we are given more information
about F': namely, an element g of order 2" in F, where n = orda(q — 1). Assume
that u is nonzero; then the power u(?~1/2" is a power of g. Usually n is small,
so one can quickly find a discrete logarithm of u(9=1/2" base g, and then a square
root of u.

There are, however, some annoying prime powers ¢ for which ords(g—1) is large.
For example, the NIST P-224 elliptic curve in [4], standardized by the United States
government for cryptographic applications, is the curve y? = 23 — 3z + ¢ over Z/q,
where cg is a particular constant and g is the prime 2224 — 296 4 1. The first step of
compressed P-224 point multiplication, as discussed in [12], is to compute one of the
possibilities for y, given x; in other words, to compute a square root modulo g. The
best discrete-logarithm methods in the literature use thousands of multiplications
for this prime.
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An alternative is Cipolla’s algorithm in [17], which writes u as the norm of an
element of a random quadratic field extension of F. Then the (¢ + 1)/2 power of
that element is a square root of u. One can compute this power with (34 0(1))lggq
multiplications in F'. There are other quadratic-extension methods that run at
similar speed. These methods still take more than 700 multiplications for ¢ =
2224 _ 296 + 1.

This paper presents an accelerated discrete-logarithm square-root algorithm that
remains efficient for substantially larger ordz(g — 1), given more information about
F. The new algorithm takes only 364 multiplications for ¢ = 2224 — 29 4 1, for
example, with the help of a table of 1024 elements of F. One can further reduce
the number of multiplications at the expense of a larger table: for example, 304
multiplications using a table of 3072 elements, or 258 multiplications using a table
of 32768 elements.

Section 2 reviews quadratic-extension square-root methods. Section 3 reviews
discrete-logarithm square-root methods and presents the new algorithm. Section 4
focuses on prime g: it discusses arithmetic in the usual representation of Z/q, and
analyzes the time taken by all these methods.

Additional techniques for non-prime g, such as computing a square root of u for
¢ = p® by computing a square root of u!+P+P* are not discussed in this paper.

2. SQUARE ROOTS VIA QUADRATIC EXTENSIONS

Legendre’s method finds a square root of u by computing (r — z)(@~1/2 in the
ring F[z]/(z* — u). Here r is any element of F such that 2 — u is not a square.
Pocklington’s method is a variant that finds a square root of —u. Cipolla’s method
finds a square root of u by computing (r —z)(9+1/2 in the ring F[z]/(z? — (r? —u)).

Choosing 7. If u = 0 then 7% — u is a square. One does not use these methods to
find a square root of 0. So assume u # 0.

There are exactly (g — 3)/2 choices of r for which r? — u is a nonzero square.
(Each choice corresponds to two pairs (r, s) with (r —s)(r+s) = v and s # 0. Each
pair corresponds to a unique nonzero r — s that is not a square root of u.) There
are also exactly 2 choices of r for which r? = u. Hence there are exactly (¢ —1)/2
choices of r for which 72 — u is not a square.

One can repeatedly choose a uniform random r until 72 — u is not a square,
and then use a quadratic-extension method described below to find a square root
of u. This takes one exponentiation in a quadratic extension and, on average,
approximately two Jacobi-symbol tests.

Or one can skip the Jacobi-symbol tests: choose a uniform random r, use a
quadratic-extension method described below, and try again if the method does not
find a square root of u. This takes, on average, approximately two exponentiations
in quadratic extensions. Exception: Pocklington’s method succeeds for more values
of r if ¢ € 1+ 8Z; it is tried approximately 2"/(2"™ — 2) times on average, where
n = orda(g — 1).

Instead of choosing r randomly, one can try elements of F' in a fixed order. When
q is prime, for example, one can try r = 1, then r = 2, etc. It is believed that a
small r exists for every u. Another strategy for choosing r, for the sake of faster
exponentiations, is discussed in section 4.
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Legendre’s method. The most popular method to find the roots of a polynomial
g € F[z] is to compute ged {g, (z — r)a-1/2 _ 1} for various 7 € F. This ged is,
as illustrated in the following theorem, the product of x — s for all roots s of g such
that s — r is a nonzero square in F'.

This method has been discovered many times and is known by many different
names. According to [7], it was introduced by Legendre in [24].

If g(r) is not a square, and g splits completely as [[(s — z), then the ged is
guaranteed to be a nontrivial factor of g. The suggestion to do Jacobi-symbol tests
in this context, at least for deg g = 2, was made by Berlekamp in [8], [9, chapter 6],
and [10, section 7].

Theorem 2.1. Let F be a finite field of odd cardinality q. Let ag,a1,r,u be elements
of F such that u is a square in F, r*> —u is not a square in F, and ag + a1z is the
(g — 1)/2 power of r — z in the ring F|z]/(z? — u). Then ag =0 and (1/a1)? = u.

Proof. Select a square root v of u. The product (r —v)(r +v) =r? —v? =r% —u

is not a square, so (r —v)(@~D/2(r £ p)@-D/2 = 1.

There is a ring morphism ¢ : F[z]/(z%>—u) — F x F that maps z to (v, —v). Now
(ap+a1v,a0—a1v) = p(ag+bz) = p(r—z)@ /2 = ((r—v)@ /2 (r4v)a-D/2) =
(£1,7F1) so 2ap = (£1) + (¥1) = 0 and 2a;v = (+1) — (F1) = 2. O

Pocklington’s method. In the context of Theorem 2.1, assume that q € 1 + 47,
and write by + b,z for the (¢—1)/4 power of r —z in F[z]/(z% —u). Then (by/b;)? =
—u, since b + b2u + 2bob1z = (bp + b17)? = ag + a1z = a;x. We thus obtain a
square root of —u.

More generally, fix k > 1, and assume that ¢ € 1 + 2F+1Z. If (r — v)(@-D/2" =
—(r+ v)(qfl)ﬂk, where v is a square root of u, then (by/b;)? = —u, where by + b1z
is the (¢ — 1)/2**! power of » — z in F[z]/(z? — u). This happens with probability
1/2* if r is a uniform random nonzero element of F.

One may quickly check this condition for all £ € {1,2,...,n — 1}, where n =
ordz(q — 1), by first computing the (¢ — 1)/2™ power of r — z, then successively
squaring through the (¢—1)/2 power. If (bg+b,z)? € Fz then (by/b1)? = —u. This
happens with probability 1/2 +1/4 +---+1/2""! =1 —1/2""1 if r is a uniform
random nonzero element of F.

This variant of Legendre’s method is often credited to Peralta, who published it
in [30]. However, it was actually introduced by Pocklington in [34], according to
[7]. The connection between [30] and Legendre’s method was pointed out by Bach
in [6], along with the suggestion to use Jacobi-symbol tests in this context. I still
have to check what [22] and [23] say about this.

Cipolla’s method. The following square-root method was introduced by Cipolla
in [17], according to [7]. I still have to read [25], [29], and [43].

Theorem 2.2. Let F be a finite field of odd cardinality q. Let ag,a1,r,u be elements
of F such that u is a square in F, r%> —u is not a square in F, and ag + a1z is the
(g +1)/2 power of r — x in the ring F[z]/(z* — (r*> —u)). Then a; =0 and a2 = u.

Proof. z9 = z(x2)@V/2 = z(r2 —u)l@V/2 = _z s0 (r — 2)9 = r + z. Hence
a2 +a?(r?* —u)+2apa17 = (ag +a12)? = (r—z)9™ = (r+z)(r—z) =r2 —z%? = u.
If a; # 0 then ag = 0, so 72 — u = u/a?, so r? — u is a square, contradiction. Thus
a1 =0 and a = u. d
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3. SQUARE ROOTS VIA DISCRETE LOGARITHMS

The following square-root method is often credited to Shanks in [39]. According

to [7], the basic idea was published by Tonelli in [41]. Some crucial improvements
were introduced by Shanks, as discussed below. I still have to read [42], [39], [5],
[20], and [21].
Theorem 3.1. Let F be a finite field of odd cardinality q. Write n = ord2(g—1) and
m = (q—1)/2". Let g,r,u,v be elements of F such that g =™, r is not a square,
u is nonzero, and v = u(™ /2. Then there is an integer e in {0,1,...,2" — 1}
such that uwv? = g°. If u is a square then e is even and (uvg“’f/Z)2 =u.

Proof. ¢g*" =r?"™ =r91 =1, but 92"_1 ="M e D)/2 o —1, so g has order
27 and uv? = u™ is a 2"th root of 1, so it is a power of g, say ¢¢. If u is a square then

e

g2" "¢ = 4(a=1)/2 = 1 50 ¢ is even; and (uvg=¢/?)? = u?v?g~¢ =uu™g= ¢ =u. O

Precomputation. One can quickly find a non-square r by trying uniform random
elements of F'. This takes 2+ o(1) Jacobi-symbol tests on average, as in section 2.
One can then compute g = r™.

The same g works for every u in Theorem 3.1, so the cost of finding r and g can
be ignored if there are many square roots to be computed in F'.

Exponentiation. The first step of handling v is to compute v = uw(™~1/2. For
most prime powers ¢, namely those where n is small, the computation of v is the
bulk of the square-root computation.

There is another exponentiation at the end of the square-root computation:
g~ ¢/2. Tonelli and Shanks do this exponentiation bit by bit. One can save time, for
large n, by using Brauer’s algorithm. One can save even more time by precomputing
some powers of g, with Yao’s method in [44] or Pippenger’s much more powerful
method in [31]. Beware that the most important ideas in Pippenger’s method were
republished by, and are often incorrectly credited to, Brickell, Gordon, McCurley,
and Wilson in [15].

T use the following special case of Pippenger’s method. Select a positive integer w.
Write /2 in the form 2"~ %d, +2""2%dy_ +---+2"**d; +dy where £ = [n/w] —1
and where each dy, is in the obvious range. Then

—e/2 _ —2n_wdg —2"_21”(1@,1 _2n—€wd1 —d()
g =g g oy g .

This can be computed with just ¢ multiplications of precomputed powers of g.

Discrete logarithm. The tricky part of the square-root computation, for the

occasional prime powers ¢ where n is large, is the computation of e given g¢.
Tonelli and Shanks compute e bit by bit. Say e = ey + 2e; + 4e; + - - - with each

er € {0,1}. The strategy is to assume eg = 0, compute e;, compute eg, etc. Given

g%, and given ey, ..., ex_1, Tonelli and Shanks compute e; from
(geg_(e mod Zk))2n—1—k :gzn—lek _ 1 lf er =0,
—1 ife,=1.
Tonelli’s algorithm, as reported in [7, exercise 7.3], computes .

e mod 2F)2n—1-F —m(e mod 2F)2n—1-F

starting from u at each step, and computes g
starting from r at each step. Shanks instead keeps track of g¢g—(cmed 2) as k
increases.

=r
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The time-consuming part of this computation is all the squarings: computing
something to the power 272, something to the power 2”3, something to the power
2n—4 etc. Overall there are about n?/2 squarings.

Shanks observes that if e, = 0 then the next “something” is the same as the
current one, so all the computations for the next k have already been done. This
reduces the number of squarings to n?/4 for an average u; see [27] and [28] for a
precise analysis. Users concerned about the distribution of u can compute /u as
Vuz? /z where z is a uniform random nonzero element of F'.

Accelerated discrete logarithm. I compute e several bits at a time, reusing
Pippenger’s precomputed table of powers of g.
Say e = 2" We, + 2" 2Wep g 4---+2" e teg, where £ = [n/w] —1 as above.

w 2w Lw . .
Compute and record the powers (g¢)?", (¢°)? ,...,(g%)? by successive squarings.
Then determine successively eg, e, es, ..., ey from
zéwe _ e 2£w

g =(g°)

92n7w61 _ ge 2(271)10 _2(871)we0

92’"71‘162 _ (98)2(272)10 _2(872)11180 _2n72wel

an—wes _ (ge)2(l—3)w g_2(z_3)weo g_2n—3wel _gn-2wg,

gzn—wee — (ge) g_eo g_2n—lwel g_2n—(l—1)we2 . —2"_21”3[71‘

The right side of each equation is a product of a recorded power of g¢ and some
precomputed powers of g. I look up the left side in a small precomputed hash table
to determine e;. One can instead find ex by binary search, if the relevant powers
in Pippenger’s table are sorted.

The number of multiplications in this accelerated algorithm is still quadratic in
n, but it is inverse quadratic in w. Slight further improvements are possible, as in
Brauer’s algorithm and Pippenger’s algorithm.

An example. The prime ¢ = 222429 11 has ¢g—1 = 2%(2!28-1),som = 21281
and n = 96. A Jacobi-symbol test reveals that » = 11 is not a square in Z/gq, so
take g = 112'°°-1,

Choose w = 6. Build a table of the powers g_i,g_QGi,g_Qmi, . ,g_QQOi for all
1€{0,1,...,63}.

Given a square u in Z/q, compute v = u(m—1)/2 . This can be done
with 126 squarings and just 10 more multiplications, thanks to the shape of m.
The multiplications produce exponents 22 —1,23 —1,26 —1,212 1,224 _1 248 _ 1
296 _ 1,2120 _ 1’ 2126 _ 1,2127 —1.

Compute uv and uv? with 2 more multiplications. Now uv
say g°, with e = eg+28e1 +2'2e5 + - - - +2%¢y5. Compute (g°)2°, (g°)2,. .., (¢°)
with 90 squarings.

The power (ge)290 is the same as g2goe°. Look it up in a precomputed table of
64th roots of 1 to determine eg.

Next compute (g¢)%" g=2""eo.
table to determine eq.

Subsequent steps involve (ge)278g’27se°g*28461, (9%)
—2%e1s Overall there are 120 multiplications by

_ u21277 1

2 — y™ is a power of g,
290

I 90 . .
This is the same as g2 ©'. Look it up in the same
72 72 78 84
2 972 30972 61972 62, and

so on through (g°)g=%g=2°1 ... g
precomputed powers of g.
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Write e/2 as do + 26d; + - - - + 29%d;5, compute g~%/2 = g=dog=2"dr  g=2"rs
and multiply by uv to obtain a square root of u. There are 16 more multiplications
here.

Total work: 364 multiplications, of which 216 are squarings. Increasing w to 8,
and precomputing 3072 powers instead of 1024 powers, would reduce the cost to
304 multiplications, of which 214 are squarings.

In contrast, the Tonelli-Shanks algorithm needs about 2600 multiplications for an
average u. The quadratic-extension methods need more than 700 multiplications,
plus at least one division or Jacobi-symbol test.

Generalizations. Adleman, Manders, and Miller in [5] replaced 2" with 3", 57,
etc. to compute cube roots, fifth roots, etc.

Adleman, Manders, and Miller suggested computing a sixth root as a square
root of a cube root. Lindhurst in [27, chapter 3] pointed out that it can be faster
to compute a sixth root directly. Lindhurst’s algorithm for 2¥th roots, like my
algorithm, determines the exponent w bits at a time, although it still uses bit-by-
bit exponentiation.

Pohlig and Hellman in [35], and independently Silver, replaced 2" with any
smooth number to compute discrete logarithms in arbitrary cyclic groups of smooth
order. Precomputation is useful in this generality.

4. SQUARE ROOTS IN PRIME FIELDS

Assume that ¢ is prime. How quickly can we compute square roots in the field
Z/q? This section analyzes the speed of the quadratic-extension methods presented
in section 2 and the discrete-logarithm methods presented in section 3.

Representation. Elements of the field Z/q are conventionally represented as non-
negative integers smaller than q. Nonnegative integers are, in turn, represented as
strings of bits in radix 2.

One can save time, as illustrated in [12], by allowing negative integers, integers
slightly larger than q, “carry-save” bits, etc. The rest of this section also applies to
these modified representations.

One can save much more time by using a discrete-logarithm representation of
nonzero elements of Z/q. But this representation is not useful for most applications:
other common operations, such as addition, become extremely difficult.

Integer multiplication. See [11] for a survey of multiplication techniques, and

[13] for a detailed analysis of the complexity of multiplication on current computers.
Given two integers a, b, each with (1+0(1))1g g bits, one can compute ab in time

(34 0(1))M(g) under a realistic machine model:

time (1 4 o(1))M (g) transforming a,

time (1 + o(1))M (q) transforming b,

time o(1)M(q) combining the transformed inputs, and

time (1 4 o(1))M(q) reversing the transformation.

Here M(q) = plgqlglg qlglglg g, where p is a constant that depends on the model.

Squaring is faster: one can compute a? in time (2+0(1))M(q), because there are
only two transformations. Similar speedups apply to a2 + b2 and other quadratic
forms.
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One can compute a + b in time o(1)M(g). The same comment applies to other
“easy” operations, such as subtraction and comparison. This time is asymptotically
negligible in the context of this paper.

Integer division. Given an integer a with at most (2 + o(1))lgq bits, one can
compute a mod q as follows: multiply the top half of a by an approximate reciprocal
of ¢ to obtain an approximate quotient b; compute a — bg; subtract a few multiples
of q if necessary.

One can compute the approximate reciprocal of ¢ in time O(1)M(q). See, e.g.,
[11]. This time is asymptotically negligible in the context of this paper, because it
is done only once. The computation of a mod g then takes time (6 + o(1))M(q).

Similarly, one can save the transform of ¢, and the transform of the approximate
reciprocal of g. The computation of ¢ mod g then takes time (4 + o(1))M(q).

One can further reduce the time by using half-sized transforms to compute a — bgq.
See [38, page 216]. The computation of a mod ¢ then takes time (3 + o(1))M(q).

Reduction mod g takes less time for “sparse” primes q. For example, division by
2224 _ 996 1 1 is easy. This makes a big difference in the total time for arithmetic
mod gq.

Field multiplication. Given two elements a,b of Z /g, one can compute ab in time
(6+0(1))M(q): first (3+0(1))M(q) for integer multiplication, then (3+o0(1))M(q)
for reduction mod ¢, as discussed above.

The time drops to (5+ o(1))M(q) if a = b, or if the transform of b can be reused
from a previous multiplication.

Field division. Schénhage’s algorithm in [37] computes the continued fraction for
a/q in time O(1)M(q)1glgq.

Consequently one can compute reciprocals in Z/q, and Jacobi symbols modulo
g, in time O(1)M(q) 1glg g.

Squaring in quadratic extensions. The methods described in section 2 spend
most of their time squaring elements of (Z/q)[z]/(z? — d).

The obvious representation of fo + fiz in (Z/q)[z]/(z*> — d) is as the vector
(fo, f1)- The square (fo + fiz)? is represented by (f2 + f2d,2fof1), which can
be computed from (fo, f1) with four multiplications, of which two are squarings
and one is multiplication by d. The total time is (22 + o(1))M(q), if I've counted
correctly.

One can rewrite 2fof1 as (fo + f1)® — f¢ — f{. More importantly, one can
save the transforms of fy, fi, and d. Omne can also add the transforms of the
integers representing f2 and f2d, transform the result, and reduce mod g, rather
than transforming and reducing each piece separately. The total time with these
improvements is (15 + o(1))M(g). I think one can do better by using a larger
transform for fZd, but I haven’t analyzed the details yet.

One can save more time if d has substantially fewer than lg ¢ bits. This is unlikely
in Legendre’s method and Pocklington’s method, if the input is random. However,
in Cipolla’s method, d is r? — u, and one has control over r. I suggest looking for 7
very close to the square root of u in R, so that 72 — u has only about half as many
bits as u. I conjecture that there are §, € € o(1) such that, out of the integers r with
|[r? — u| < ¢'/%*9, the fraction for which r? — u is square is within € of 1/2, for all
primes ¢ and all integers u between 1 and g — 1.
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Eric Bach has pointed out to me that one can instead represent fy + fiz as the
vector (fo, f1, f2d). Then (fo + fiz)? is represented by (f2 + f2d,2fof1,4f2f2d),
which can be computed from (fo, f1, f2d) with only three multiplications, of which
one is a squaring. The total time here is (16 + 0o(1))M(q), if I've counted correctly:
in other words, slightly worse asymptotics than the obvious representation, despite
the smaller number of multiplications. This representation might nevertheless be
useful in practice.

Square roots via quadratic extensions. The main computation in Legendre’s
method is a (¢ — 1)/2 power in (Z/q)[z]/(z*> — u). This takes (4 + o(1))lgq or
(34 0(1)) 1g ¢ multiplications in Z/q, depending on the choice of representation of
(Z/q)[x]/(z* — u). The first representation takes total time (15 + o(1))M(q)lgq.

Legendre’s method also involves a reciprocal, 1/a; in Theorem 2.1, and 2+ o(1)
Jacobi-symbol computations on average. These computations take average time
O(1)M(q)1glg g, which is asymptotically negligible but quite noticeable for small
values of gq.

Pocklington’s method involves essentially the same computations. For primes ¢
where ordz(g — 1) is large, Pocklington’s method has the advantage of succeeding
for almost all choices of r. If ord2(g — 1) > lglgg, for example, then Pocklington’s
method succeeds with probability at least 1 —2/1g ¢q. One can and should skip the
Jacobi-symbol tests in this case.

Cipolla’s method has the advantage of faster computations if 72 — u is small, as
discussed above. Cipolla’s method also avoids divisions.

Square roots via discrete logarithms. Write n = ord2(¢—1) and m = (¢g—1)/2"
as in section 3.

There are two main pieces in the new algorithm: an (m — 1)/2 power in F and
approximately n?/2w? more multiplications in F. The precomputation involves
2 + o(1) Jacobi-symbol computations on average, an m power in F, and about
2¥n/w more multiplications in F', to produce a table of about 2*n/w elements of
F.

There are several ways to see how much the new algorithm improves on the
Tonelli-Shanks algorithm. For example, fix A > 0, and consider n € (A+0(1))+/1Igg.
The Tonelli-Shanks algorithm uses (1 + A%/4+ o(1)) lg ¢ multiplications on average,
mostly squarings, for a total time of (5+5A%/4+0(1))M(q)1gq. The new algorithm,
with w = (1/3)1glgq, uses (1 + o(1))lg ¢ multiplications, mostly squarings, for a
total time of (54 o(1))M(q)lggq.

One can instead consider the range of n for which square-root time is within a
factor 1+0(1) of exponentiation time. The Tonelli-Shanks method uses (1+0(1))lgg
multiplications if n € 0(1)y/lgg. The new algorithm, again with w ~ (1/3)1glggq,
uses (1 + o(1))lg ¢ multiplications if n € o(1)y/Ig¢lglgq. The precomputation in
both cases uses (1 + o(1))lg ¢ multiplications; the additional precomputation for
the new algorithm is asymptotically less expensive than the precomputation of g.

One can also consider the range of n for which the discrete-logarithm methods,
including precomputation time, are faster than the quadratic-extension methods.
The Tonelli-Shanks algorithm, including precomputation, takes average time at
most (15 + o(1))M(q)lggq if n is at most (2 + o(1))y/Igg. The new algorithm,
including precomputation, takes average time at most (15 + 0o(1))M(q)lgq if n is

at most (1/1/2 + 0(1))v/1g qlglgg; here w ~ (1/2)1glgq — lglglgg.
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Finally, one can consider the range of n for which the discrete-logarithm methods,
after a polynomial-time precomputation, are faster than the quadratic-extension
methods. The Tonelli-Shanks algorithm takes average time (15 + o(1))M(q)lgq
if n € (v/8+ o(1))yv/Igq. For any constant A > 0, the new algorithm takes time
(15 + o(1)M(q)lggq if n € (A + 0(1))V1gqlglg g; here w ~ (1/2)A\1glgq, and the
exponent in the precomputation time grows with A.
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