1999 Putnam problems and unofficial solutions

As usual, first come the problems, then the problems with solutions. Comments and
criticism at the end.

Send any followup remarks to the USENET newsgroup sci.math.
Problems

Problem A1l
Find polynomials f(z), g(z) and h(x), if they exist, such that, for all z,
-1 it z< -1

If(w)l—lg(w)|+h($)={3x+2 if —1<z<0
—2z4+2 if z>0.

Problem A2

Let p(z) be a polynomial that is non-negative for all z. Prove that, for some k, there
are polynomials fi(x),..., fx(x) such that

p(z) = (fi(2))*.

Jj=1

Problem A3

Consider the power series expansion

Prove that, for each integer n > 0, there is an integer m such that

2 2 _
an, + an—i—l = a,,

Problem A4

Sum the series

Z Z 3m n3m + m3n)

m=1n=1



Problem A5
Prove that there is a constant C' such that, if p(z) is a polynomial of degree 1999, then

1

p(0)| < C / ip(2)] da.

-1
Problem A6
The sequence (ay)n>1 is defined by a1 =1, az = 2, ag = 24, and, for n > 4,

2 2
6an—1an—3__8an—1an—2

QAp =
Ap—20n—3

Show that, for all n, a, is an integer multiple of n.
Problem B1

Right triangle ABC has right angle at C and /BAC = 0; the point D is chosen on

AB so that |AC| = |AD| = 1; the point E is chosen on BC so that /CDE = 6. The

perpendicular to BC at E meets AB at F. Evaluate gin(l) |EF|. [Here, |PQ| denotes the
%

length of the line segment PQ).]
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Problem B2

Let P(z) be a polynomial of degree n such that P(z) = Q(z)P"(z), where Q(z) is a
quadratic polynomial and P”(x) is the second derivative of P(z). Show that if P(z) has
at least two distinct roots then it must have n distinct roots. [The roots may be either
real or complex.]

Problem B3
Let A= {(z,y):0<z,y < 1}. For (z,y) € A, let
S,y)= >, a™y",

<mco
n =

D=



where the sum ranges over all pairs (m,n) of positive integers satisfying the indicated
inequalities. Evaluate

lim 1—zy®)(1 — z%y)S(z,y).
(m’y)ﬁ(l,l)( y°)( y)S(z,y)
(z,y)€A

Problem B4

Let f be a real function with a continuous third derivative such that f(z), f'(z), f"(x),
f"""(z) are positive for all . Suppose that f"”'(z) < f(x) for all z. Show that f'(z) <
2f(z) for all .

Problem B5

For an integer n > 3, let § = 27 /n. Evaluate the determinant of the n X n matrix I + A,
where I is the n x n identity matrix and A = (a,i) has entries a,i = cos(j6 + k) for all
J k.

Problem B6

Let S be a finite set of integers, each greater than 1. Suppose that for each integer
n there is some s € S such that ged(s,n) = 1 or ged(s,n) = s. Show that there exist
s,t € S such that ged(s, t) is prime. [Here, gcd(a, b) denotes the greatest common divisor
of a and b.]

Unofficial solutions

Problem Al
Find polynomials f(z), g(z) and h(z), if they exist, such that, for all z,

-1 if z< -1
|f(z)| = lg(z)| + h(z) = {3x+2 if —1<z<0
—2¢+2 if z>0.

Solution: Take f(z) = (3/2)(z + 1), g(z) = (5/2)z, and h(z) =1/2 — z.

If 2 < —1 then |f(z)| = —(3/2)(z + 1) and |g(2)| = —(5/2)z so | f(z)| — |g(x)| + h(z) =
—(3/2)z—3/2+ (5/2)z+1/2 —z = —1.

If 1< 2 < 0 then |f(2)] = (3/2)(w+1) and |g(z)| = —(5/2)a so | /(2)| - |g(e)| + h() =
(3/2)z+3/2+ (5/2)z+1/2 —z = 3z + 2.

If 2 > 0 then |f(z)| = (3/2)(x + 1) and |g(z)[ = (5/2)x so [f(z)[ — |g(2)| + h(z) =
(3/2)z+3/2—-(5/2)x+1/2 —z =—2x+2.



Problem A2

Let p(z) be a polynomial that is non-negative for all z. Prove that, for some k, there
are polynomials fi(x),..., fx(x) such that
k
= (fi(2)*

j=1
Solution: If p is constant then p(z) = (p(0)}/?)2. Otherwise find a root r + si of p.

If s # 0 then r — si is another root of p, so p(x) is divisible by (z —r — si)(x —r + si) =
(x —7)2 + s2

If s = 0 then p(z) must be divisible by (z — r)?; otherwise p(r + €)p(r — €) would be

negative for small e.

Either way p(z) = ((z — r)? + s?)q(z) for some polynomial q. Now (z — )2 + s>
is positive for all z # r, so g(z) is nonnegative for all z # r; by continuity, g(x) is
nonnegative for all z. By induction on degree, q(z) = Z]. fi(z)? for some fi, fa,....

Thus p(z) = >_,((z —7)f; (z))% + >_i(sf; (z))? as desired.
Problem A3

Consider the power series expansion

1—21:—:1c2 Zanw

Prove that, for each integer n > 0, there is an 1nteger m such that

2 2 _
an, + an—i—l = a,,

Solution: Write r =1+ +v/2and s=1—+/2. Then rs = —1 and r + s = 2, so
Za o 1 1 _r/lr=s) s/(r—s)

_1—21'—962_(1—7'30)(1—83:)_ 1—rzx 1—sx

nt1

—Z "
r—3S

Thus a, = (r"*! — 8”+1)/(r —s), and
p2nt2 4 g2nt2 _ 9(pg)ntl 4o p2ntd 4 gIndd 9 (pg)nt2
(r —s)2
P23 (r + 1/7) + 8273 (s + 1/s) — 2(rs)" (1 + rs)
(r — s)2

r2nt3(p — 5) + 823 (s — ) — 2(rs)" (1 —1)  p2nF3 _ g2nH3

- (r — s)2 B - G

2 2 _
a’n + a’n+1 -

r—S



Another approach: Define b,, = a2 + a2 11; then by = a2 and b; = a4. Starting from the
identity an+2 = 2an+1 + a, one can check that b,,2 = 6b,4+1 — b, and that as,16 =
6a2n4+4 — A2n+2, SO by, = agn42 for all n by induction.

Yet another approach: Convert the identity a, = 2a,,_1 + a,_2 into the matrix equation

2 1 n_ an, Apn_1
1 0 o Ap—1 QAp—2

and square both sides to obtain
2 2 2
Q2n  Q2p—1\ _ Qn  Qp—1 _ a, +a,_4 an-1(an + an—2)
= = 2 2 .
A2n-1 Q2n—2 An—1 Gn-2 an-1(an +an—2)  an_jta;_,

Problem A4

Sum the series

Solution: All sums here are absolutely convergent.

Write S for the desired sum. Then

n2m

28 =
Z 3m (n3m + m3”) * Z;L 37(m3" + n3m)
_Z m2n3™ + n?m3™ _Z mn o _
3m3n(m3n +n3m) £~ 3m3n

where T'=)__ (m/3™).

If 0 < z < 1then /(1 —2) = Y., z™. Differentiate: 1/(1 —z)? = Y, ma™ L.
Substitute z = 1/3: 9/4=>"_m/3™ ' =3T. Thus T =3/4 and S = T?/2 =9/32.

Problem A5
Prove that there is a constant C such that, if p(z) is a polynomial of degree 1999, then

|<C/ z)| dx.

Solution: Factor p(z) as £]];;<1999(% — 75)-



Define Sy = {z:0.999 — 0.001k < x < 1 — 0.001k}. The 2000 sets Sg, S1,-..,S1999 are
disjoint, so there is some k such that Sy contains none of the real parts of r1,...,71999.
Write u = 0.9995 — 0.001k and v = 0.9996 — 0.001k.

Fix ¢ € [u,v]. If |r;|] < 2 then |z —r;] > 0.0002 > |r;| /10000 by choice of k. If
|rj| > 2 then |z —r;| > |r;j| — 1 > |r;| /10000 since [u,v] C [—1,1]. Consequently
Ip(x)l = €111, |z — 75| = [4[T1;(Ir] /10000) = |p(0)| /10000"%%°.

Thus f_ll lp(z)| dz > [} |p(z)| dz > (v — u) |p(0)| /1000019 = |p(0)| /100002°°0.

Problem A6

The sequence (an)n>1 is defined by a1 =1, a2 = 2, ag = 24, and, for n > 4,

2 2
6an—1an—3 - 8a’n—la”n—2

ap =
Qp—20n—3

Show that, for all n, a, is an integer multiple of n.

Solution: Define b, = an11/an, so that a, = by_1b,_o---b2b;. Then by = 2, by = 12,
and by, o = 6bxy1 — 8by; by induction by = 4% — 2% = (2F — 1)2*,
It suffices to show that ord, a,, > ord, n for all primes p. If p is odd then p divides 2% —1,

and hence by, whenever p — 1 divides k; if p = 2 then p divides 2, and hence by, for all
k. In either case

-1 ord, n __ 1 -1 d
ord, a, > n > pr-- > w = ord, n.
p—1 p—1 p—1

Problem B1

Right triangle ABC has right angle at C and /BAC = 0; the point D is chosen on

AB so that |AC| = |AD| = 1; the point E is chosen on BC so that /CDE = 6. The

perpendicular to BC at E meets AB at F. Evaluate (}intl) |EF|. [Here, |PQ| denotes the
ﬁ

length of the line segment PQ).]

C




Solution: The answer is 1/3.

Put A, B, C into the complex plane with A = 0, C' =1, and B at positive angle #. Then
B=1+itanf and D = ¢*.

Define z = (1 — cosf)/(cos @ — cos 20) and s = sin 6 + z(sin f — sin 26). From the power
series sinf = 0+ -- and cos =1—60%/2+--- wesee that z =1/3+---, s = (2/3)0+- -,
and tanf = 0 + - - -, so limp_,o(s/tand) = 2/3. Note that z > 0 and 0 < s < tan@ for
sufficiently small 6.

Now define X = 1+1is. Then X — D = z(e® — €?%) = 2¢*(C — D), so /CDX = 6; and

X is on the line segment from C to B. Hence E = X. Consequently F' = s/tan6 + is
and |[E — F|=1—s/tan#, so limg_,o |[E — F|=1—-2/3=1/3.

Problem B2

Let P(z) be a polynomial of degree n such that P(z) = Q(z)P"(z), where Q(z) is a
quadratic polynomial and P"(x) is the second derivative of P(z). Show that if P(z) has
at least two distinct roots then it must have n distinct roots. [The roots may be either
real or complex.|

Solution: Let r be a complex number. Write P(z) as p,(z — )" + pp_1(z — )" ! +
-+« + pr(x — r)* with py nonzero, and write Q(z) as gz(z — )% + q1(z — 7) + qo.

If k > 2 then P"(z) = n(n—1)pp(z—7)"" 2+ -+ k(k — V)pg(x —r)*~2, with k(k—1)px
nonzero. Compare coefficients of (z — r)*=2, (z — 7)*~!, and (z — r)* in P(x) and
Q(x)P"(x) to see that g = 0, ¢y = 0, and go = 1/k(k — 1); compare coefficients of
(x — 7)™ to see that g2 = 1/n(n — 1); consequently k = n.

In short, if P has a repeated root r, then P(z) = p,(x — r)", so P does not have two
distinct roots.

Problem B3
Let A= {(z,y) :0<z,y < 1}. For (z,y) € A, let

S(x,y)= >, a™y",
2

<n S

D=
33

where the sum ranges over all pairs (m,n) of positive integers satisfying the indicated
inequalities. Evaluate

lim (1 —=zy?)(1 — 22y)S(z, y).

(@,y)—(1,1)
(z,y)eA

Solution: All sums here are absolutely convergent.



Define Tn, = 3°,, n<m<an @™ If n is even then T,, = (/2 — 271 /(1 — z); if n is odd
then T}, = (z(®+t1)/2 — £2+1) /(1 — z). Thus

(1-2)S(z,y) =1 —x) Z T y™ = Zxky% n Zxk+1y2k+1 _ ngnﬂyn

n21 k>1 k>0 n>1
oy L wy o wly (@t ray)(-ety) —2fy( ey’
l-—zy?>  1-azy® 1-2% (1—a?y)(1 — zy?)

(1 —z)(zy + zy® + 2y + 2%y® — 2%¢°)
(1 —22y)(1 — zy?)

The desired limit is simply lim(zy + zy? + 2%y + 22y? — 23y3) = 3.

Problem B4

Let f be a real function with a continuous third derivative such that f(z), f'(z), f"(x),
f"'(z) are positive for all z. Suppose that f”'(z) < f(x) for all z. Show that f'(z) <
2f(z) for all z.

Solution: Observe that lim,_, ., f(z) exists and is nonnegative; lim,_, o f'(z) = 0;
and lim,_, o, f"”(z) = 0.

Define p = 4ff" — 2f"” f"”. Then limy_, o p(x) = 0, and p’ = 4f'f' +4(f — ") f" >
4f'f' >0, s0 p > 0.

Next define g = 3ff—2f'f"”. Then lim,_, o g(z) > 0, and ¢ = p+2(f—f")f >p >0,
so g > 0.

Finally definer =3fff —2f'f'f’. Then lim,_, o, r(xz) > 0, and ' = 3f'q > 0, sor > 0.
Hence f'(z)® < (3/2)f(2)® < (2f(2))°.

Problem B5

For an integer n > 3, let § = 27 /n. Evaluate the determinant of the n X n matrix I+ A,
where I is the n x n identity matrix and A = (a;i) has entries a;; = cos(j6 + k) for all
J, k.

Solution: Define ¢ = €*’ and v,, = (¢™,(?™,...,(™™). Note that v; - vy, is n if t +m is
divisible by n, otherwise 0. Consequently vg,v1,...,v,_1 are linearly independent; the
dual basis is vg/n,vp_1/n,...,v1/n.

Now Az = (v1/2)(v1-x) 4+ (Vn—1/2)(vp—1 - x) for any vector z. Indeed, if z = (x1,...,2,)

T
then (24z), = Zk(('j+k + IRy = ¢ ok Chay + ¢7 >k (ke = (v1)(v1 - ) +
(vn-1);j(vn-1- ).

Hence Avy = (n/2)v,—1, Avp—1 = (n/2)vy, and Av,, =0if m=0orif 2<m <n-2.



Thus I + A is similar to the matrix

1 0 0 0
0 1 0 --- n/2
0 0 1 -+ 0 |,
0 n/2 0 --- 1

with determinant 1 — (n/2)2.

Problem B6

Let S be a finite set of integers, each greater than 1. Suppose that for each integer
n there is some s € S such that gcd(s,n) = 1 or ged(s,n) = s. Show that there exist
s,t € S such that ged(s, t) is prime. [Here, gcd(a, b) denotes the greatest common divisor
of a and b.]

Solution: The following solution is stolen from Thomas Horine.

Define p(t) as the smallest prime dividing ¢. Define n = lem {p(¢) : t € S}. By hypothesis
there is some s € S such that ged(s,n) = 1 or ged(s,n) = s. Now p(s) is a common
divisor of s and n, so ged(s,n) = s, i.e., s divides n.

Next define ¢ as the largest prime dividing s. Then ¢ divides n, so ¢ = p(t) for some
t € S. Now ¢ divides s exactly once, and divides ¢; any prime smaller than g does not
divide t; any prime larger than ¢ does not divide s. Therefore ged(s,t) = q.



Comments

A2 is an ancient result, already known to many of the contestants.

In A4 and B3, is one required to prove convergence of the sums? This is straightforward
in both cases, but it takes time away from other problems. Contestants should not have
to guess how their work will be graded.

In B1, the condition |[AC| = 1 should have been stated earlier; otherwise it is nonsense
to choose D “so that |AC| = |AD| = 1.” The limit should have been stated for § — 0*.
The diagram supplied on the official competition was visibly inaccurate, with /ACB
larger than a right angle and /BFFE larger than /BAC,; if the question writers were
trying to hide the fact that ZADC = /BDE, they should have left out the diagram
entirely.

It isn’t clear what B2 means for n = —oo. The polynomial 0 has “at least two distinct
roots,” and it has at least —oo distinct roots, but it does not have ezxactly —oo distinct
roots. The writers should have said that n is a nonnegative integer, or said that n is an
integer larger than 2, or simply fixed n = 1999.

The solution to B5 can be rephrased without complex numbers: the cosine-sine vectors
v1+v_1,(v1 —v_1)/i,v2+v_2,(v2—v_3)/i,... are independent real eigenvectors of I + A
having eigenvalues 1 +n/2,1—n/2,1,1,....

B6 may be rephrased as follows. Let S be a finite collection of nonempty finite sets.
Assume that, for every finite set n, S has an element contained in n or disjoint from n.
Then there are s,t € § with s Nt of size 1. Presumably this result already appears in
the combinatorics literature.

—Daniel J. Bernstein, djb@cr.yp.to, 6 December 1999



