PRIME SIEVES USING BINARY QUADRATIC FORMS

A. O. L. ATKIN AND D. J. BERNSTEIN

ABSTRACT. We introduce an algorithm that computes the prime numbers up
to N using O(N/loglog N) additions and N1/2+°(1) bits of memory. The
algorithm enumerates representations of integers by certain binary quadratic
forms. We present implementation results for this algorithm and one of the
best previous algorithms.

1. INTRODUCTION

Pritchard in [11] asked whether it is possible to print the prime numbers up to
N, in order, using o(N) operations and O(N%) bits of memory for some o < 1.
Here “memory” does not include the paper used by the printer. “Operations” refers
to loads, stores, comparisons, additions, and subtractions of O(log N)-bit integers.

The answer is yes. We present a new algorithm that uses o(N) operations and
N1/2+0(1) bits of memory. We also present some implementation results; the new
method is useful in practice.

Strategy. The idea of the sieve of Eratosthenes is to enumerate values of the
reducible binary quadratic form zy. The idea of the new algorithm is to enumerate
values of certain irreducible binary quadratic forms. For example, a squarefree
positive integer p congruent to 1 modulo 4 is prime if and only if the equation
4z? + y? = p has an odd number of positive solutions (z,y). There are only O(N)
pairs (z,y) such that 4z% +y2 < N.

We cover all primes p > 3 as follows. For p = 1 (mod 4) we use 4x2 + y? with
z > 0and y > 0; for p = 7 (mod 12) we use 322 + y? with z > 0 and y > 0; for
p =11 (mod 12) we use 3z° —y? with z > y > 0. (One could choose a different set
of forms. For example, for p = 1 (mod 4) one could use z2 + y* with z > y > 0;
for p=3 (mod 8) one could use 2z% + y? with z > 0 and y > 0; for p =7 (mod 8)
one could use 2z? — y? with z > y > 0.)

A standard improvement in the sieve of Eratosthenes is to enumerate values of
zy not divisible by 2, 3, or 5; see section 2 for details. This reduces the number of
pairs (z,y) by a constant factor. Similarly, we enumerate values of our quadratic
forms not divisible by 5; see section 3 for details.

More generally, one can select an integer W and enumerate values coprime to W.
One can save a factor of loglog N in the running time of the sieve of Eratosthenes by
letting W grow slowly with N. The same is true of the new method. In section 5 we
show that one can enumerate the primes up to N using O(IN/loglog N) operations
and N'/2+°(1) bits of memory.
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2. THE SIEVE OF ERATOSTHENES

The following algorithm is standard. It uses B bits of memory to compute the
primes in an arithmetic progression of B numbers.

Algorithm 2.1. Given d € {1,7,11,13,17,19, 23,29}, to print all primes of the
form 30k +d with L < k < L + B:

1. Set ag, < ]., ar41 < 1, ., arL4B_1 1.

2. For each prime g > 7 with ¢> < 30L + 30B:

3 For each k with 30k + d a nontrivial multiple of ¢:
4. Set ai < 0.

5. Print 30k + d for each k with a; = 1.

“Nontrivial multiple of ¢” in step 3 means “mgq for some m > 1” but can safely
be replaced by “mgq for some m > ¢.”

One can run Algorithm 2.1 for each d, and merge the results, to find all the
primes p with 30L < p < 30L + 30B. This uses 8B bits of memory, not counting
the space needed to store the set of g.

To enumerate the primes p in a larger interval, say 30L < p < 30L+60B, one can
enumerate first the primes between 30L and 30L + 30B, then the primes between
30L + 30B and 30L + 60B, reusing the same 8B bits of memory.

The number of iterations of step 4 of Algorithm 2.1 is approximately B/7 for
q =17, B/11 for ¢ = 11, and so on. By Mertens’s theorem, the sum B " (1/q) is
roughly B(loglog(30L + 30B) — 1.465). See [7, Theorem 427].

Implementation results. The second author’s implementation of Algorithm 2.1,
using the gcc 2.8.1 compiler on an UltraSPARC-1/167, takes 19.6 seconds to find
the 50847534 primes up to 1000000000. Here B = 128128; the UltraSPARC has
131072 bits of fast memory.

Notes. Singleton in [13] suggested chopping a large interval into small pieces and
applying the sieve of Eratosthenes to each piece. The same idea was published
independently in [3] and later in [2].

Sieving an arithmetic progression is the p-adic analogue of sieving a bounded
interval. Presumably Eratosthenes did not bother writing down even numbers in
his sieve.

Instead of running Algorithm 2.1 independently for each d, one can handle all
d simultaneously for each ¢: find all nontrivial multiples of ¢ between 30L and
30L + 30B, and translate each multiple into a pair (k,d). See [9] for details. For
sufficiently large g this saves time despite the added cost of translation.

One can include composite integers ¢ in step 2 of Algorithm 2.1. For example, it
is easy to run through all integers ¢ > 1 with ¢ mod 30 € {1,7,11,13,17,19,23,29}.
This saves the space necessary to store the primes ¢, at a small cost in time.

3. PRIME SIEVES USING IRREDUCIBLE BINARY QUADRATIC FORMS

The following algorithms are new. Each algorithm uses B bits of memory to
compute primes in an arithmetic progression of B numbers. Algorithm 3.1 requires
each number to be congruent to 1 modulo 4; Algorithm 3.2 requires each number to
be congruent to 1 modulo 6; Algorithm 3.3 requires each number to be congruent
to 11 modulo 12.
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Algorithm 3.1. Given d € {1,13,17,29, 37,41, 49,53}, to print all primes of the
form 60k + d with L < k < L + B:

1. Set ar, < 0, ar41 < 0, ey, ALy B-1 0.

. For each (z,y,k) with 2 >0,y >0, L <k < L+ B, and 422 + y? = 60k + d:
Set ag < 1 — ag.

. For each prime q > 7 with ¢ < 60L + 60B:

For each k with 60k + d divisible by ¢?:

. Set ap < 0.

7. Print 60k + d for each k with a; = 1.

Steps 2 and 3 count, for each k, the parity of the number of pairs (z,y) with
4z2% + y? = 60k + d. By Theorem 6.1, 60k + d is prime if and only if the number of
pairs is odd and 60k + d is squarefree. Steps 4, 5, and 6 eliminate each k for which
60k + d is not squarefree.

The condition 4z2+y? = d (mod 60) in step 2 implies 16 possibilities (depending
on d) for (z mod 15,y mod 30). Each possibility can be handled by Algorithm 4.1
below. There are approximately (47/15)B iterations of step 3.

Algorithm 3.2. Given d € {1,7,13,19,31,37,43,49}, to print all primes of the
form 60k + d with L < k < L + B:

1. Setar, < 0,ar+1 <0, ... ,aryp-1 < 0.

2. For each (z,y,k) with z >0,y >0, L < k < L+ B, and 3z% + y? = 60k + d:
3 Set ap <+ 1 — ag.

4. For each prime ¢ > 7 with ¢*> < 60L + 60B:

5. For each k with 60k + d divisible by ¢?:
6
7

. Set ap < 0.
. Print 60k + d for each k with a; = 1.

Algorithm 3.2 is justified by Theorem 6.2. In step 2 there are 12 possibilities
for (z mod 10,y mod 30), each of which can be handled by Algorithm 4.2 below.
There are approximately (m+/0.12)B iterations of step 3.

Algorithm 3.3. Given d € {11, 23,47,59}, to print all primes of the form 60k + d
with L<k <L+ B:

1. Setar, <+ 0,ar+1 <0, ... ,aryp-1 < 0.

2. For each (z,y,k) with z >y >0, L <k < L+ B, and 322 — y? = 60k + d:
3 Set ar < 1 — ag.

4. For each prime ¢ > 7 with ¢?> < 60L + 60B:

5 For each k with 60k + d divisible by ¢?:

6. Set ap < 0.
7. Print 60k + d for each k with a = 1.

Algorithm 3.3 is justified by Theorem 6.3. In step 2 there are 24 possibilities
for (z mod 10,y mod 30), each of which can be handled by Algorithm 4.3 below.
There are approximately (1/1.921og(+/0.5 + +/1.5)) B iterations of step 3.

Implementation results. The second author’s implementation of Algorithm 3.1,
Algorithm 3.2, and Algorithm 3.3, using gcc 2.8.1 on an UltraSPARC-I/167 with
B = 128128, takes 15.0 seconds to find the primes up to 1000000000. For the code
see http://pobox.com/“djb/primegen.html.

About 87% of the time was spent in steps 2 and 3 of these algorithms: 38%
in Algorithm 3.1 for d € {1,13,17,29,37,41,49,53}; 26% in Algorithm 3.2 for
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d € {7,19,31,43}; 23% in Algorithm 3.3 for d € {11,23,47,59}. About 6% of the
time was spent in steps 4, 5, and 6.

Notes. One could change the “even, odd” counter aj in Algorithm 3.1 to a “zero,
one, more” counter, and then skip some values of ¢ in step 4. The same comment
applies to Algorithm 3.2 and Algorithm 3.3.

4. ENUMERATING LATTICE POINTS

The idea of Algorithm 4.1 is to scan upwards from the lower boundary of the
first quadrant of the annulus 60L < 4z2 4+ y? < 60L + 60B. The total number
of points considered by Algorithm 4.1 is (1/450)(w/8)(60B) + O(+/60L + 60B).
Similar comments apply to Algorithm 4.2 and Algorithm 4.3.

Algorithm 4.1. Given positive integers d < 60, f < 15, and g < 30 such that
d=4f%+¢% (mod 60), to print all triples (z,y, k) withz > 0,y >0, L < k < L+B,
422+ y* =60k +d, x = f (mod 15), and y = g (mod 30):
1. Set x < f, yo < g, and ko + (4f% + g®> — d)/60. (Starting in step 3 we will
move (z,yo) along the lower boundary, from right to left, keeping track of
ko = (422 + y2 — d)/60.)

2. If kg < L+ B: Set kg «+ ko + 2z + 15. Set = < = + 15. Repeat this step.
(Move left.) Set x < = — 15. Set kg « ko — 2z — 15. Stop if z < 0.

4. (Move up if necessary.) If ko < L: Set kg « ko + yo + 15. Set yo < yo + 30.

Repeat this step.

5. (Now 4z? + y2 > 60L; and if yo > 30 then 4z* + (yo — 30)> < 60L.) Set

k <+ ko and y < yo-

6. (Now 4z% + y? = 60k +d > 60L.) If k < L+ B: Print (z,y,k). Set

k <+ k+y+15. Set y « y + 30. Repeat this step.

7. Go back to step 3.

Algorithm 4.2. Given positive integers d < 60, f < 10, and g < 30 such that
d = 3f%+¢? (mod 60), to print all triples (z,y, k) withz > 0,y >0, L < k < L+B,
322 +y?> =60k +d, z = f (mod 10), and y = g (mod 30):
1. Set z <+ f, yo < g, and ko + (3f2 + g*> — d)/60.
If ko < L+ B: Set kg < ko + x + 5. Set z < x + 10. Repeat this step.
Set x <+ x — 10. Set kg < kg — x — 5. Stop if z < 0.
If kg < L: Set kg < ko + yo + 15. Set yo < yo + 30. Repeat this step.
Set k < ko and y < yo-
If k < L+ B: Print (z,y,k). Set k + k+ y+15. Set y + y + 30. Repeat
this step.
7. Go back to step 3.

Algorithm 4.3. Given positive integers d < 60, f < 10, and g < 30 such that
d=3f%—g? (mod 60), to print all triples (z,y,k) withz >y >0, L <k < L+ B,
322 —y? =60k +d, z = f (mod 10), and y = g (mod 30):
1. Set <+ f, yo < g, and ko + (3f2 — g% — d)/60.
2. If kg > L+ B: Stop if ¢ < yg. Set kg < ko — yo — 15. Set yg + yo + 30.
Repeat this step.
3. Set k + ko and y < yo-
4. If k > L and y < z: Print (z,y,k). Set k + k—y —15. Set y < y + 30.
Repeat this step.
5. Set kg < ko +x + 5. Set x + x + 10. Go back to step 2.
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Notes. Tracing a level curve is a standard technique in computer graphics; see,
e.g., [1, chapter 17]. It is often credited to [4] but it appeared earlier in [8, section
3].

5. ASYMPTOTIC PERFORMANCE

For large N one can compute the primes up to N as follows.

Define W as 12 times the product of all the primes from 5 up to about /log N.
Note that W is in N°(; it is roughly exp+/log N. Let B be an integer close to
W+v/N.

Given L, one can compute the primes between WL and W L+W B, using ¢(W)B
bits of memory, by the method of section 3. For each unit d modulo W, find the
appropriate (a,b) € {(4,1), (3,1), (3, —1)}, and make a list of all the possibilities for
(z mod W,y mod W) given that (az?+by?) mod W = d. Then, for each possibility,
enumerate all (z,y) with WL < az?+by? < WL+W B, and toggle the appropriate
bits of memory. Finally, eliminate numbers that are not squarefree.

This method uses O(p(W)B) = O(W B/loglog N) operations. Thus one can
compute all the primes up to N using O(N/loglog N) operations and N'/2+e(1)
bits of memory.

Notes. Pritchard in [11] pointed out that one can compute the primes up to N us-
ing O(N) operations and O(N'/2(loglog N)/log N) bits of memory by the method
of section 2.

By a similar method one can compute the primes up to N using O(N/loglog N)
operations and N'*°() bits of memory. Pritchard gave a proof in [9] and a simpler
proof in [10]. Dunten, Jones, and Sorenson in [5] reduced the amount of memory
by a factor of log N.

The new method is simultaneously within a constant factor of the best known
number of operations and within N°(®) of the best known amount of memory.

6. QUADRATIC FORMS

Theorem 6.1. Let n be a squarefree positive integer with n =1 (mod 4). Then n
is prime if and only if #{(x,y) : x > 0,y > 0,4z + y> = n} is odd.

The following proof uses the fact that the unit group Z[i]* of the principal ideal
domain Z[i], where i = /-1, is {1,—1,4,—i}. The idea is to find representatives
in Z[i] for the semigroup Z[i]/Z[i]*.

Proof. The statement is true for n = 1, so assume n > 1.

Define S = {(z,y) : y > 0,42 + y2 = n}. Define T as the set of norm-n ideals
in Z[i]. For each (z,y) € S define f(z,y) € T as the ideal generated by y + 2zi.

Step 1: f is injective. Indeed, the other generators of the ideal generated by
y + 2z1 are —y — 2xi, —2x + yi, and 2z — yi, none of which are of the form y’ + 2z’
with 3’ > 0.

Step 2: f is surjective. Indeed, take any I € T. Select a generator a + bi of I;
then a2 4+ b? = n. Note that b # 0 since n is squarefree. If a is even and b > 0 then
I = f(—a/2,b); if a is even and b < 0 then I = f(a/2,—b); if a is odd and a > 0
then I = f(b/2,a); if a is odd and a < 0 then I = f(-b/2, —a).

Step 3: If n is prime then #T = 2 so #{(m,y) txz >0,y >0,42%2 + 9% = n} =
(#S)/2 = (#T)/2 = 1. Otherwise write n = pips - --p, where each py is prime.
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The number of norm-p; ideals is even, so #T is divisible by 2", hence by 4; thus
#{(z,y) 12> 0,y > 0,42> + y*> = n} = (#S5)/2 = (#7T)/2 is even. O

Theorem 6.2. Let n be a squarefree positive integer with n =1 (mod 6). Then n
is prime if and only if #{(z,y) : ¢ > 0,y > 0,3z® + y> = n} is odd.

The following proof uses the fact that the unit group of the principal ideal domain
Z[w], where w = (=1 ++/=3)/2, is {1,w,w?, -1, —w, —w?}.

Proof. Assume n > 1. Define S = {(z,y) : y > 0,3z + y? = n}. Define T as the
set of norm-n ideals in Z[w]. For each (z,y) € S define f(z,y) € T as the ideal
generated by x 4+ y + 2zw. If n is prime then #7T = 2; otherwise #7" is divisible by
4. By calculations similar to those in Theorem 6.1 the reader may verify that f is
a bijection from S to 7. O

Theorem 6.3. Let n be a squarefree positive integer with n = 11 (mod 12). Then
n is prime if and only if #{(z,y) : ¢ > y > 0,3z% — y*> = n} is odd.

The following proof uses the fact that the unit group Z[y]* of the principal ideal
domain Z[y], where v = /3, is {+(2+ )7 : j € Z}.

Proof. Define S = {(z,y) : |z| >y > 0,3z — y? = n}. Define T as the set of norm-
n ideals in Z[y]. For each (z,y) € S define f(z,y) € T as the ideal generated by
y + 7. As above it suffices to show that f is a bijection from S to T

Define L = log(2 + 7), and define a homomorphism Log : Q[y]* — R? by
Log(a + by) = (log|a + by|,log|a — by|). Then Log Z[y]* = (L, —L)Z. Note that if
|| > a > 0 then |u — v| < L where (u,v) = Log(a + by); and if |u — v| < L then
either |a| < |b] or |a| > 3]b].

Injectivity: For (z,y) € S and (z',y’) € S write (u,v) = Log(y + zv) and
(u',v") = Log(y’ + 'y). Then |u—v| < Land [u' —v'| < L,so|lu—v—u +7]|<
2L. Now if f(z,y) = f(«',y’) then (u,v) — (v/,v') € (L, —L)Z, so (u,v) = (u',v'),
so (z',y) € {(z,y), (—z,—y)}, so (¢/,¥') = (z,y) since y and y' are both positive.

Surjectivity: Given a norm-n ideal I, pick a generator a+ by of I. Write (u,v) =
Log(a + by). Select an integer j within 1/2 of (v —u)/2L, and write y + zy = (a +
87)(2-+)7. Then Log(y-+27) = (u+ L, v—jL), and |(u + L) — (v - 4L)| < L, s0
ly| < |z| or |y| > 3|z|. But n = £(32%> —y?), and n = 11 (mod 12), so n = 322 —y?;
in particular 3z% — y? > 0 so |y| < |z|.- Also |y| # 0 and |y| # |z| since n is
squarefree. If y > 0 then I = f(z,y); if y < 0 then I = f(—z, —y). O

Notes. These theorems are standard. See, e.g., [14, Chapter 11]. We have included
proofs for the sake of completeness.

The function Log in the proof of Theorem 6.3 is an example of Dirichlet’s log
map. See, e.g., [6, page 169].
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