Putnam Mathematical Competition, 1 December 2001

Problem A1l

Consider a set S and a binary operation * on S (that is, for each a,bin S, a*bis in 5).
Assume that (a *b) xa = b for all a,b in S. Prove that a * (bxa) =b for all a,bin S.

Problem A2

You have coins C1,Cs,...,C,. For each k, coin Cy is biased so that, when tossed, it

has probability of falling heads. If the n coins are tossed, what is the probability

2k +1
that the number of heads is odd? Express the answer as a rational function of n.

Problem A3
For each integer m, consider the polynomial
P(z) = z* — (2m + 4)2® + (m — 2)2.

For what values of m is P,,(z) the product of two nonconstant polynomials with integer
coefficients?

Problem A4

Triangle ABC' has area 1. Points F, F, G lie, respectively, on sides BC,CA, AB such
that AF bisects BF' at point R, BF bisects CG at point S, and CG bisects AFE at point
T. Find the area of triangle RST.

C

Problem A5
Prove that there are unique positive integers a,n such that

a™* — (a+1)" = 2001.

Problem A6

Can an arc of a parabola inside a circle of radius 1 have length greater than 47



Problem B1
Let n be an even positive integer. Write the numbers 1,2,...,n? in the squares of an
n X n grid so that the kth row, from left to right, is

(k—1n+1, (k—1)n+2, ..., (E—1)n+n.

Color the squares of the grid so that half of the squares in each row and in each column
are red and the other half are black (a checkerboard coloring is one possibility). Prove
that for each such coloring, the sum of the numbers on the red squares is equal to the
sum of the numbers on the black squares.

Problem B2

Find all pairs of real numbers (z,y) satisfying the system of equations

1 1 2 2 2 2
S = 342)(3
$+2y (z* + 3y*)(3z" + y*)
11

—— —=2(y"—z).

T 2y

Problem B3

For any positive integer n let (n) denote the closest integer to y/n. Evaluate

PR

n=1

o(n) + 9—(n)

Problem B4

Let S denote the set of rational numbers different from —1, 0 and 1. Define f: S — S
1

by f(z) = x — —. Prove or disprove that
x

N £9(5) =0,

n=1

where f(®) = fofo--.0f.
—_—
n times

(Note: f(S) denotes the set of all values f(s) for s € S.)



Problem B5

Let a and b be real numbers in the interval (0, %) and let g be a continuous real-valued

function such that g(g(z)) = ag(z) + bz for all real z. Prove that g(xz) = cz for some
constant c.

Problem B6

Assume that (an)n>1 is an increasing sequence of positive real numbers such that

a
lim — = 0. Must there exist infinitely many positive integers n such that
n—oo N

On—i + Opti <2a, for i=1,2,...,n—17



Solutions

D. J. Bernstein, 2 December 2001

Problem A1l

Consider a set S and a binary operation * on S (that is, for each a,bin S, a*b is in 5).
Assume that (a *b) xa = b for all a,bin S. Prove that a* (bxa) =b for all a,bin S.

Solution: a* (bxa) = ((b*a)*b) * (bxa)=0>.

Problem A2

You have coins Ci,Cs,...,C,. For each k, coin Cj is biased so that, when tossed, it

1
has probability 1

that the number of heads is odd? Express the answer as a rational function of n.

of falling heads. If the n coins are tossed, what is the probability

Solution: The answer is n/(2n + 1).

For n = 0: There are no coins, so there are no heads. The probability of an odd number
of heads is 0 = n/(2n + 1).

For n > 1: By induction, the probability of an odd number of heads among the first
n—1 coins is (n — 1)/(2n — 1). Hence the probability of an odd number of heads among
the first n coins is

n—1 2n n n I 2n% —n _mn
2n—12n+1 2n—-12n+1 (2n-1)2n+1) 2n+1

as claimed.

Problem A3
For each integer m, consider the polynomial

Po(z) = z* — (2m + 4)2® + (m — 2)%,
For what values of m is P,,(z) the product of two nonconstant polynomials with integer
coefficients?
Solution: Squares, and half squares.
If m = k% then (2? — 2kz +m — 2)(z® + 2kz +m — 2) = (22 + m — 2)? — (2kz)? =
2t + (2m — 4)2% + (m — 2)2 —dmz? = 2* — 2m + 4)2% + (m — 2)2.
If 2m = k? then (22 —m — 2k — 2)(22 — m + 2k — 2) = (2?2 —m — 2)? — (2k)? =
zt — (2m +4)z? + (m + 2)? — 4k? = 2* — 2m + 4)z? + (m — 2)2.



Conversely: Assume that f,g are nonconstant integer polynomials with f(z)g(z) =
zt — (2m +4)z? + (m — 2)2.

If f or g has degree 1 then z* — (2m + 4)z? + (m — 2)? has a rational root, say r; so the
quadratic y% — (2m + 4)y + (m — 2)? has a rational root, namely 72; so the discriminant
(2m + 4)% — 4(m — 2)? = 32m is a rational square; so 2m = 32m/4? is a rational square,
hence an integer square.

Otherwise both f and g have degree 2. Write f(z) as az?+bz+c and g(z) as a’z?+b'z+c'.
The coefficient of z* in fg is aa’, so 1 = aa’; both a and a’ are integers, so either a =
a’' =1ora=a = —1. The coefficient of z2 in fg is ab’ +a'b, so 0 = ab’+a’b = £(b' +b);
hence b' = —b. The coefficient of z in fg is bc’ + b'c, so 0 = b’ + b'c = b(c’ — ¢); hence
b=0orc =c

If b = 0 then the quadratic y*> — (2m + 4)y + (m — 2)? factors as (ay + ¢)(ay + ¢’), so 2m
is a square as above. Otherwise ¢’ = ¢, so the coefficients of 2 and z° in fg are 2ac — b?
and c? respectively, so 2m + 4 = b2 — 2ac and (m — 2)? = ¢ = a®c?. If ac = —(m — 2)
then b2 = 2m+4+2ac = 8, contradiction. Thus ac = m—2 and b?> = 2m+4+2ac = 4m,
SO m is a square.

Problem A4

Triangle ABC' has area 1. Points FE, F, G lie, respectively, on sides BC,CA, AB such
that AF bisects BF' at point R, BF bisects CG at point S, and CG bisects AFE at point
T. Find the area of triangle RST.

C

A G B

Solution: Put the triangle into the Cartesian plane. Shift the plane so that A = (0,0).
Rotate the triangle so that B is on the positive x axis. Negate y coordinates if necessary
so that C' has a positive y coordinate. Shear the plane, leaving the x axis alone, so that
C is on the y axis. The length of AB is A for some A > 0; multiply x coordinates by
2/, and multiply y coordinates by A/2.

Areas and bisections are preserved by these transformations, so all the hypotheses of the
problem still hold, and the area of RST has not changed. The triangle is now fixed in



the plane: A = (0,0), B =(2,0), and C = (0, 1).

C
F S
E
7 R
A G B

Write e for the z-coordinate of E. Then the y-coordinate of F is 1 — e/2, since E is on
BC;s0T = (A+ E)/2 = (e/2,1/2 — e/4); so G is (2¢/(2 + €),0), since G is on CT;
s0S=(C+@G)/2=(e/(2+¢€),1/2);s0 Fis (0,(2+¢€)/(4+e)), since F is on BS; so
R=(B+F)/2=(1,(2+¢)/(8+2¢)). But Rison AE,so1—e/2=¢(2+¢)/(8+ 2¢),
so e = +v/5 — 1. Also, E is between B and C, so e > 0, so e = /5 — 1.

The differences R — T and S — T are ((2 —¢€)/2,e/(8 + 2¢)) and ((e — 2)/(2 + €),¢e/4),
with determinant (7 — 34/5)/2 > 0. Hence the area of RST is (7 — 3v/5)/4.
Problem A5

Prove that there are unique positive integers a,n such that

a™! — (a +1)™ = 2001.

Solution: If (a,n) = (13,2) then a™*! — (a + 1)" = 133 — 142 = 2197 — 196 = 2001.

Conversely, assume that a"™! — (a + 1)® = 2001. Then a divides a™*!, and it divides
(a 4+ 1)™ — 1, so it divides " — (a +1)" +1 = 2002 = 2-7-11-13. Hence a €
{1,2,7,11,13, 14, 22, 26, 77,91, 143, 154, 182, 286, 1001, 2002}.

Similarly, a+1 divides (a+1)™, and it divides ((a+1)—1)"*! —(=1)"*! = g™+ 4 (-1)",
so it divides 2001 + (—1)™. Hence a € {1,7,13}: neither 2000 nor 2002 is divisible by
any of 3,12,15,23,27,78,92, 144, 155, 183, 287, 1002, 2003.

Note also that a? divides a™*!, and it divides (a + 1)™ — na — 1, so it divides 2002 + na;
in other words, a divides 2002/a + n.

Case 1: a=1. Then ™ — (a + 1)" = 1 — 2™ < 2001.

Case 2: a = 7. Then 7 divides 286 + n, and n is even since 8 divides 2001 + (—1)", so
n € {8,22,36,...}. Ifn = 8 then a™ ' —(a+1)" = 79— 8% = 40353607 — 16777216 # 2001.
If n > 22 then a™™! — (a + 1)™ is negative: indeed, (8/7)® = 262144/117649 > 2, so
(8/7)™ > (8/7)18 > 23 > 7, 50 7" < 8™



Case 3: a = 13. Then 13 divides 154 + n, so n € {2,15,28,41,...}. If n = 2 then
(a,m) = (13,2) as desired. If n = 15 or n = 28 then 10 divides 13"*! — 14" — 7, so
137+ — 14m +#£ 2001. If n > 41 then @' — (a + 1)" is negative: indeed, (14/13)1° =
280254654976 /137858491849 > 2, so (14/13)" > (14/13)%0 > 24 > 13, s0 13"+ < 147

Problem A6
Can an arc of a parabola inside a circle of radius 1 have length greater than 47

Solution: Yes.

Define € = 107% and r = log((8 — 16¢)/¢). Then esinhr = 4 — 8¢ — €2/(16 — 32¢) >
4—9-1075 and er > elog(1/e) = 10~61og 10® > 9- 1075, so esinhr + er > 4.

For each t in the interval [—r/2,7/2], define z(t) = 2esinht, y(t) = e(sinht)? — 1, and
s(t) = (1/2)esinh 2t + et. Note that 2|sinht| < €"/2 so (sinht)? < e"/4 = (2 — 4¢)/e.
Hence 1—z(t)2—y(t)? = (2¢—4€?)(sinh t)2—€2(sinh t)* = €(sinh t)?(2—4e—e(sinh t)?) > 0.
In other words, (x(t),y(t)) is inside the unit circle.

Now y(t) = z(t)%/4e — 1, so the set of (x(t),y(t)) is an arc of a parabola; z is injective, so
the distance travelled by (x(t), y(t)) is the length of the arc; and s'(t)? = €?(cosh 2t+1)2 =
4€%(cosht)* = (2ecosht)? + (2esinhtcosht)? = z'(t)? + y'(t)?, so the distance travelled
by (z(t),y(t)) for t € [—r/2,7/2] is s(r/2) — s(—r/2) = 25(r/2) = esinhr + er > 4.

I like the content of this problem. However, the wording could have been improved.
What is an “arc”? Is it a rectifiable subset? A connected rectifiable subset? Students
who interpreted the problem one way would have spent time worrying about the two-
component case, while students who interpreted the problem another way would not
have done so; this is not fair to the first group. “Can the intersection of a parabola with
a disk of radius 1 have arc length greater than 4?” would have avoided this ambiguity.



Problem B1

Let n be an even positive integer. Write the numbers 1,2,...,n? in the squares of an
n X n grid so that the kth row, from left to right, is

(k—Dn+1, (E—1)n+2, ..., (E—1)n+n.

Color the squares of the grid so that half of the squares in each row and in each column
are red and the other half are black (a checkerboard coloring is one possibility). Prove
that for each such coloring, the sum of the numbers on the red squares is equal to the
sum of the numbers on the black squares.

Solution: More generally, fix functions f and g, and consider a matrix whose (k, j)
entry is g(k) + f(j). There are n/2 reds for each k, and n/2 blacks for each k, so the
sum of g(k) over reds equals the sum of g(k) over blacks. There are n/2 reds for each
j, and n/2 blacks for each j, so the sum of f(j) over reds equals the sum of f(j) over
blacks. Hence the sum of g(k)+ f(j) over reds equals the sum of g(k)+ f(j) over blacks.

Problem B2

Find all pairs of real numbers (z,y) satisfying the system of equations

]‘ 1 2 2 2 2
4= 342)(3
m+2y (z* + 3y*) (32" + y°)
1 1

= — — =2y —z).

r 2y

Solution: Define f(u) = 2u® — 5u* + 20u3 — 10u? + 10u — 1. The derivative f’(u) =
10u? — 20u3 + 60u? — 20u + 10 = 10(u? — u + 1)2 + 30u? is always positive, so there
is exactly one real root ug of f. Note that f(0) < 0 and f(1/2) > 0, so ug is strictly
between 0 and 1/2.

There is exactly one pair (z,y) satisfying the equations: namely, (zg, ugz), where zg =
((1 = 2uo)/4(uo — u))'/*.

Proof outline: Write u = y/x. Divide the equations to see that f(u) = 0. Thus u = uyp.
Substitute y = ugx into 1/2—1/2y = 2(y*—z*) to see that 5 = (1—2ug)/4(wo—u3) = zj.
Hence z = ¢ and y = ugzg. Conversely, (xg,uozo) does satisfy both equations.

This is a horrible problem. Students around the country must have wasted an incredible
amount of time trying to find simpler forms for uy and 9. Apparently the author thought
it was acceptable to express an answer in terms of a root of a single-variable polynomial,
but the problem doesn’t say that. There are many other Putnam problems where such
an expression would not receive full credit. Contestants should not have to guess how
their work will be graded.



Problem B3

For any positive integer n let (n) denote the closest integer to y/n. Evaluate

e

9(n) + 9—(n)

Solution: Consider all possible values ¢ > 1 for (n). Observe that (n) = ¢ if and only
if (q—0.5)2 <n<(¢g+0.5)2 ie,ne€{g>—q+1,...,¢> +q}. The values of n + q are
{@®?+1,...,(qg+1)% — 1}; as q varies, these values cover all positive integers other than
squares. The values of n — q are {(q—1)2,...,q?}; as q varies, these values cover all
nonnegative integers, with positive squares covered twice.

Hence the multiset of values of n & (n) is {0,1,1,2,2,...}; each positive integer appears
exactly twice. The desired sum is 2° +271 +271 427242724 =142=3.

One can, equivalently, split the sum by gq.

Problem B4

Let S denote the set of rational numbers different from —1, 0 and 1. Define f: S — S
1

by f(z) = x — —. Prove or disprove that
x

() F™(S) =0
n=1
where f(®) = fofo--.0f.
—_——

n times

(Note: f(S) denotes the set of all values f(s) for s € S.)

Solution: Define g(z) for x € S as the positive integer |b?z| where b is the smallest
positive integer such that bz is an integer; in other words, g(a/b) = |ab| if a and b are
coprime.

By Lemma 1, g(f(2)) exceeds g(z), 50 g(f"(x)) > g(z) + n > n. T f(S) N f2(S)N
has an element y, then in particular f9®)(S) contains y, so y = f9¥)(z) for some z, so
a(y) = g(f?W (x)) > g(y); contradiction. Thus f(S) N f2(S) N --- is empty.

Lemma 1: g(f(z)) > g(x).

Proof: Write x as a/b where a and b are coprime. Then f(z) =z — 1/ =a/b—b/a =
(a®?—b?)/ab. If a prime p divides both ab and a? —b? then it divides a or b, hence a? or b2,
hence both a? and b?, hence both a and b, contradiction. Thus ab and a?—b? are coprime,



and g(f(z)) = |(a® —b?*)ab| = |a® — b*|g(z). If g(f(2)) < g(z) then [a® —b*| < 1, s0
both a and b are in {—1,0,1}, so z € {—1,0,1}, contradiction.

Problem B5

Let a and b be real numbers in the interval (0,1) and let g be a continuous real-valued

function such that g(g(z)) = ag(z) + bz for all real z. Prove that g(z) = cz for some
constant c.

Solution: Note that g is injective, because if g(z) = g(y) then bz = g(g(x)) — ag(z) =
9(9(y)) — ag(y) = by. Thus g is either strictly increasing or strictly decreasing.

If g(x) converges as x — oo, or as * — —oo, then g(g(x)) also converges, so bx =
9(g(z)) — ag(x) converges; contradiction. Therefore, if g is increasing, it increases to oo
as * — oo, and decreases to —oo as £ — —o0; if g is decreasing, it decreases to —oo as
x — 00, and increases to 0o as * — —oo. In short: g is invertible.

Write A = a? +4b, ¢ = (VA +a)/2, and d = (VA — a)/2. Note that 0 < d < ¢ < 1.
A standard induction shows that g"(z)vVA = c*(g(z) + dz) — (—d)"(g9(z) — cz) and
g ™ (z)VA = ¢ "(g(x) + dz) — (—d)""(g(x) — cx). In particular, lim,_, g"(z) = 0. By
continuity g(0) = lim,_, g(g™(x)) = lim,_,00 "1 (z) = 0. Therefore g(z) always has
the same sign as z if g is increasing, and g(x) always has the same sign as —z if g is
decreasing.

If there is an x for which g(x) # —dz, then (¢/d)™ > |(g9(z) — cz)/(g9(z) + dz)| for all
sufficiently large n, say n > k. Thus g™ (z) has the same sign as c¢"(g(x)+dz) for all n > k.
In particular, g**1(z) has the same sign as g*(z), so g is increasing. Contrapositive: If
g is decreasing, then g(z) = —dz for all z.

Similarly, if there is an z for which g(z) # cz, then g~"(z) has the same sign as
(—d)™™(g(z) — cx) for all sufficiently large k, so g is decreasing. Contrapositive: If
g is increasing, then g(z) = cx for all =.

Problem B6

Assume that (an)n>1 is an increasing sequence of positive real numbers such that

lim —= = 0. Must there exist infinitely many positive integers n such that
n—,oo N

On—i + Opti <2a, for i=1,2,...,n—17

Solution: Yes.

Define f(e) for 0 < € < a; as follows. By hypothesis a,/n < € for all sufficiently large
n. Thus there are only finitely many n for which a,, — ne is positive. There is at least
one such n, namely 1, so there is a maximum value of a, — ne. Now f(e) is the n that
maximizes a, — ne; if there are several such n then f(e€) is the largest.



I claim that, if n = f(€), then a,_; + any; < 2a, for all i € {1,2,...,n — 1}. Indeed,
apn_;—(n—1i)e < a, —ne and a,1;— (n+1i)e < a, —ne by definition of f, so a,_;+ant; <
2a,. The only way to achieve equality is to have both a,_; — (n — i)e = a,, — ne and
an+i — (n + i)e = a, — ne, but this again contradicts the definition of f, since n + i is
larger than n.

I also claim that, for every m > 1, there is an € such that f(e) > m. Indeed, define €
as the minimum of (a,, — am—1)/m and a;/2. By hypothesis a; > 0 and a,,, > a1,
so 0 < € < a;. Furthermore a,, — me is at least as large as a,,_1, hence larger than
ay — €,a2 — 26,...,0m_1— (m—1)e.

Conclusion: There are infinitely many values of f, and each value of f is a qualifying n.

The pairs (n, a,) selected here are the corners of the upper convex hull of all pairs (n, ay,).
There may be other n’s that work—for example, a3 may be below the line from a; to
a4, even if it is above the line from a; to as and the line from ay to ay—but the corners
are relatively easy to identify.



