1997 Putnam problems and unofficial solutions

As usual, first come the problems, then the problems with solutions. Comments and
criticism at the end.

Send any followup remarks to the USENET newsgroup sci.math.
Problems

Problem A1l

A rectangle, HOMF', has sides HO = 11 and OM = 5. A triangle ABC has H as the
intersection of the altitudes, O the center of the circumscribed circle, M the midpoint
of BC, and F' the foot of the altitude from A. What is the length of BC'?
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Problem A2
Players 1,2,3,...,n are seated around a table and each has a single penny. Player 1

passes a penny to Player 2, who then passes two pennies to Player 3. Player 3 then
passes one penny to Player 4, who passes two pennies to Player 5, and so on, players
alternately passing one penny or two to the next player who still has some pennies. A
player who runs out of pennies drops out of the game and leaves the table. Find an
infinite set of numbers n for which some player ends up with all n pennies.

Problem A3

Evaluate
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Problem A4

Let G be a group with identity e and ¢ : G — G a function such that

$(91)¢(92)8(93) = d(h1)¢p(h2)d(hs)



whenever g19293 = e = hihahs. Prove that there exists an element a in G such that
Y(z) = ap(z) is a homomorphism (that is, ¥ (zy) = ¥(x)y(y) for all z and y in G).

Problem A5

Let N,, denote the number of ordered n-tuples of positive integers (ai,as,...,a,) such
that 1/a; +1/as + --- + 1/a, = 1. Determine whether Nyq is even or odd.

Problem A6

For a positive integer n and any real number ¢, define xy recursively by o =0, z; = 1,
and for k£ > 0,
1 — (n—k)zg

k+1
Fix n and then take c to be the largest value for which z,+1 = 0. Find x in terms of n
and k, 1 <k <n.

Problem B1

Tr4+2 =

Let {z} denote the distance between the real number z and the nearest integer. For each
positive integer n, evaluate

5= 3 mn ({2} {12)).

(Here, min(a, b) denotes the minimum of a and b.)
Problem B2

Let f be a twice-differentiable real-valued function satisfying

f@) + f(z) = —zg(2) f'(z),
where g(x) > 0 for all real z. Prove that |f(x)| is bounded.
Problem B3

n

For each positive integer n write the sum Z — in the form Pn where p,, and ¢, are
m qn
m=1

relatively prime positive integers. Determine all n such that 5 does not divide g,,.
Problem B4

Let @, , denote the coefficient of ™ in the expansion of (1 + z + z2)™. Prove that for
all £ > 0,
|2k/3]
0< > (-1)ag_ii < 1.
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Problem B5

Prove that for n > 2,

Problem B6
The dissection of the 3-4-5 triangle shown below has diameter 5/2.

3

Find the least diameter of a dissection of this triangle into four parts. (The diameter of
a dissection is the least upper bound of the distances between pairs of points belonging
to the same part.)

Unofficial solutions

Problem A1l

A rectangle, HOMF, has sides HO = 11 and OM = 5. A triangle ABC has H as the
intersection of the altitudes, O the center of the circumscribed circle, M the midpoint
of BC, and F the foot of the altitude from A. What is the length of BC?
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Solution: Put the rectangle into R? with vertices F' = (0,0), M = (11,0), H = (0,5),
and O = (11, 5).

By hypothesis, both H and F' are on the A altitude, and both M and F' are on BC, so
A is on the y-axis, while B and C are on the z-axis. Say A = (0,a) and B = (11 +¢,0);
then C =M — (B — M) = (11 —¢,0).



The squared distance from O to A is 112 + (a — 5)2. The squared distance from O to B
is t2 4+ 52. Hence a? — 10a = t2 — 112,

The altitude from B passes through H, so B — H = (t + 11, —5) is perpendicular to

A—C = (t—11,a). Hence ba = t? — 112 = a? — 10a; so a = 0, which is absurd, or
a = 15, which implies t?> = 5- 15 + 112 = 142,

Finally the length is 2 |t| = 28.
Problem A2

Players 1,2,3,...,n are seated around a table and each has a single penny. Player 1
passes a penny to Player 2, who then passes two pennies to Player 3. Player 3 then
passes one penny to Player 4, who passes two pennies to Player 5, and so on, players
alternately passing one penny or two to the next player who still has some pennies. A
player who runs out of pennies drops out of the game and leaves the table. Find an
infinite set of numbers n for which some player ends up with all n pennies.

Solution: Any number n of the form 2™ + 2 will work. After 2 steps, there are 2™
players; Player 3 has 3 pennies and is about to pass 1; all the other players have 1. By
Lemma 1, Player 3 will win, i.e., end up with all n pennies.

Lemma 1: Assume that there are 2™ players; that the current player has k pennies and
is about to pass 1; and that all other players have j pennies. If £ > 2 then the current
player will win.

Proof: If m = 0 then there are no other players. Otherwise, after 2™j steps, there are
2m~1 players left; the original player has k + j pennies and is about to pass 1; and all
other players have 25 pennies. Induct on m.

Problem A3

Evaluate
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Solution: Substitute u = z2/2:
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The interchange of sum and integral is justified since all terms are nonnegative.
Problem A4
Let G be a group with identity e and ¢ : G — G a function such that

$(91)¢(92)#(g3) = d(h1)¢(h2)d(hs)

whenever g19293 = e = hihshs. Prove that there exists an element a in G such that
Y(z) = ap(z) is a homomorphism (that is, ¥ (zy) = ¥(x)¥(y) for all z and y in G).

Solution: Define b = ¢(e), a = b, and ¥(z) = ap(z). I will show that (zy) =
¥(x)Y(y). Note that (e) = ab = e.

If hihohs = e then by hypothesis b = ¢(h1)p(ha)p(h3), i.e., b = (hy)by)(h)bip(h3).
In particular b — $(eb(y)bh(y) so b = Dby ¥ = vab(o)bi(c) so
b? = P(z~)byp(z)Y(y)byp(y~); finally b2 = Y (z™)b(zy)bib(y~) so Y(zy) = P(z)(y).

Problem A5

Let N,, denote the number of ordered n-tuples of positive integers (ai,as,...,a,) such
that 1/a; +1/as + --- + 1/a, = 1. Determine whether Ny is even or odd.

Solution: For each vector (by,bg,...,b,) with by < by <--- <b,and 1/by+1/ba+---+
1/b, = 1, enumerate all distinct permutations of (by,bs,...,b,). This produces each of
the problem’s n-tuples exactly once.

I will show that when n = 10 the number of permutations of (by,bs,...,b,) is odd in
exactly b cases: (3,3,24,...,24), (4,4,16,...,16), (6,6,12,...,12),(9,...,9,18,18), and
(10,10, 10,...,10). Therefore Nyq is odd.

If an integer b appears exactly & times in (b1, bo, ..., b,) then the number of permutations
is a multiple of (Z) Indeed, there are (Z) choices of places to put b; the number of ways
to arrange the remaining integers in the remaining n — k positions is independent of this
choice.

Now set n = 10 and assume that the number of permutations is odd. Then b appears
exactly k times for some k € {0,2,8,10}, since () is even for k € {1,3,4,5,6,7,9}.

Case 1: Some integer b appears 10 times. Then 10/b =1 so (b1,...,b10) = (10,...,10).

Case 2: No integer appears 10 times; some integer b appears exactly 8 times. Let ¢ be
one of the remaining numbers; then ¢ must appear exactly 2 times, so 8/b+ 2/c = 1.
If ¢ > 10 and b > 10 then 8/b + 2/c < 10/10, contradiction. Now solve for b when
ce{1,2,3,4,5,6,7,8,9,10}, and for ¢ when b € {1,2,3,4,5,6,7,8,9,10}. Alternatively
observe that if ¢ is odd then ¢ — 2 is coprime to 8¢, so b = 8¢/(c—2) is a positive integer
only when ¢ = 3; and if ¢ is even then ¢/2 — 1 is coprime to ¢/2, so b = 8(c/2)/(c/2 — 1)
is a positive integer only when ¢/2 — 1 divides 8, i.e., when ¢ € {4,6,10,18}. The case



¢ = 10 is excluded since b # c¢. Hence (c,b) € {(3,24), (4,16),(6,12),(18,9)}. There are
45 permutations in each case.

Case 3: No integer appears exactly 8 or 10 times. Let b and ¢ be two different integers
that appear. Then b and c each appear exactly 2 times. There are (120) choices of places
to put b; for each selection there are (g) choices of places to put ¢; and for each selection
there are the same number of ways to arrange the remaining integers in the remaining 6
positions. But (g) is even. Contradiction.

Problem A6

For a positive integer n and any real number ¢, define xy recursively by o =0, z; =1,
and for k£ > 0,
i1 — (n—k)zg

k+1

Fix n and then take c to be the largest value for which z,,11 = 0. Find zj, in terms of n
and k, 1 <k <n.

Tr42 =

Solution: The answer is (Z:})

Define f(t) = > ;5o Tkt+1t". Then (1—t%)f'(t) = (c— (n—1)t) f(t) with f(0) = 1. Solve
the differential equation: f(t) = (1 +¢)(»~1+9)/2(1 — ¢)(n=1-9)/2,

Evidently f(t) is a polynomial in t of degree n —1if n — 1+ ¢ and n — 1 — ¢ are both
nonnegative even integers, i.e., ifc€e {—-n+1,—n+3,...,n—3,n—1}. Thus 2,11 =0
for each of these n values of c. But z,1 is a polynomial in ¢ of degree n; so it has at
most n roots. Conclusion: n — 1 is the largest value of ¢ for which z,,4+1 = 0.

Finally f(t) = (1+%)""! whenc=n — 1.
Problem B1

Let {x} denote the distance between the real number z and the nearest integer. For each
positive integer n, evaluate

6n—1
m m
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m2::1 T\ Ven 3n
(Here, min(a, b) denotes the minimum of a and b.)

Solution: The answer is n.

Abbreviate m/6n as t. Write ¢, = min({t},{2t}). If 0 < m < 2n then {t} = ¢ <
min(2¢,1 — 2t) = {2t} so ¢, = m/6n. If 2n < m < 3n then {2t} =1 -2t <t = {t} so
tm=1—m/3n. If 3n <m < 4n then {2t} =2t —1<1—t = {t} so ¢, =m/3n— 1. If
An < m < 6n then {t} =1 -t < min(2t — 1,2 — 2t) = {2t} so ¢;, =1 — m/6n.



Thus ¢, + Cmtan = m/6n+1— (m+4n)/6n =1/3 for 0 < m < 2n and ¢, + Cmyn =
1-m/3n+ (m+mn)/3n—1=1/3 for 2n < m < 3n. Add:

Z Cm = Z (Cm + cm+4n) + Z (cm + cm+n) = 2”% + ’)’I,% =n.

0<m<6n 0<m<2n 2n<m<3n

Finally note that ¢y = 0.
Problem B2

Let f be a twice-differentiable real-valued function satisfying

f@) + f'(z) = —zg(x) f'(z),

where g(z) > 0 for all real z. Prove that |f(z)| is bounded.

Solution: The derivative of f(z)% + f/(x)? is —2zg(z)f’(x)?, which is nonnegative for
z < 0 and nonpositive for z > 0. Thus f(z)? + f'(z)? < £(0)2 + f/(0)2.

Problem B3

n

1
For each positive integer n write the sum E — in the form Pn where p,, and ¢, are
m qn
m=1

relatively prime positive integers. Determine all n such that 5 does not divide g,.
Solution: {1,2,3,4,20,21,22,23,24,100, 101, 102,103, 104, 120, 121, 122,123, 124}.

To simplify the calculations I will work with the 5-adic integers Z5. Recall that a rational
number is in Z5 iff 5 does not divide its denominator; a rational number is in ZF iff 5
divides neither its numerator nor its denominator.

Define hp, = ) 1., <, 1/m and g, = hy, — (1/5)h /5. By direct calculation hy, ha, hs €
Z: but hy € 75 + 125Zs.

If 5 < n < 20 then g, € Zs by Lemma 3, and h|,/5| € Z§, so h,, € 5~ 'Z;. Consequently
hn & Zs.

If n € {20,24} then g, € 25Z5 by Lemma 1, and h|, /5| € 75+125Zs5, so hy, € 15+ 25Zs.
If n € {21,22,23} then g, € Z§ by Lemma 2, and h|,/5| € 256Zs, so h,, € Z.

If 25 < n < 100 or 105 < n < 120 then g, € Z5 by Lemma 3, and h|,/5; & 5Zs, so
hn & Zs.

If n € {100,120} then g, € 25Z5 by Lemma 1, and h|, /5| € 15+ 25Zs, so h, € 3+ 5Zs.
Furthermore hp41 = hy, +1/(n+ 1) € 44 5Z5, hypy2 = hpt1 +1/(n+2) € 2 + 5Zs,
hnts = hpya+1/(n+3) € 4+ 5Z5, and hy1g = hpys +1/(n+4) € 3+ 5Z5. Therefore
hn, € ZF for 100 < n < 105 and 120 < n < 125.



If n > 125 then g, € Zs by Lemma 3, and h|,/5| ¢ 5Zs, so hy, & Zs.
Lemma 1: If n mod 5 € {0,4} then g,, € 25Z5. Proof: If n = 5k + 4 or n = 5k + 5 then

I SR S S S, 10k® + 15k + Tk + 1
In =9k = B 1 5k+2  5k+3  bk+4 - (5k+1)(5k+2)(5k+3)(5k+4)

Induct on n, starting from gg = 0 € 25Z5.

Lemma 2: If n mod 5 € {1,2, 3} then g,, € Zf. Proof: gsx+1 = gsx+1/(5k+1) € 1+5Zs,
g5k+2 = gs5k+1 T 1/(516 + 2) € 4+ 5Zs, and gsit3 = gsk42 + 1/(516 + 3) €1+ 5Zs.

Lemma 3: g, € Zs. Proof: Lemma 1 and Lemma 2.
Problem B4

Let a,, . denote the coefficient of z™ in the expansion of (1 + z + 22)™. Prove that for
all £ > 0,
[2k/3]

0< > (~Dap—ii < 1.
=0

Solution: Define fi = Y qc, <x(—1)* ™ k—m. If m < k/3 then (1 + z + z2)™ has
degree 2m < k — m SO Gy g—m = 0. Thus

fe = Z (—1)k_mam,k—m = Z (_1)iak—i,i-
k—|[2k/3]<m<k 0<i<[2k/3]

The problem is to prove that f € {0,1}.

Consider the power series

ka.’l,‘k — Z Z (_1)k_mam,k—m$k — Z ™ Z (_1)k—mam,k_mxk—m

k>0 k>00<m<k m>0 k>m
1
_ m n n __ m 2\m __
_Zw Z(_l) Om,nT —Zw (I-=z+2z%) T 1—2(1—z+2?)
m>0 n>0 m>0
1+z

R =1+z)1+zt+28+2%+--)
=1+z+at+28+28+22+ 22+ 213+,

Visibly each coefficient is 0 or 1.

Problem B5

Prove that for n > 2,



Solution: Write fo(b) = b, fry1(b) = 2/#(®). The problem is to show that f,_1(2) =
frn—1(1) (mod n).

Theorem: fr(z) = fr(1) (modn)ifz>1,n>1,and k >n— 1.

Proof: Induct on n. If n = 1 then fx(z) = fr(1) (mod 1) as claimed. Otherwise write
n = 2ty with u odd.

By induction, fx—1(z) = fr—1(1) (mod ¢(u)), since k—1>n—2 > ¢(u) — 1. By Euler’s
theorem, 2#(*) = 1 (mod u), so fx(z) = fi(1) (mod u).

Furthermore, 2° > b + 1 for all positive integers b, so fx(b) > b+ k. In particular
fe(z) >z+k>14(n—1)=n > 2t Thus fx(z), being a power of 2 at least as large as
2 is a multiple of 2. In particular f3(1) is a multiple of 2*. Thus fx(z) = fx(1) (mod 2°).

Since fx(z) — fr(1) is divisible by both u and 2* it is divisible by n.
Problem B6
The dissection of the 3-4-5 triangle shown below has diameter 5/2.

Find the least diameter of a dissection of this triangle into four parts. (The diameter of
a dissection is the least upper bound of the distances between pairs of points belonging
to the same part.)

Solution: The answer is 25/13.

Put the triangle into R? with vertices A = (0,0), B = (3,0), and C = (0,4). Also define
D = (0,1), E = (0,27/13), F = (15/13,32/13), G = (24/13,20/13), H = (41/26,1),
and M = (14/13,0).

Every dissection must have diameter at least 25/13. Indeed, at least two of the points
A, B,C, E,G must be in the same part; but the distances between those points are all
25/13 or larger.

Now dissect the triangle into the polygons ADHM, BMG, CFE, and DEFGH. Each
of these polygons has diameter 25/13 or smaller, by a tedious computation, so this
dissection has diameter 25/13.



Comments

In B6, what is a “dissection”? Are the parts required to be simply connected sets with
rectifiable edges? Do the edges have to be line segments? Do the ends of the line
segments have to be on the edges of the triangle? The first time this problem appeared
on the Putnam (1958.B3) it was stated clearly enough; the second time (1994.A3) it did
a poor job of describing the set being colored; this time it doesn’t even say what types of
partitions are allowed. Is the 1998 Putnam exam going to ask for the “biggest width” of
“chunks” obtained by “slicing a knife” through “a figure similar to the one displayed”?

A2 should have included some examples of the game, perhapsn = 6 and n = 7. A5 should
have omitted n: “Let N be the number of vectors of positive integers (a1, as,...,a10)
such that 1/a; +1/az +---+ 1/a;0 = 1. Is N even?” A6 should have explicitly stated
the dependence on ¢: “Fix a positive integer n. Define polynomials fi(z) recursively by
fo(@) =0, f1(z) = 1, and fri2(@) = (@fe41(z) — (n = k) fr(2))/(k + 1) for k > 0. Find
the largest real number r such that f,1(r) =0.”

I wonder how A5 will be graded. Is a contestant permitted to use well-known facts about
multisets and multinomial coefficients?

B5 is an old problem.

—Daniel J. Bernstein, djb@cr.yp.to, 7 December 1997



