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ABSTRACT. We give complete details of an algorithm to compute approximate kth
roots. We use this in an algorithm that, given an integer n > 1, either writes n as
a perfect power or proves that n is not a perfect power. Using Loxton’s theorem on
multiple linear forms in logarithms, we prove that this perfect-power decomposition
algorithm runs in time (logn)!+o(1),

1. Introduction

An integer n > 1 is a perfect power if there are integers x and k > 1 with
n = x¥. Note that k < log, n; also, the minimal k is prime.

A perfect-power detection algorithm is an algorithm that, given an integer
n > 1, figures out whether n is a perfect power. A perfect-power decomposition
algorithm does more: if n is a perfect power, it finds « and k& > 1 with n = z*.
A perfect-power classification algorithm does everything one could expect: it

writes n in the form 2* with k& maximal.

Theorem 1. There is a perfect-power classification algorithm that for n > 2 uses
time at most (log, n) o),

A more precise bound is (log, n) exp(O(y/loglog nlogloglogn)) for n > 16.

This paper is organized as a proof of Theorem 1. In Part I we review integer
and floating-point arithmetic. In Part II we develop an algorithm to compute kth
roots. In Part III we present a perfect-power decomposition algorithm, Algorithm
X. We bound the run time of Algorithm X in terms of a function F(n). In Part
IV and Part V we analyze F(n). We complete the proof of Theorem 1 by showing
that F'(n) is essentially linear in logn. In Part VI we present a 2-adic variant of
Algorithm X.

A table of notation appears in section 32.

Motivation. Before attempting to factor n with algorithms such as the number
field sieve [15], one should make sure that n is not a perfect power, or at least not a
prime power. This is a practical reason to implement some power-testing method,
though not necessarily a quick one.
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Speed is more important in other applications. According to [17] there is a
theoretically interesting method of finding all small factors of n (to be presented in
a successor to [18]) for which perfect-power classification can be a bottleneck.

See [3, section 1] for another example. Here average performance (for n chosen
randomly from a large interval) is more important than worst-case performance.
We consider the average performance of Algorithm X in section 21.

We digress briefly into applied computational complexity theory. It is fashionable
to ask, given a computational problem, whether there is an algorithm that solves the
problem in polynomial time; here “polynomial” means “polynomial in the number
of input bits.” We suggest a different question: is there an algorithm that solves
the problem in essentially linear time? Here linear means “linear in the number
of input bits plus the number of output bits,” and essentially means “allowing a
14 0(1) exponent.” For many broad classes of problems the answer is yes. Theorem
1 says that the answer is yes for perfect-power classification.

For readers who want to compute high-precision inverses and roots. One
of our major tools is of independent practical interest. In section 11 we present
complete theoretical and practical details of an algorithm to compute y~'/* to b
bits. Our presentation is designed for the benefit of implementors; see the notes in
section 11 for further discussion.

For readers interested in transcendental number theory. Another of our
major tools is of independent theoretical interest. Section 26 contains a corrected
proof of a bound on the number of perfect powers in a short interval. Both the
bound and the corrected proof are due to Loxton; the underlying theorem about
linear forms in logarithms is also due to Loxton. Sections 23, 24, 25, and 26 may
be read independently of the rest of the paper.

2. Acknowledgments

Many thanks to Hendrik W. Lenstra, Jr., John Loxton, Michael Parks, Igor
Shparlinski, and Jon Sorenson for their helpful comments. Lenstra pointed out
that the method of Part IIT had a p-adic analogue; Shparlinski suggested that
[19] would help in the F(n) analysis; Loxton supplied the corrected proof of [19,
Theorem 1] shown in section 26.

Part I. Arithmetic

3. Summary of Part I

Section 4: M (b) is an upper bound on the time used to compute the product of
two b-bit integers; M-time means time spent multiplying integers. M (b) is bounded
by bu(b), where i is a nondecreasing function.

Section 5: A floating-point number is an integer divided by a power of 2; the
pair (a,n) represents the floating-point number 2%n. We define mul(r, k) = kr.

Section 6: To speed up floating-point computations we often truncate a floating-
point number r to b bits; the result is written trunc, r. We can calculate the product
ss', with s = truncy r and s’ = trunc, 7/, in M-time at most M (b). We also define
divy(r, k) as a b-bit floating-point approximation to r/k, for k a positive integer.

Section 7: Let k and b be positive integers. Then pow,(r, k) is a floating-point
approximation to r*: it satisfies 1 < r%/pow,(r,k) < (1 + 2'7°)2k=1 We can
compute pow,(r, k) in M-time at most P(k)M (b), where P(k) < 2|lgk].
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4. Integer arithmetic

Inside a computer we represent a positive integer n as a string of bits giving n’s
binary expansion. It is easy to add and subtract integers in this form.

A b-bit number is a positive integer smaller than 2°. The string representing
such an integer has at most b bits.

Let M (b) be an upper bound on the time used to compute the product of two
b-bit numbers. We think of integer multiplication as a black box. We write M-time
for time spent inside this black box. Then the M-time used by any algorithm will
be bounded by a sum of various M (b)’s.

There is an algorithm that, for realistic computers in some time scale, computes
the product of two b-bit numbers in time blg2blglg4b, so we may take M (b) =
blg2blglg 4b.

Define p(b) = max {M(j)/j:1 < j <b}. Then pu(b) is a nondecreasing function
of b, with M (b) < bu(b). If M(b)/b is already nondecreasing then pu(b) = M (b)/b.

Lemma 4.1. If K(t) € t°V) and L(v) = max {K(t) : t < v} then L(v) € v,

So if M(b) € b*+°) then p(b) € b°D. When u(b) € b°1) we say that we are
using fast multiplication.

Proof. Fix € > 0. Select u > 1 such that —elgt < lg K (t) < elgt for ¢t > u. Fix
v > max {u,L(u)l/e}. For ¢ < u we have K(t) < L(u) so lg K(t) <lg L(u) < elgv;
and for u < t < v we have lg K(¢) < elgt < elgv. Hence lg L(v) < elgv. On the
other hand lg L(v) > 1g K (v) > —elgv. O

Notes. See [28] or [1] for a multiplication algorithm taking time blg 2b1glg 4b. See
[14, section 4.3.3] for a discussion of fast multiplication algorithms.

Note that it is possible to build a different blg 2b1glg 4b multiplication algorithm
out of the method of [23].

Later we will need algorithms for multiplying and dividing by small integers.
Instead of our fast black box we use the methods presented in, e.g., [14, section
4.3.1]; we do not count these operations as taking M-time. In practice one can use
[14, exercise 4.3.1-13] for multiplication and [14, exercise 4.3.1-16] for division.

The time we spend on perfect-power testing is almost exclusively M-time. We
generally omit discussion of non-M-time; the reader may verify that operations
other than multiplication do not take much time.

5. Floating-point arithmetic

A positive floating-point number is a positive integer divided by a power of
2. The computer can store a pair (a,n), with a an integer and n a positive integer,
to represent the positive floating-point number 2%n. (In practice |a| is always very
small, so a can be stored as a machine integer.)

Notice that (a,n) and (a — 1,2n) represent the same number. The computer can
shift among representations. It could repeatedly divide n by 2 until it is odd, for
example, to make the representation unique.

Let (a,n) and (a’,n’) represent the positive floating-point numbers r = 2*n and
' = 29'n/ respectively. Set f = min{a,a’}. Then r +r' = 2/ (20~ Fn 4+ 2"~ Fp/) is
represented by the pair (f,2° /n + 2a/*fn’). Similarly, if » > 7/, then r — 7/ is a
positive floating-point number represented by the pair (f,2% fn — 2“/_fn’).
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Multiplication is easier: (a + a’,nn’) represents the product rr’/. If n and n’ are
both b-bit numbers then the M-time here is at most M (b).

We define mul(r, k) = kr for r a positive floating-point number and & a positive
integer. By convention we do not compute mul(r, k) with our black box for integer
multiplication, so time spent computing mul is not M-time. Instead we use an
algorithm designed for multiplying by small integers.

Notes. A typical computer has hardware designed to handle a finite set of floating-
point numbers. One may study the extent to which operations on the real numbers
can be approximated by operations on such a small set [14, section 4.2.2]; the
difference is called “roundoff error.” Rewriting 2¢71(2n) as 2%n is often called
“denormalization”; it is rarely considered useful.

Our point of view is somewhat different. We do not worry too much about
computer hardware, and we do not work within any particular finite set. We
regard approximation not as causing “error” but as limiting the precision used for
intermediate operations, thus speeding up our computation. We can work with n
more efficiently than 2n, so we happily rewrite 2¢71(2n) as 2%n.

A floating-point number is also known as a dyadic rational [22, page 435].

6. Floating-point truncation

In this section we define truncation to b bits, written truncy, and show that
r/truncy r is between 1 and 1+ 2'~?. More generally, for any positive integer k, we
define divy(r, k) as a b-bit floating-point approximation to r/k, so that r/k divy(r, k)
is between 1 and 1 + 2172,

Fix b > 1. Set divy(a,n,k) = (a + f — [lgk] — b, |n/2f~18*¥1=2k]) where
2/=1 < n < 2f. (Note that f — [lgk] — b may be negative.) This map induces a
map, which we also denote divy, upon positive floating-point numbers:

divy(20n, k) = 20HF ~Nekl=b| p jof=Nekl=bp | jf of =1 <y < 97,

To compute divy(r, k) we use an algorithm designed for dividing by small integers;
time spent computing divy, like time spent computing mul, is not counted as M-
time.

Lemma 6.1. Fizb>1 and k > 1. Let r be a positive floating-point number, and
set s = divy(r, k). Then s <r/k < s(1+2170).

Proof. Put r = 2%n and define f by 2/=1 <n < 2f. Also write g = f — [lgk] — b
and m = |n/29], so that s = 2¢T9m. We have m < n/29% < m + 1; furthermore

F-1 Mg k] ob—1
m > \‘2 J _ \‘2 2 J > LQb_lJ —gb—1

29k k

Thus 2¢19m < 2%n/k < 2979(m + 1) = 29 9m(1 + 1/m) < 29F9m(1 + 217%). So
s <r/k < s(1+2'7?) as desired. [

For k = 1 we abbreviate div,(r, k) as trunc, r. So trunc, 2%n = 20+ =t | n/2/ 7|
if 2/=1 < n < 2/. This map is called truncation to b bits. Observe that |n/2/?|
is a b-bit number.
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Lemma 6.2. Fiz b > 1. Let r be a positive floating-point number, and set s =
trunc, 7. Then s <1 < s(1+217%).

Proof. Take k =1 in Lemma 6.1. [

Warning. We will often assert that the computer can calculate the product ss’,
with s = trunc, 7 and s’ = trunc, r’, in M-time at most M (b). Unfortunately, a
malicious computer could use unnecessarily large representations for s and s’ so as
to slow down the multiplication. We tacitly assume that either (1) values of truncy
are always represented as pairs (a,n) with n a b-bit number or (2) numbers are
scaled appropriately before multiplication.

Notes. For most computers a base such as 232 is more convenient than base 2. It
is tempting to replace trunc by a function that keeps a few extra bits “up to the
word boundary.” One may safely succumb to this temptation: beyond Lemma 6.2,
the only property we use of trunc is that two values of trunc, may be multiplied in
M-time M (b).

7. Approximate powers

Let r be a positive floating-point number, and let k£ and b be positive integers.
Then pow,(r, k), the b-bit approximate kth power of r, is a floating-point
approximation to 7*. In this section we show how to compute pow,(r, k) in M-time
at most P(k)M(b), where P(k) <2|lgk].

We define P(k) for k > 1 as follows: P(1) = 0; P(2k) = P(k)+1; P(2k+1) =
P(2k) + 1.

Lemma 7.1. P(k) <2|lgk].

Proof. For k = 1, P(k) = 0 and lgk = 0. If P(k) < 2|lgk]| then P(k) + 2
2|lgk]+2=2|lg2k|,so P(2k) = P(k)+1 < P(k)+2 < 2|lg2k] and P(2k+1)
Pk)+2<2|lg2k] <2|lg2k+1)]. O

We define pow,(r, k) for k > 1 as follows:

A

pow,(r, 1) = trunc, r
pow, (1, 2k) = trunc,(pow, (1, k)?)
pow, (r, 2k + 1) = trunc,(pow, (r, 2k) pow, (r, 1)).

Lemma 7.2. pow,(r, k) < rF < pow,(r, k)(1 + 217b)2k—1,

Proof. For k = 1 we have trunc,r < r < (truncy r)(1 + 2!7%) by Lemma 6.2. For
k > 1 there is, by definition of pow, some partition i + j = k with pow,(r, k) =
truncy (pow, (1, ) pow, (1, 5)). If pow,(r,i) < r? < pow,(r,i)(1 + 217%)2~1 and
pow, (7, j) < 17 < pow,(r,j)(1 +2172)27~1 then

pow, (1, k) < pow(r, i) pow,(r,j) < rird
< pow,(r, i) pow(r, 5)(1 + 217b)2(i+j)*2
< powy (1, k) (1 4 21 70)2k1

as desired. O
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The definition of pow,(r, k) immediately suggests the following algorithm:
Algorithm P. Given a positive floating-point number r and two positive integers
b, k, we print pow,(r, k).

1. If kK = 1, print trunc, r and stop.

2. If k is even: Compute pow,(r, k/2) by Algorithm P. Print truncy(pow,(r, k/2)?)
and stop.

3. Compute pow,(r,k — 1) by Algorithm P. Print truncy(pow,(r, k — 1) truncy ).

Lemma 7.3. Algorithm P computes pow,(r, k) in M-time at most P(k)M(b).

Proof. We count the number of multiplications. For k¥ = 1 there are P(1) = 0
multiplications. If we use at most P(k) multiplications for pow,(r, k), then we use
at most P(k) + 1 = P(2k) multiplications for pow,(r,2k), and we use at most
P(2k) + 1 = P(2k + 1) multiplications for pow,(r,2k +1). O

Notes. Algorithm P is the left-to-right binary method, which comes from a
broad class of powering algorithms indexed by addition chains [14, section 4.6.3].
Lemma 7.2 would remain true if we replaced pow,(r, k) with the output from any
algorithm in this class. For many & one can find an algorithm using fewer than P (k)
multiplications; this is useful in practice. See [14, section 4.6.3] and [10, section
1.2] for further discussion.

For large k it is probably better to compute r* as exp(klogr) by the methods
of [8], which take essentially linear time.

Part II. Roots

8. Summary of Part II
In section 11 we present an algorithm to compute reciprocals and kth roots to
arbitrary precision. Various useful inequalities appear in sections 9 and 10.
9. Well-known inequalities
Lemma 9.1. Ifu,v > 0 then (1+ 1/uv)* < /v,

Proof. et > 1 for t > 0. Integrate twice: e’ > 1+t +t2/2. Hence ' > 1+t for
t > 0. In particular e/ > 1+ 1/uv, so e/* > (1 +1/uv)*. O

Lemma 9.2. If0<t¢ <1 thent/(1 —t)+log(l —1t) > 0.
Proof. t/(1—1t)2 >0 for 0 <t < 1. Integrate. [
Lemma 9.3. Ifk > 1 and 14+ ¢ >0 then (1 +¢€)® > 1+ ke.

Proof. The function (14-€)*—1—ke is zero when € = 0. Its derivative r((1+€)"~1—1)
is nonnegative for € > 0 and nonpositive for —1 <e < 0. O

Lemma 9.4. If k> 1 and 0 < e <1 then (1 —¢€)® < 1/(1 + ke).
Proof. 1> (1 —€?)" = (1+¢€)"(1 —€)® > (1 + re)(1 — €)* by Lemma 9.3. O
Lemma 9.5. If k>0 and 1 +¢ >0 then (1+¢)™" > 1 — ke.

Proof. The function (14 €)% — 1+ ke is zero when ¢ = 0. Its derivative x(1 — (1 +
€)~"71) is positive for € > 0 and negative for —1 < e < 0. [
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10. Overly specific inequalities
Lemma 10.1. Ifx >0 and 0 < e <1 then (1 +€¢/4K)*® < 1+e.

Proof. (1+¢€)(1 —€¢/2) = 1+ (1 —¢€)e/2 > 1. By Lemma 9.5, (1 + ¢/4r)?" <
1/1—¢/2) <14e O

Lemma 10.2. Ifx > 1 then 7/8 < (1 —1/8k)".

Proof. The function (1 —1/8k)" increases as & increases: the derivative of xlog(1l—
1/8k)is 1/(8k—1)+log(1—1/8k), which is positive by Lemma 9.2. So (1-1/8k)~ >
(1-1/8) fork>1. O

Lemma 10.3. If0 <t < 1/36 then (14 3t)(1+¢)(1+ 32t/3) < 1+ 16t.
Proof. (14+3t)(1-+1)(1432t/3) — (14 16t) = £(322+ (137/3)t —4/3) is negative. [J
Lemma 10.4. Ifx >1and0 <t < 1/(4k+4) then (1+1)?*T3 -1 < 16t(7x—2)/9.

Proof. Tt suffices to compare derivatives: (2x+3)(1+t)%%2 versus 16(7x—2)/9. By
Lemma 9.1, (14+¢)25+2 < (14+1/(4k+4))?+2 < /2 < 16/9; and 26+3 < Th—2. O

11. Approximate roots

In this section we consider the problem of root extraction: computing y'/*,
given a positive floating-point number y and a positive integer k. We also consider
the problem of inversion: computing y~!. We solve both problems by showing how
to compute y~*/*. Then y'/* = y(y~1/*¥)*=1. (Alternatively y'/* = (y=1/1)~1/k;
more generally y/* = (y=V/k)=1/k2 if | = k1 ky.)

For each positive integer b we construct a floating-point number nroot,(y, k)
satisfying

nrooty (y, k) (1 — 27%) < y~/* < nrooty (y, k) (1 + 27°).

Our method, in brief, is a binary search for small b, and then Newton’s method
with increasing precision for all larger b.

Binary search: the idea. We are trying to find a root z of z¥y — 1. Binary
search means guessing the bits of z, one by one. Given an interval I surrounding
the root, we evaluate z"y — 1 at the midpoint of I. Depending on the sign of the
answer we replace I by either the left half of I or the right half of I. We repeat
until [ is sufficiently small.

To speed up the computation, we only approximate zFy — 1. If the answer is too
close to 0 for us to be sure about its sign, we replace I with the middle half of I.

Binary search: the algorithm. For b < 3 4 [lgk] we define and construct
nrooty (y, k) by Algorithm B below. For the time spent by Algorithm B, see Lemma
11.1. For the accuracy of its output, see Lemma 11.3.

We comment briefly on the constant 993/1024 in Algorithm B. In the proof of
Lemma 11.2 we will need the fact that 993/1024 is between 32/33 and e~1/33. Tt
is the “simplest” floating-point number in this range.

Algorithm B. We compute nrooty(y, k) for 1 < b < [lg8k]. In advance, find the
exponent g satisfying 2971 < y < 29, and set a = |—g/k|, so that 2¢ < ¢y~ 1/F <
20+1 " Also set B = [1g(66(2k +1))].

1. Set 2 < 20 + 201 j < 1.
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(See Lemma 11.2 for an invariant.) Now nroot;(y, k) = z. If j = b, stop.
Compute r + truncg(powz(z, k) truncg y).

If r < 993/1024, set z + z + 247771,

Ifr>1,set z 4 z—2371

Set j + j+ 1. Go back to step 2.

S e N

Note that, if 993/1024 < r < 1, we have an excellent bound on y~ Uk 2 will
remain forever unchanged and we can immediately terminate the algorithm.

Lemma 11.1. For b < [lg8k], Algorithm B computes nrooty(y, k) in M-time at
most (b—1)(P(k) + 1)M([1g(66(2k + 1))1).

Proof. We get to nrooty(y, k) in b — 1 iterations. Each iteration takes time at most
P(k)M(B) to find powg(z, k), by Lemma 7.3, and time at most M (B) to multiply
by truncgy. O

Lemma 11.2. 2% < z—2077 < y=V/k <« 2 4.90-7 < 929F1 gt step 2 of Algorithm B.

Proof. We prove this invariant by induction. When j = 1 we have z —2%71 = 2% <
y—l/k < 9o+l — Z+2a—1.

Assume the invariant true for j. Then, at step 3, the computation of r gives
r < zFy < r(1+2178)2+1 by Lemma 6.2 and Lemma 7.2. By choice of B we have

2k+1

1 -
( + 33(2k + 1 993

so r < zFy < r(1024/993). We consider three cases separately: r > 1; r <
993/1024; and 993/1024 < r < 1.

When r > 1 we have zky > 1. Wereplace z by 2/ = 2—2¢77=1: and 2/ =20 71 =

2a—j < y—l/k <z=z +2a—j—1

When r < 993/1024 we have zFy < (993/1024)(1024/993) = 1. We replace z by
2 =242 and 2/ — 200 =z <y VR <z 42070 = 5/ 200,

When 993/1024 < r <1 we leave z unchanged. We have j < [lg8k] — 1 < 1g 8k
s0 27772 > 1/32k. Thus (1 +27772)% > 1 +1/32 by Lemma 9.3, so

) 2a7j71 k 9a— j—1 k

(z 42077 Hky = 2*y <1+ . ) > 2ky <1+ a1 >
L k33 993 33
Y33 = 102432

On the other hand (1 —27772)% < 32/33 by Lemma 9.4. So

L ga—j—1\* ga—j—1\ F

k32 _ 102432
Y33 = 093 33

<z%y

Hence z — 2071 < y=1/* < 7 420771 35 desired. [
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Lemma 11.3. nrooty(y, k)(1 — 27°) < y~'/* < nrooty(y, k)(1 + 27%) for b <
[lg 8k].

Proof. nrooty(y, k) appears as z in step 2 of Algorithm B when j = b. By Lemma
11.2, 28 < z — 2070 < y=L/k < 54 9a=b < 9a+1 Then 2270 > 297 50 2(1 — 27?) <
22070 <yTVk < x4 20 b < x(1 4270 O

Newton’s method: the idea. We are trying to find a root of h(z) = z7Fy~1 — 1.
In Newton’s method, we replace our first guess, z, by a much better guess, z —
h(z)/h'(2) = z + (z — yz**1) /k. We repeat until z has the desired accuracy.

Newton’s method roughly doubles the number of correct digits on each iteration.
To speed the computation, we compute the full-precision answer only on the last
step; we work with only 1/2 the digits in the previous step, 1/4 in the step before
that, and so on.

Newton’s method: the algorithm. For b > 4 + [lgk] we define and construct
nrooty(y, k) by Algorithm N below. For the accuracy of nroot,(y, k), see Lemma
11.7. For the time spent by Algorithm N, see Lemma 11.4.

Algorithm N. We compute nrooty(y, k) for b > [lg8k] + 1. In advance set V' =

[lg2k] + [(b— [1g2k])/2] and B =2V’ + 4 — [lgk]. Note that ¥’ < b.

1. Compute z < nrooty (y, k), by Algorithm B if &’ < [lg8k] or by Algorithm N if
b > [lg8k] + 1.

2. Set ro < mul(truncp z, k + 1).

3. Set r3 < truncp(powpz(z, k + 1) truncp y).

4. Set r4 + divp(re — r3, k). Now nrooty(y, k) = r4.

Lemma 11.4. Forb > [lg8k|+1, Algorithm N computes nrooty(y, k) in M -time at
most T+ KU, where T = [lg4k] (P(k)+1)M([lg(66(2k +1))]), K = P(k+1)+1,
and U = (2b+ 10 + [8 +1g k] [lg(b — [lg 2k]) — 37) (b + 6).

Proof. We have B—[lg2k]—5 = 2(0'—[lg2k]) = 2 [(b — [lg2k])/2], so B is either
b+5 or b+6. Hence B4+20 < b+6+2(0' —[lg2k])+2 [lg2k] < b+7+(b—[lg2k])+
2[lg2k] = 2b+ [8 +1gk]. Note that [lg(d' — [lg2k])] = [lg(b — [lg2k]) — 1].

We have b > [lg8k]. If b > [lg8k], Algorithm N calls itself to compute
nrooty (y, k). By induction, this call takes M-time at most T+ KU’, where U’ =
(20" + 10 + [8 +1g k] [lg(t/ — [1g2k]) — 3]) (b’ + 6).

If o' = [lg 8k], Algorithm N calls Algorithm B to compute nrootig s (y, k). By
Lemma 11.1, this call takes M-time at most T. Note that in this case U’ = 0, since
2 [lg8k] + 10+ [8 + 1g k] [1g([lg 8k] — [lg2k]) — 3] = 0.

So in either case step 1 of Algorithm N takes M-time at most T+ KU’. By
Lemma 7.3, step 3 of Algorithm N uses M-time at most P(k+ 1)M(B) + M(B) =
KM(B). Thus the total M-time used by Algorithm N is at most

T+ KM(B)+ KU’
=T+ KM(B) + K (2V' + 10 + [8 +1gk] [lg(t' — [1g 2k]) — 3]) u(b’ + 6)
<T+K(B+2V +10+ [8+1gk] [lg(t' — [lg2k]) — 3]) (b + 6)
<T+K(2b+ 10+ [8+1gk] + [8 +1gk] [g(b" — [lg 2k]) — 3]) (b + 6)
=T+ K(2b+ 10+ [8+1gk] [lg(b— [lg2k]) — 3])u(b+6) =T + KU

as claimed. O
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Lemma 11.5. Definew = ((k+1)z—2"1y)/k. If 2(14€) =y~ /% and e > —1/8k
then w < y~V*F < w(1 + 4ke?/3).

Proof. 1 —ke < (1+ ¢)~F by Lemma 9.5, so

E+1—zZy=k+1-(1+e) " <k+ke= zykﬁ’
sow = (z/k) (k41— 2Fy) <y~ /k,

By Lemma 9.3, (1+€)¥ > 1+ke >1-1/8 > 1/2,50 k+1>2> (14+¢)7F = 2y,
sow > 0.

Again, (14 €)F > 1+ ke, so

w o k+DA+eF -1 (k+DA+erF-1  k+1
<1—(1—ke)/(k—|—1)_1—k;e_ ke? <é
T (k+1)(1+ke)—1 k+1 l14et+ke 3

y 1= —k)(4er  1-(—ke)/(k+1) 1 ke

ke?

since 1+ (k+1)e>1—-(k+1)/8k>1-1/4=3/4. O

Lemma 11.6. If z(1 —27) < y= /% < 2(1 4+ 27 in Algorithm N then ry(1 —
270 < y7VE < py(14270).

Proof. Define w = ((k + 1)z — 25*'y) /k. The idea is that w is very close to y~ '/,
(ro —r3)/k is very close to w, and 74 is very close to (ro — r3)/k.

Define € by z(1 4+ €) =y~ /% so that —27% < e < 27", We have v/ > [Ig8k] >
lg8k so 270 < 1/8k so —1/8k < e < 1/8k.

Note that B is either b+ 5 or b+ 6, so 2°~ 8 < 2-b Abbreviate § = 2175, Then
§ <1/36,0 < 1/(4k+4), and 8(1+8) < 9. Also (2k)272V" < 21 +[lak]-20" — 95-5 —
164.

By construction ro < (k + 1)z < ro(1 4+ 6), r3 < 2Fly < r3(1 + 0)%¢*+3, and
rg < (ro—r3)/k <rq(1+9).

By Lemma 10.2, 7/8 < (1 — 1/8k)* < (14 €)* = y~127F, s0 2y < 8/7. So

k+1 k
Egz y(1+5):zy(1+5)<§1+5< 9 <g.
) (k+1)z kE+1 Tk+1 " T(k+1) 3
By Lemma 11.5, w < y~'/*, so
yil/kzgz kw :(k—!—l)z—zkﬂyZrz—r3(1+5)2k+3
T4 T4 Ty —7T3 Ty —7T3 g —1T3
1 52k+3_1 1 52k+3_1
:1,L>1,L>1,165
7“2/7“3—1 (7k—2)/9

by Lemma 10.4.
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On the other hand, by Lemma 11.5, y~'/* < w(1 + 4ke?/3), so
y~ Lk _ w1+ 4ke*/3) _wi+t (2/3)(2k)272Y") < w(l +(32/3)9)

T4 T4 T4 T4
_ k(1 +0)w(l +(32/3)8) _ (1+8)((k+1)z — R ly) (1 4 (32/3)0)
Tog — T3 Tg — T3
- (14 06)(r2(1 4+ 0) —r3)(1 + (32/3)9)
9 — T3
32 ) 32

= (1+496) (1+35) (”1—7«3/7«2) < (1+44) <1+35> (1 + 30)
<1+ 160

by Lemma 10.3. [
Lemma 11.7. nrooty(y, k)(1 —27%) <y~ /% < nrooty(y, k)(1 4+ 27°) for all b.
>

Proof. For b < [lg8k] this is Lemma 11.3. For b [lg8k] + 1 we compute
nrooty(y, k) as r4 in Algorithm N. By induction z(1 —27%) < y= /¥ < z(1 4277,
so74(1—27%) <y Yk <ry(1+27%) by Lemma 11.6. O

Notes. High-precision inverses and roots show up in many contexts other than
perfect-power detection, so Algorithms B and N are arguably the most important
algorithms in this paper. The author’s goal in writing this section was to produce
something “ready to run” and immediately useful in practice.

Algorithms B and N are reasonably “tight”: they do not use unnecessarily high
precision. As the reader can see, we pay for this tightness in complex proofs, though
the algorithms themselves are short and straightforward.

The basic outline of our method is well known, as is its approximate run time.
For Newton’s method with increasing precision see [8] (which popularized [7]) or
[6, section 6.4]. For the specific case of inversion see also [14, Algorithm 4.3.3-R]
or [1, page 282]. For a controlled number of steps of binary search as preparation
for Newton’s method see [3, section 3].

However, it is difficult to find a complete error analysis in the literature, let alone
an algorithm carefully tuned for speed in light of such an analysis. An algorithm
with results of unknown accuracy—or an algorithm not even stated explicitly—is
of little value for implementors.

A notable exception for k =1 is [14, Algorithm 4.3.3-R], which is stated in full
detail and supported by tight error bounds; but Algorithm N will be faster, because
it pays close attention to the desired final precision.

For Newton’s method generally see [25, section 9.4]. The inequalities in Lemma
11.5 follow from general facts of the form “when Newton’s method is applied to the
following class of nice functions, the iterates exhibit the following nice behavior.”

Binary search as a root-finding technique is also known as bisection. For bisec-
tion generally see [25, section 9.1]. Our use of binary search is closer in spirit to
[25, section 9.1] than to [3, section 3] since we limit the precision of intermediate
calculations.

There are many other general root-finding methods; see [25]. There are even
more methods specific to kth roots.

For large k, just as r* is probably best computed as exp(klogr), r'/* is probably
best computed as exp((log r)/k) by the methods of [8], which take essentially linear
time.
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Part ITI. Power testing

12. Summary of Part 111

Section 13: Algorithm C tests if n = 2* in time essentially linear in the number
of leading digits needed to distinguish n from z*.

Section 14: Algorithm K tests if n is a kth power. It finds an approximation to
n'/* and then applies Algorithm C.

Section 15: Algorithm X tests if n is a perfect power by running Algorithm K
for each possible prime exponent.

Section 16: We define a function F(n), and we survey results on F'(n) from Part
IV and Part V. The run time of Algorithm X is essentially linear in F'(n), if we use
fast multiplication.

Section 17: We prove Theorem 1.

13. How to test if n = z*

In this section we consider the problem of testing, given positive integers n, x,
and k, whether n = z*.

We could simply compute z* and check whether it equals n. But we can eliminate
most (x,n) more efficiently, by checking whether n = 2* is consistent with the first
few digits of n and =x.

Our solution, Algorithm C, inspects at most about twice as many leading bits
of n as are needed to distinguish n from z*. See Lemma 13.5 for a precise run-time

bound. See Lemma 13.2 for a proof that Algorithm C works.

Algorithm C. Given positive integers n,z, k, we compute the sign of n — z*. In

advance set f = |lg2n].

. Set b+ 1.

. Compute r = pow, 1587 (2, k).

If n < r, print —1 and stop.

If r(1 +27%) < n, print 1 and stop.

. If b > f, print 0 and stop.

. Set b < min {2b, f}. Go back to step 2.

S Ul W N

The farther apart n and z* are, the more quickly Algorithm C can tell them
apart. Define a distance d on integers as d(i,j) = 0 when i = j, d(4,j) = |1g|i — j|]
when i # j; below we express the speed of Algorithm C in terms of d(n, z*).

Lemma 13.1. Set f = [lg2n|. At the start of step 3 of Algorithm C, r < z¥ <
r(14+27°). At the start of step 4, r < n and z* < r 42770, At the start of step 5,
n<r+4+ 270

Proof. By Lemma 7.2 and Lemma 10.1,

<of<r(14 ot 2k_1< 14— 2k_1< (1+27%)
rsx r 2b+[lg4k] T 2b4]{j T .

If we do not stop in step 3, then r < n < 2/, so r(1 +27°) < r 4+ 277, If we also
do not stop in step 4, then n < r(1+27%). O
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Lemma 13.2. When Algorithm C stops, it prints the sign of n — x*.

Proof. We use each piece of Lemma 13.1. If we stop in step 3 then n < r. But
r < zF so n < ¥ as desired.

If we stop in step 4 then r(1 +27%) < n. But 2¥ < r(1+27%) so ¥ < n as
desired.

If we stop in step 5 then b > f,sor <n<r+1 and 7 < zF < r + 1. Hence
In — 2| < 1. Both n and z* are integers, so n = z* as desired. [

Lemma 13.3. Set f = |lg2n] and g = max{l,ffd(n,xk)}, If b > g then
Algorithm C stops before step 6.

Proof. We prove the contrapositive. If Algorithm C gets to step 6 then b < f. By
Lemma 13.1,7 <n < r+2/"%andr < 2F < r+2/7? 5o |n — xk| <2170 Ifn = zF
then d(n,z*) = 0 < f — b; if n # ¥ then d(n,2") = ng‘n—xku < lg|n—xk| <
f —b. Either way b < f —d(n,z¥) <g. O

Lemma 13.4. Set f = |lg2n]|, b; = min{?j,f}, and g = max{l,f - d(n,xk)},
Then Algorithm C takes M-time at most P(k) 3 o< ;<ng 41 M (b; + [1g8k]).

Proof. Each iteration of step 2 uses time at most P(k)M (b + [lg8k]), by Lemma
7.3. Notice that bpg p1—1 < f but bpg sy = f. So Algorithm C uses first b < by,
then b < by, and so on through at most b < bz ¢1. If j > [lgg] then j > 1 and
bj—1 = max {271, f} > max {2891 g} > g, so Algorithm C stops before step 6
with b < b;_1, so it never gets to b;. [

Lemma 13.5. Set f = |lg2n] and g = max {1, f — d(n,2")}. Then Algorithm C
takes M -time less than P(k)(4g + [1g2¢] [1g 8k])u(2g + [1g 8k]).

Proof. Set b; = min {27, f}. If j < [Ig g] then b; < 27 < 2g, so
M(b; + Mg 8k1) < (b; + g 8k1)u(2g + g 8K]) < (27 + g 8k])u(2g + g 8K]).

Now by Lemma 13.4 the M-time is at most

P(k) > M(b+[g8k])) < P(k) D (2 +[1g8k])u(2g + [g8k])

0<5<[lgg] 0<j< g g]
< P(k) (215291 4 Mg 2g] [1g 8k]) (29 + [1g 8k])
< P(k)(4g + [1g2g] [1g 8k])p(2g + [lg 8k])

as claimed. 0O

Notes. Our use of increasing precision is at the heart of our improvement over [3].
A 50-digit number that starts with 9876 is not an 11th power; we don’t need to
look at the remaining 46 digits to see this. In general we do not inspect many more
bits of n than are necessary to distinguish n from 2*. As in Newton’s method, the
last step dominates the run time.

In Newton’s method it is natural to double the precision at each step. But
in Algorithm C we could use any vaguely geometric progression. In practice we
should modify our b sequence to take into account the speed of multiplication and
the distribution of z and n.
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Lemma 7.3 is hopelessly pessimistic about the time needed to compute z* to
high accuracy. Since x has very few bits, our first few multiplications use relatively
low precision. In fact, the P(k) factor in Lemma 13.4 should disappear as g grows.
Similarly, the bound from Lemma 7.2 is somewhat loose. A careful analysis would
show that, when b is large, we can use fewer than [lg8k] guard bits in step 2 of
Algorithm C. This is probably not worth the added complexity in practice.

If we know n modulo a small prime ¢, we can compute x mod ¢ and check whether
2* mod ¢ = n mod ¢. See section 31 for further discussion.

In step 3 of Algorithm C we compare a high-precision number, n, to a low-
precision floating-point number, r. The alert reader may have observed that this is
a potential bottleneck. The M-time in Algorithm C is essentially the precision of
r; this may be much less time than it takes us to read the digits of n. Fortunately
we can check whether n < r in time proportional to the size of 7, so there is no
difficulty. (Similar comments apply to step 4.) Imagine if, instead, we had to test
whether n < r. If n and r agreed out to the precision of r, we would have to keep
reading n to see whether any of the remaining bits were nonzero. There are many
solutions—in practice n will always be odd; more generally our comparison routine
could insist that n be represented as a fully denormalized floating-point number;
or we could truncate n and use slightly wider bounds—but it is comforting that for
us the problem does not arise.

14. How to test if n is a kth power

Let n and k be integers larger than 1. In this section we show how to check
whether n is a kth power. The idea is to compute a floating-point approximation
r to n'/*; say [n'/F —r| < 1/4. Then, if r is within 1/4 of an integer x, we check
whether z* = n.

Algorithm K. Given integers n > 2 and k > 2, and a positive floating-point number
y (see Lemma 14.2), we see if n is a kth power. In advance set f = |lg2n] and
b=3+[f/k].

1. Compute r < nrooty(y, k).

Find an integer = with |r — x| < 5/8.

If z=0or |r— x| > 1/4, print 0 and stop.

Compute the sign of n — z* with Algorithm C.

If n = 2%, print = and stop.

Print 0.

A

Lemma 14.3 shows that Algorithm K is correct. Lemma 14.4 gives an upper
bound for its run time.

Lemma 14.1. If0 <t < 1/10 then (14+t)/2/(1—t) < 142t and (1—t)"/?/(1+t) >
1—2t.

Proof. We have 1 —3t—4t?+4t3 > 1-0.3—0.04—0.004 > 0. Hence ¢t —3t2 —4t3 4 4t*
is nonnegative. Thus 1 +¢ <142t —3t2 —4t3 +4t* = (1 +t —2t3)%, s0 V1 + £ <
(1—t)(142t). Also0<1—t<lsoyT—t>1—t>1—-t—2t>= (1+8)(1-2t). O

Lemma 14.2. Ify(1—-27%) <n™! < y(1+27°) in Algorithm K then ‘r - nl/k’ <
1/4.

Proof. Write § = 27°. By hypothesis, y(1 — ) < n~' < y(1 + ), so y~/*(1 +
§) Mk < pl/k < y=1/k(1 — §)71/F By Lemma 11.7, 7(1 — §) < y~ ¥k < r(1+6).
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Note that § < 1/16 < 1/10. We apply Lemma 14.1 twice: first

“1/k 1/k 1/2 1/2
y VORI YIS ) VI SO VI G ) 1
7“<71_5<n B <n 15 =n +n -5

< nVE 4l /kos < pl/k 4 9flkos — pU/k | offkg=2=Tf/K < pi/k L.
— — 47

second

“1/k  S\1/k _s\1/2 _5\1/2
rs Y >n1/k(1 5) >n1/k(1 5) :nl/k+n1/k((11f)(s _1>

1+46 1+6 = 1+0
> pl/k _pl/kog > pl/k _ of ko — pi/k _ of/hg=2=[5/k1 > pi/k _ L
= = 4

Hence |r —n'/F| <1/4. O

Lemma 14.3. Set f = [lg2n] and b = 3 + [f/k]. Assume that y(1 —27°) <
n~t < y(1427°). If n is a kth power, Algorithm K prints n*/*. If n is not a kth
power, Algorithm K prints 0.
Proof. In Algorithm K we find an integer  with |r — 2| < 5/8. By Lemma 14.2,
|r—n1/k| < 1/4, so |m—n1/k| <1/445/8 < 1. If n is a kth power then z and
n'/* are both integers so z = n'/*¥. Then |r — z| = ‘7“ - nl/k’ < 1/4 and x > 0, so
Algorithm K does not stop in step 3; in step 5 it prints x.

On the other hand, if n is not a kth power, then certainly n # z*, so Algorithm
K does not stop in step 5. So it prints 0. O

Let ¢ be a real number such that ¢ — 1/2 is not an integer. We write round ¢ for
the nearest integer to ¢: the unique integer ¢ with |¢ —¢| < 1/2.

Lemma 14.4. Set f = [lg2n], g = max {1, f —d(n, (roundnl/k)k)}, and b =

34+ [f/k]. Assume that y(1 —27%) < n~t < y(1 +27°). Then Algorithm K uses

M -time less than

(49 + [1g 2] 1g8k]) P(k)p(2g + [1g 8K1) + [1g 4k] (P (k) + 1) M ([1g(66(2k + 1))1)
+ (2Lf /K] + e f1 18 +1gkT) (P(k + 1) + Du([f/k] +9).

Proof. Define T' = [lg4k] (P(k) + 1)M ([1g(66(2k 4+ 1))]). Note that b — [lg2k] =
[f/k] =gkl +2<[f/2] +1< f since f > 2.

In Algorithm K we first compute nrooty(y, k). If b < [lg8k] then, by Lemma
11.1, we use M-time at most 7. If b > [lg 8%] then, by Lemma 11.4, we use M-time
at most

T+ (P(k+1)+1)(2(b— [lg8k]) + [8 +1g k] [1g(b — [1g2k]) — 1])u(b + 6)

ST+ Q([f/k] 1)+ [8+1gk] [lg f — L)(P(k+1) + Du([f/k] +9)
ST+ 2Lk + [8+1gk] 1g f))(P(k+1) + Du([f/k] +9).

After computing r = nroot,(y, k) we construct an integer x. We may invoke
Algorithm C; if we do, then |r — x| < 1/4, and |r — n'/*| < 1/4 by Lemma 14.2,
SO |x — nl/k| < 1/2, so x = round n'/k. Finally, by Lemma 13.5, Algorithm C uses
M-time at most P(k)(4g + [lg2g] [lg 8k])u(2g9 + [1g8k]). O
Notes. Say we know n modulo a small prime ¢ with ¢ mod £ = 1. Then we can
check in advance whether n(?2=1/% equals 0 or 1 modulo ¢. If not, then n cannot be

a kth power. The idea of [3] is to compute n modulo several small primes for each
k, so as to quickly weed out most non-powers. See section 31 for further discussion.
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15. How to test if n is a perfect power

To see whether n is a perfect power, we run through the primes p < lgn. For
each p, we check whether n is a pth power. Lemma 15.2 shows that our algorithm
is correct. For a time analysis see the next section.

Algorithm X. Given an integer n > 2, we attempt to decompose n as a perfect
power. In advance set f = [lg2n].

1. Compute y < nrootss/21(n, 1).

2. For each prime number p < f:

3. Apply Algorithm K to (n,p,y); let « be the result.

4. If x > 0, print (x,p) and stop.

5. Print (n,1).

Lemma 15.1. y(1 —273"f/P1) < n < y(1 +273=1//P1) in Algorithm X.
Proof. y(1 —273-1//21) < n < y(1 4 273-1f/2]) by Lemma 11.7; and p > 2. O

Lemma 15.2. Ifn is a perfect power, Algorithm X prints a prime number p and a
positive integer x such that P = n. If n is not a perfect power, Algorithm X prints

(n,1).

Proof. By Lemma 15.1, y(1 — 273=1//P1) < n < y(1 + 273=1//P1) If Algorithm X
stops in step 4 then, by Lemma 14.3, 2P = n.

Conversely, if n is a perfect power then n is a pth power for some prime p <
lgn < f. By Lemma 14.3, Algorithm X stops in step 4. O

Notes. The result of [3] is a perfect-power classification algorithm that runs in time
log® n; on average, under reasonable assumptions, it runs in time log® n / log? log n.

The run time of Algorithm X is much better: it is essentially linear in logn, if we
use fast multiplication. The proof uses transcendental number theory. It is much
easier to prove that the average run time is essentially linear. For further discussion
see section 16.

Algorithm X is not new. It is stated in, for instance, [16, section 2.4]. But God is
in the details: without good methods for computing n'/* and for checking whether
z® = n, Algorithm X is not so attractive. The authors of [16] go on to say that one
can “save time” by adding a battery of tests to Algorithm X. Variants of the same
algorithm are also dismissed in [10, page 38] (“This is clearly quite inefficient”) and
[3].

We observe that, by putting enough work into the subroutines, we have made
Algorithm X quite fast—so fast, in fact, that typical modifications will slow it down.

To enumerate the primes p < f we may use the Sieve of Eratosthenes. See
[26] for faster methods. Note that we do not have to run through the primes in
increasing order. We should, in principle, reorder the operations in Algorithm X,
depending on the distribution of inputs, so that we detect perfect powers as soon
as possible.

16. Introduction to F(n)

In this section we introduce a function F(n). This function should be thought of
as the difficulty of determining that n is not a pth power, summed over all possible
prime exponents p. If we use fast multiplication, the run time of our perfect-power
decomposition algorithm is, at worst, essentially linear in F'(n).
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We define
F(n)= Z (lgp) max {1, lgn — d(n, (round nl/p)p)}
2<p<lgn
for n > 2. Here round t means an integer within 1/2 of ¢.

Informal comments: F(n) has about lgn/loglgn terms. Each term has a minor
lgp factor that reflects the effort spent computing pth powers. The main factor
max{l,lgn — d(n, (round nl/p)p)} says how many bits of n agree with a nearby
pth power. If n is very close to a pth power then this factor is close to lgn.

F(n) is the subject of Part IV and Part V. In Part IV we give lower and upper
bounds for F. Then we prove that the normal and average behaviors of F' are
comparable to the lower bound. See section 18 for a more complete summary.

In Part V we prove that F(n) is bounded by (Ign)'*<(™) for a certain function
€ € o(l). The approach is through the following application of transcendental
number theory: there cannot be many perfect powers in a short interval. This
means that there are not many perfect powers close to n, so not many of the main
factors in F'(n) are near lgn. Note that our exponent 1 + €(n), albeit theoretically
satisfying, is ridiculously large for any reasonable value of n.

Connection with Algorithm X. Our interest in F'(n) is based on the following
lemma.

Lemma 16.1. Forn > 2, Algorithm X takes M-time at most
(8F(n) + 6/ [1g16f " )u(2f + [l 128/))
where f = |lg2n].
The reader may verify that Algorithm X does not use much non-M-time. Hence
Algorithm X takes time essentially linear in F'(n) 4 logn, provided that we use a

fast multiplication algorithm. Since F'(n) is essentially linear in logn, the run time
of Algorithm X is essentially linear in logmn.

Proof. Write ¢ = [lg f]. Note that [lg f] < c+ 1. Note also that >, _,1/p <ec.
In step 1 we compute y = nrootss/21(n,1). By Lemma 11.4 this takes M-time
at most 2M(8) +2(f + 8 |1lg4f ) u([f/2] +9).
In each iteration of step 3 we invoke Algorithm K for a prime number p < f.
Write g = gp = max{l,f —d(n, (roundnl/p)p)}. By Lemma 15.1, Lemma 14.4,
and Lemma 7.1, Algorithm K takes M-time less than

(49 + Mg 2g] [1g8p]) P(p)n(29 + g 8p]) + [lg4p] (P(p) + 1)M([1g(66(2p + 1))1)
+(2Lf/p) + g £ [8 +1gp])(P(p+ 1) + Dul[f/p] +9)
<8¢ llgp] p2f +c+4) +41f/p](c+1)u(f +9)
+2(c+1)((c+2)(c+4)+ (c+3)(c+9)+eclc+ ) u2f+c+T)
< (8glgp +4(c+1)f/p+6(c+1)(c* +9c+12)) p(2f +c + 7).
Our total M-time is then less than u(2f + ¢+ 7) times

2f +16(c+3)+ Y. (8gplep+4(c+1)f/p+6(c+1)(c* +9c+12))
2<p<f-1

<2f +16(c+3) +8F(n) +4(c+ 1) fe+6f(c+ 1)(c* + 9c+ 12)
<8F(n) +2f (1 +4(c+3) +2c(c+ 1) + 3(c + 1)(c* + 9c + 12))
< 8F(n)+6f(c+4)?*
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as claimed. 0O

Notes. As we will see in Part IV, F(n) is generally not the dominant term in
Lemma 16.1. The reader may be tempted to chop one or more lg f factors out of
the other term by, for example, using various familiar functions from section 19, or
focusing on particular multiplication speeds such as u(b) = lg2blglg 4b. However,
several variants of Algorithm X appear in Part VI, and it is undoubtedly easier to
achieve any desired run-time goal with one of those variants than with the original
algorithm.

17. Proof of Theorem 1

In this section we combine all our results to prove Theorem 1: there is a perfect-
power classification algorithm that uses time at most (Ig n)1+0(1) for n > 2.

Let T'(n) be an upper bound on the time taken by Algorithm X for n > 2. As
discussed in section 16, we may take T'(n) € (Ign)'T°™M) for n > 2, provided that
we use fast multiplication.

We define U(n) = max {T'(m)/lgm : m < n}lgn for n > 2.

We have T'(m)/lgm € (Igm)°® for m > 2, so U(n)/lgn € (Ign)°M for n > 2
by Lemma 4.1. Hence U(n) € (Ign)'T°® for n > 2.

To finish the proof we exhibit a perfect-power classification algorithm, Algorithm
PPC, and prove that it runs in time 2U (n).

Algorithm PPC. Given n > 2 we print (z,k) such that (1) 2¥ = n and (2) x is not
a perfect power.

1. Apply Algorithm X to n; let (z,p) be the result.

2. If (x,p) = (n,1), print (n,1) and stop.

3. (Note that 2 <z < n.) Apply Algorithm PPC to z; let (¢, k) be the result.

4. Print (c, kp).

Lemma 17.1. Ifn = 2P then pU(z) < U(n).

Proof. U(n)/lgn is a nondecreasing function of n, so pU(z)/lgz < pU(n)/lgn =
pU(n)/plgz =U(n)/lgz. O

Lemma 17.2. Algorithm PPC spends time at most 2U(n) plus housekeeping.

Proof. We spend time at most T'(n) in step 1. If n is a perfect power then we call
Algorithm PPC recursively; by induction this takes time at most 2U (z). The total
time is at most T'(n) + 2U(x) < U(n) + pU(z) < 2U(n) by Lemma 17.1. O

Part IV. Analytic methods

18. Summary of Part IV

In section 20 we consider the function F(n) introduced in section 16. We explain
why F(n) is roughly lgnlglgn. Several functions arise naturally in our analysis of
F(n); we describe these functions first, in section 19.

In section 21 we study F'(n) in detail. We give a lower bound of about lgn lglgn.
We show that the normal and average behaviors of F'(n) are also about lgnlglgn.
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19. Some number-theoretic functions

Our function F'(n) is a sum over primes p. In this section we supply notation for
three simpler sums: ¥(t), ¥2(t), and £(t). We break the problem of understanding
F(n) into (1) relating F'(n) to the functions 9,12, ¢ and (2) understanding those
functions. The next two sections address (1). We address (2) very briefly in this
section.

Here are the functions:

I(t) = Z logp ~ t,

2<p<t
Ia(t) = Z log?p ~ tlogt —t,
2<p<t
1
Lt) = Z 98D o logt.
apst P

One can easily derive the approximations on the right by replacing Zp <t h(p) with
> k<t h(k)/logk; a “random” number k has a 1/logk chance of being prime.

Notes. See [27] for bounds on 9.

20. Intuition about F(n)

In this section we give some motivation for the facts about F(n) proved in the
next section. Our theme here is that F(n) is roughly lgnlglgn.

Define u, as follows: n is uppnl_l/ P away from the nearest pth power. Then
u, is, intuitively, a random number between 0 and 1/2. Indeed, if n is randomly
selected from the interval [aP, (x + 1)P], then its distance to the nearest endpoint
ranges uniformly from 0 to ((z + 1)? — 2P)/2 =~ (1/2)paP~! =~ (1/2)pn'~1/P.

These approximations break down when z ~ n!/? is smaller than p, so let’s
assume for the moment that p is at most lgn/lglgn.

Now the number of bits we need to distinguish n from the nearest pth power
is about lgn — lguppnlfl/p = (1/p)lgn —lgp — lgu,. If u is a random number
uniformly distributed between 0 and 1/2 then the average value of lgu is

1/2 2 /1, 1 1 1
2 lgudu= ——(zlog=— = | =-1— —.
/0 B = 10g2 (2 85 2) log 2

So our number of bits is, on average, about (1/p)lgn—lgp+1+1/log2. Note that
this is positive, since p < nl/P.

As p grows past lgn/lglgn, on the other hand, the pth powers become so widely
spaced that we usually need only a single bit of n.

Now we consider F(n). F(n) compares n with the pth power of the integer
closest to n'/?; this is usually the nearest pth power to n. So we estimate that, on
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average,

lgp 1
F(n) ~ Z <p1gn—lg2p+<1+log2) 1gp)+ Z lgp

p<lgn/lglgn lgn/lglgn<p<lgn

1 lgn lgn lgn dgn)
~ ¢ logn — 9 log 2
10g22< <lglgn> s <lglgn> * (lglgn> 8 e) T Tog2

lgn loglglgn +log2 + 2
lglgn log22

~lgnlglgn —lgnlglglgn +

~lgnlglgn.

What makes F(n) difficult to analyze is that w, is occasionally very close to 0.
Then —lgu, is much larger than its usual value. If this happens for a few primes
p—as it does, for example, when n ~~ 32768—then F'(n) will be noticeably larger
than expected. We will get a lower bound on F(n) by changing u, to 1, but we
cannot get an upper bound in any analogous way.

21. Analysis of F(n)

In this section we present various facts about

F(n) = Z (lgp)max{l,lgn—d(n,(roundnl/p)p)},

2<p<lgn

in terms of the functions defined in section 19.

Lemma 21.1 gives a lower bound for F'(n), roughly (Ign)(lglgn — lglglgn —
1/log?2). Lemma 21.2 gives a weak (quadratic) upper bound for F(n). Lemma
21.4 gives a much better upper bound for the normal behavior of F(n), roughly
(Ignlglgn)(1+2/log2). Lemma 21.5 gives a similar upper bound for the average
behavior of F'(n), roughly (Ign)(21glgn + 12/log2).

In light of Lemma 16.1, these results translate directly into facts about the run
time of our perfect-power decomposition algorithm, Algorithm X. For example, by
Lemma 21.4 and Lemma 21.5, the normal and average run times of Algorithm X
are within a factor of about 1g®(161gn) of multiplication speed.

Lemma 21.1. Ifn > 4 then

1 Ign 1 Ign
F > 4 lgn — s .
() log 2 <1glgn) BT og?2 2<1glgn>

Proof. Note that lglgn > 1. Fix p < lgn/lglgn, so that p < lgn < n'/?. Set
z = round n'/?.
If n > 2P then

n— P = (nl/p — x)(nlfl/p fant2P .4 2P~

< %(nlfl/p + nlfl/p 4ot nlfl/p) _ gnlfl/p.
If n < 2P then

2P —n = (z —n/P)(@P! + 2P 2P 4 4l UP) < gxpfl

<P p 4 AN < P 1+ 1 p< D o1-1/p,1/2
- |n - -n — -n e
2 2 2 2p 2
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by Lemma 9.1.
Either way |n — 2P| < pn'~'/?, so d(n,2?) < (1 — 1/p)lgn + lgp. Hence

1 lgn \ lgn Ign 1
F(n) > > 1 —lgn—lgp| =14 —v
(n) (Igp) <p gn gp) (lglgn> log2 ° <1glgn> log® 2
p<lgn/lglgn

as claimed. O
Lemma 21.2. F(n) < d(lgn)lgn/log2.
Proof. 1gn — d(n, (round n'/?)P) < lgn, and ZQSpélgn lgp=9(gn)/log2. O

For the next two lemmas we say that n is exceptional for p if it is within
nl’l/p/lg2 n of a pth power. We say that n is exceptional if it is exceptional for
some prime p < lgn.

Lemma 21.3. There are at most 23+ /(f —1) +22HF/2(f —1) exceptional integers
n in the interval 2f=1 < n < 2f.

So the exceptional integers have natural density 0.

Proof. Fix p. Set T = 2/=F/?/(f —1)?; if n is exceptional for p then n differs from
some pth power by less than T

Let S be the set of integers x between (Z(f_l)/p — ﬂ and LZf/p + 1J inclusive.
Say |n — yP| < T with n in our interval. We construct x € S such that |n — 2P| < T
ifye S, setx=y;ify > L2f/p—|—1j, set x = L2f/p—|—1j; ify < [Q(ffl)/p— ﬂ, set
T = [Q(f—l)/P — 1]

There are L2f/pJ — [Q(ffl)/p] +3 < 22H//P elements « € S. Each x produces
at most 27 + 1 integers exceptional for p. Thus there are, in our interval, at most
22+1/P(2T 4+ 1) < 23F7F /(f — 1) + 22%7/2 integers exceptional for p.

There are at most f—1 primes p, so there are at most 23+/ /(f —1)+22H//2(f-1)
exceptional integers in our interval. [J

Lemma 21.4. F(n) < {(lgn)lgn/log2 + (21glgn + 1) I(lgn)/log2 if n is not
exceptional and n > 4.

Proof. By hypothesis d(n, z?) > lgn'~'/? —21glgn — 1 for any z and any p < lgn.
So lgn — d(n,aP) < (1/p)lgn + 21glgn + 1. Thus

F(n) < Y (Igp)((1/p)lgn +2lglgn +1)

p<lgn
1 £(1 21gl 1
= E ylgn—&—@lglgn—i—l)lgp: (gn)lgn gen + (g n);
o log 2 log 2

note that the sum is nonempty since n > 4. [

Lemma 21.5. 21773, . F(n) < (2/log2)f {(f — 1) + (12/1log2) 9(f — 1)
for f > 10. -

Proof. First we fix p < f and consider the sum

C= Z max{l, f—d(n, (roundnl/p)p)} .

2f-1<n<2f



22 DANIEL J. BERNSTEIN

Let S be the set of values of round n/? for 2/~ <n < 2f. If 1 < n < 27 then
1 < nl/r < 2f/p < {Qf/p] so 1 < roundnl/? < Df/ﬂ. Hence #S < {Qf/p] <
of /p+1

We return to our sum C. Write g = max {1, f — d(n, (round n'/?)P)}; this is an
integer between 1 and f inclusive. We analyze C' = > g by considering how often
each possible g can appear.

If g = f then d(n, (round n'/P)P) = 0, so n is within 1 of a pth power. There are
at most #.S relevant pth powers, so g = f occurs at most 3#S times.

If 2 < g < f then d(n,a?) = f — g > 0 where = roundn'/? € S. Thus
2179 < |n — 2P| < 2f79%1. For each x € S there are at most 2f~9%! integers n
satisfying this condition. So g occurs at most 2/ =914 times.

We lump together all g < [Ig4#5], including g = 1. There are at most 2/~! such
terms, and we estimate each term as [lg4#S5]. Note that [lg4#S] < [f/p+ 3] <
f/24+4< f—-1

Now

C = Z max {1, f —d(n, (round nl/p)p)}

2f=1<n<2f
<277 g d#S] + 3#9) f + > (2791 48)g

[lg4#S1+1<g<f-1
= 211 (g 48T + (3#5) f + #5 (278 #5141 (NIg a4t +2) — 4(f + 1))
< 27 g a#87 + (#5)27 118 #51 [1g 1649
< 2/ [Ig 16#S] (1 + (#S)2~ e #5T)
<2277 Ig 164857 < 2-2/71(f/p + 6).
Finally we analyze the sum of F(n):

Z F(n) < Z Z (lgp) max {Lf —d(n, (roundnl/p)p)}

2f-1<n<2f 2f-1<n<2f 2<p<f-1

= Z (Igp) Z max{l,f —d(n, (roundnl/p)p)}
2<p<f—1 2f—1<n<af

< > (gp)(2-277Y)(f/p+6)
2<p<f-1

2 12
—— o/ 1fy — ol ly(f -1
= g2 fef— )+log2 (f-1)
as stated. 0O

Notes. F(n) usually behaves like lgnlglgn, but it behaves more like 21gnlglgn
when n is a power of 2 with a sufficiently smooth exponent.

We ask whether F'(n)/lgnlglgn is bounded. If this is true it will not be easy
to prove: we sweat and strain in Part V to prove merely F(n) € (Ign)'T°(1). But
if it is false perhaps there is an easy disproof.

Part V. Transcendental methods

22. Summary of Part V

In sections 23 and 24 we quote special cases of two theorems from transcendental
number theory.
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In section 26 we use these theorems to prove that there cannot be many perfect
powers in a short interval. Various necessary inequalities, mostly rather loose,
appear in section 25.

In section 27 we complete our analysis of F'(n): it is essentially linear in logn.

23. Multiplicative dependence

We say that zg,...,x, are multiplicatively dependent if there are integers
ag, - - ., 0n, not all zero, with zg®--- 2% = 1. In this section we quote without
proof a special case of a theorem of Loxton and van der Poorten on multiplicative
dependence. We will use this theorem in section 26.

Lemma 23.1. Let xg,...,x, be multiplicatively dependent positive integers with
xj > 3. Then there are integers ag, ..., Gy, not all zero, with xy° -- -z~ =1, and

la;| < 3n"(logxo) - - - (logxy).

Notes. Lemma 23.1 follows from [20, Theorem 5(A)], with D =1, w(Q) = 2, and
A(1) = log 2; note that 1 < logz; and 2(n!/(log2)™) < 3n".

24. Linear forms in logarithms

A linear form in logarithms is an expression of the form £;loga; + -+ +
Bn log o, where a; and §; are algebraic numbers. In this section we quote without
proof a special case of theorem of Loxton on linear forms in logarithms. We will
use this theorem in section 26.

The height of a nonzero rational number « is H(a) = max {|i|, |j|}, if « =i/j
in lowest terms. The height of 0 is 0.

Lemma 24.1. Fizc > 1, n > 1. Let aq,...,qa, be multiplicatively independent
positive rational numbers. Let

fr1 Pz - Pin

P21 P22+ Pon

Bcl BCZ e ﬂcn

be a rank-c matriz of rational numbers. Fiz A; > 4 and B > 4 such that H(o;) <
A; and H(B;;) < B. Write Q = (log A1) - - - (log A,,). Write

Ay Bir Bz - Bin log ay
Ao _ Bor Baz -+ Bon log aa
Ac Bcl /8(,'2 Tt 6(,% IOg (079

Then, for some 1,

|A;| > exp(—(16n)2°°"(Qlog Q) log BQ).

Notes. A central theorem of Baker [4] states that a single nonzero linear form in
logarithms cannot be exceedingly close to 0, or in fact to any algebraic number.
Loxton’s theorem [19, Theorem 4] generalizes Baker’s theorem to handle several
independent linear forms in the same set of logarithms. Lemma 24.1 follows from
[19, Theorem 4] with d = 1.

The constants 16 and 200 here can easily be reduced.
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25. More inequalities
Lemma 25.1. Ifz* € [L,U] and 2'* € [L,U] then |klogz — k' loga’| < log(U/L).

Proof. Both log z* and log 2’ are between log L and log U, so the difference is at
most logU —log L =log(U/L). O

Lemma 25.2. For u > 1000 set T = (1/10)y/u/log2.56u. Then T > 1, 4T+ 2 <
Vu, 2007 1og 16T < u/T = 10v/ulog2.56u, 6T < €*, and T(7 +1gT + u/log?2 —
lglog2) < u?.

This real number 7 is selected to balance (167)2°°7 with e*/7.

Proof. The function u/log2.56u increases when log2.56u > 1: its derivative is
(log 2.56u — 1)/log? 2.56u. Hence T > (1/10)4/1000/1og2560 > 1. On the other
hand T' < (1/10)y/u. Thus

2007 log 16T < 2007 log (1.6\/1]) = 1007 log 2.56u = 10+/ulog 2.56u = u/T.

Also AT +2 < 6T < y/u < e". Finally T(7T+1gT 4+ u/log2 —lglog2) < u(7+ T +
2u+1) <u(8+3u) <ud. O

Lemma 25.3. Ifv>1 andt > 5 then

t+1

log(t” +t"~ 1) < —2vloglog T

Proof. The function log((t+1)/(t—1)) is decreasing. In fact (¢+1) log((t+1)/(t—1))
is decreasing: its derivative is —2/(¢ — 1) +log(1 +2/(¢t — 1)), which is negative by
Lemma 9.1. Hence (t + 1)log?((t +1)/(t — 1)) < 6log?(6/4) < 1. So

t+1
=wvlogt+log(l+1/t) +2vloglogt+ 1

+1
0
)

t
t—

t+1
log(t” 4 t*~1) + 2vloglog ; i 1

<w (log(t +1) + 2loglog

as desired. [
Lemma 25.4. Ifloglog16 <t < 1600 then t — loglog2 < 40+/tlogt.

Proof. Define h(t) = (t—loglog2)?/t—16001logt. Att = loglog 16 we have h(t) < 0.
For 0 < t < 1600 we have t2h/(t) = t(t — 1600) — (loglog 2)? < 0 so h'(t) < 0. Hence
h(t) < 0 for loglog 16 < ¢ < 1600. O

Lemma 25.5. For n > expexp 1000 write t = loglogn and u = loglog2n. Then

6u exp(30y/ulog 2.56u) < exp(40y/tlogt).

Proof. We have log2 < et(e%!* — 1) so u = log(e’ + log2) < 1.1t. Also 3t < t!? so
ulog2.56u < ulog3t < 1.4tlogt so 30v/ulog2.56u < 364/tlogt. Finally 6 < u? <
3t3 < 132 = exp(3.21logt) < exp(y/tlogt). O
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26. Powers in short intervals

In this section we use the theorems stated in the previous three sections to show
that a short interval [L, U] cannot contain many perfect powers. (These results are
due primarily to John Loxton. See the notes at the end of the section.)

What we really count is the number of exponents k such that there is a kth
power in [L,U]. Lemma 26.2 is our workhorse: it says that there can be very
few “large” exponents k. Lemma 26.4 gives an upper bound for the number of
prime exponents k. We will use this in section 27. Corollary 26.5, included here for
historical reasons, counts the number of perfect powers in [L, U] when U = L++/L.

Lemma 26.1. The matrix

k1 + tay tas cee tam,
taq ko +tay --- tam,
taq tas R

has determinant ky -+ - k(1 + tay /k1 + tag/ka + - - - + tam/km) for ki,... km # 0.

Proof. Subtract the first row from all succeeding rows; divide column ¢ by k;; add
each column to the first column. The resulting matrix is upper triangular, with
1+tay /k1+tag/ko+- - -+tam/ky in the top left and 1 elsewhere on the diagonal. O

Lemma 26.2. Fiz an interval [L,U] with 1 < U/e < L < U. Fiz an integer
C >1. Fiz K > 4 such that

logU
K > (16C)*°¢ ———=—— (log U)"/¢ 1)loglog U)?
> (160)0C 28 (0 U)/€(C + 1) loglog U)
and log U
K > (160)20C 82165 60C + (20 + 1) log log U)2.
> (16C) —1Og10g(U/L)(Og60 + (2C + 1) loglogU)

Let S be a set of integer pairs (z,k) with 2% € [L,U], x > 4, k > K. Assume that
k and k' are coprime whenever (z,k) and (z', k") are two distinct pairs in S. Then
#S<C+I1gC'+ClglgU.

Note that logU > 1 and —loglog(U/L) > 0.

Proof. This is a long proof, so we begin with an outline.

We say that (x1,k1),..., (Tm, k) are multiplicatively dependent if z1,...,
are multiplicatively dependent. Fix a maximal multiplicatively independent subset
(x1,k1)y ..y (Tm, km) of S. First we show that m < C. Then, as preparation, we
construct a certain small nonzero integer, det Q. If (xo, ko) is any element of S,
there is a relation x°---z%» = 1, with each a; reasonably small. We show that
aog/ko+ -+ am/km = 0. So if (g, ko) is different from (z1, k1), ..., (Tm, k) then
ko divides ag, which in turn implies that k¢ divides det Q. Hence the number of
pairs is at most m plus the maximum number of coprime divisors of det Q.

Step 1. Let (1,k1),..., (Tm,km) € S be multiplicatively independent. We
show that m < C.

Suppose not: suppose we have m > C + 1 multiplicatively independent pairs
(x1,k1)y ..y (Tm, km) € S. Then, in particular, z1,...,zc4; are multiplicatively
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independent. Put B = max{k; : 1 <j < C+ 1} and Q =[], ., logx;. Notice
that o
Ba< [ kjloga; < (loglU)“+!.

1<i<CO+1
Now
kilogxy — koyilogzoia kv 0 -+ 0 —kcyr log 2,
kalog xa — kcy1logzogt 0 ky -+ 0 —kci1
: : : : log 2
k‘c 1og o — k’c+1 log TCO4+1 0 0 tee k‘c —kc+1 ELC+1

The conditions of Lemma 24.1 are met: each z; is a positive integer; the matrix
has rank C; z; > 4 and B > K > 4; H(z;) = «;; H(0) =0 < B; and H(—k;) =
H(k;) = k; < B. Hence, for some i,

|kilogz; — koy1 logzey| > exp(—(16C)2°°C (Q1log Q)Y€ log BQ).
Apply Lemma 25.1 and take logarithms:
loglog(U/L) > —(16C)2°°¢ (2 1og )Y/ log BA.
Hence

K(—loglog(U/L)) < (16C)°¢ KQYC (log Q)€ log BQ
< (16C)200C K1H+1/C0YC (log BQ)YC log BO

1/c
_ (16(])2000 (KC+1 H log xi) (log BQ)1+1/C
1<i<C+1

1/C
<(160)2000< II kilogmi> (log B)?

1<i<C+1
1/c
< (160)2OOC< IT tos U) ((C +1)loglog U)*
1<i<C+1
= (160)2°°C (log U) /€ ((C + 1) loglog U)?
< K(~loglog(U/L)).

Contradiction.
Step 2. Now fix a mazimal multiplicatively independent subset of S, say
(x1,k1), (2, k2), .., (®m, k). We know m < C. We may assume m > 1, since

otherwise S is empty and we are done.

We construct a matrix as follows. Consider the primes g dividing z1xs -« Tpy,.
Our matrix has one row for each ¢, namely ord, x1,ord, xa, .. .,ordy T,.

The m columns of this matrix are independent. Indeed, if ai,as,...,a,, are
integers such that a; ordg 1+ - -+ay, ordg z,, = 0 for every ¢, then ord, Hj x?j =0,
so [1; a:;” = 1. The z;’s are independent, so every a; must be 0.
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Hence the matrix has m independent rows. Fix g¢i1,¢s,...,qm, such that the
corresponding rows are independent. Write

ordg, x1 ordg, wy -+ ordg Tp,
0 ordg, z1 ordg, x2 --- ordg, T,
ordg, 1 ordg, x2 --- ordg, Tm

for the matrix formed from these rows.

By construction det @ is a nonzero integer. Each entry of ) is bounded by lg U,
so |det Q] < m!(1IgU)™ < C(1gU)C.

Step 3. Now we show that, for any (z, k) € S other than (z1,k1), ..., (Tm, km),
k must divide det Q.

Let (x, ko) be any element of S different from (x1,k1),..., (Zm, km). Then kg
is coprime to k1, ..., km,, by hypothesis on S.

Since (z1,k1), ..., (Tm, km) is a maximal multiplicatively independent subset of
S, xg,x1,..., T, must be multiplicatively dependent. The hypotheses of Lemma
23.1 are satisfied: each z; is a positive integer larger than 3. Hence there are
integers ag, . . . , G, Dot all zero, with z° - - -z =1, and

la;j| < 3m™(logxo) - - - (log ).
Since x1,...,T, are independent, ag must be nonzero. We may assume that

ged{ao, . ..,amn} = 1: if not, divide each a; by the common ged.
Suppose that ag/ko + a1/k1 + -+ + am/km # 0. Consider the matrix

ki + koai/ag koasz/ag E koam/ao
o koal/ao ko + koag/ao cee koam/ao
koay /ao koas/ag ook + koam fag

By Lemma 26.1, © has determinant

k‘ok‘1~'~]€m ao aq am
a0<ko+k1+ ")

which is nonzero. Hence © has rank m.
Next observe that

k1 log o k‘o 10g xo

]{52 log o — ]CO 10g o lOg'Il

= ('-') :
ko log ., — ko log g logzm,

Indeed,
ko
k‘i log Tr; — k?() log o = ki log T+ ;(-(IO log xo)
0

k
= k;logx; + —O(al logzy + -+ + am log z,y,).
ap
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Put B = 6m™(logzg) - - - (log &) max{k; : 0 < j <m} and Q@ = [[,.,,,logz;.
Notice that o
BQ < 6m™(log U)*™ 1 < 6CC (log U)2“ 1.

Again the conditions of Lemma 24.1 are met: each x; is a positive integer; the
matrix has rank m; x; > 4 and B > 4; and the matrix entries have height at most
B. Hence, for some i, |k; log x; — ko log x| > exp(—(16m)2°°™(Qlog 2)*/™ log BQ).
Apply Lemma 25.1 and take logarithms:

loglog(U/L) > —(16m)2°™(Qlog Q)'/™ log BQ.
So
K(—loglog(U/L)) < (16m)?°™KQY™ (log Q)™ log BQ

1/m
<(16m)200m<Km H logxi) (log BR)?
1<i<m

1/m
< (16C)200¢ ( 11 kilong) (log B)?
1<i<m

(16C)2°°¢ (log U) (log 6C¢ + (2C + 1) loglog U)?

<
< K(—loglog(U/L)).
Contradiction.

Hence ag/ko + a1/k1 + -+ + am/km = 0. But kg is coprime to kq, ..., km, so ko
must divide ag.

Consider the column vector V' = (a1,as,...,ay,). Since x7'z5? - xlm = xg
we have, for any prime ¢,

ao

ayordg 21 + ag ordg o + - - - + ap, ordg T, = —ag ord, xo.

In other words ag divides QV, so ag divides (adj Q)QV = (det @)V, so ag divides
(det Q)a; for each j. But ged{a1,as,...,am} =1, s0 ap must divide det ). Hence
ko divides det Q.

Step 4. We finish the proof as follows. For every pair (x,k) € S, other than
(x1,k1), .., (Tm, km), we have shown that k divides det @ # 0. Different pairs
have coprime k’s, by hypothesis, so det @ is divisible by the product of all those
k’s. Each k is at least 2. Hence there are no more than lg |[det Q| < lgC!'+ C'lglgU
pairs (x, k) other than (z1,k1),..., (@m, km). Finally m < C. O

Lemma 26.3. Fiz an interval [L,U] with U/e < L < U and U > exp exp 1000.
Let S be the set of primes k such that there is a kth power in [L,U]. Then

logU

3
#S < (loglogU) <1+ W

exp (30\/10g log U log(2.56 log log U))) .

Proof. Define u = loglogU, T = (1/10)+/u/log 2.56u, and C' = |T'].
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We apply each piece of Lemma 25.2. First T >1soC>1s0oT <C+1<2C.
Hence

(16C)2°°C (1og U) /¢ < (16T)2°T (log U)¥/ T
2
= exp (ZOOT log 16T + ;) < exp(304/ulog 2.56u).

Furthermore 64+C+1g C!'4+ClglgU < C(7T+1gC+1glgU) < T(7+1gT+1glgU) =
T(7+1gT +u/log?2 —lIglog?2) < u?.

Set
logU
K =4+ (160)*0¢ ——=——(log U)"/“v
+(160) —loglog(U/L) (log U)* "
logU 3
44 ————— log 2. .
<4+ —loglog(U/L)u exp(304/u log 2.561)
We have (C' + 1)u < (2T + 1)u < u?/2 so
logU
K > (16C)*°¢ ——=—(log U)"“((C + 1)u)?.
> (160 B 108 1) (C + 1))
Furthermore,

log 60¢ < C'log 6C' < (2C + 1)1log 6T < (2C 4 1)u < (2T + 1)u < (1/2)u’/?,
SO
logU
—loglog(U/L)
logU
—loglog(U/L)
Finally we count the primes k € S. There are at most K — 1 primes k < K. For
each k > K select an integer x such that 2% € [L,U]. Consider the pairs (z, k).
By Lemma 26.2, there are at most C + lgC! + Clglg U pairs with = > 4. Since
U/L < 3, there is at most one power of 3 in [L,U], and at most two powers of 2.
Hence

K > (160)%00¢ (log U )Y€ (log 6CC + (2C + 1)u)?

> (16C)200¢ (log 6C° + (2C + 1)u)>.

#S<K+2+C+I1gC'+ClglgU

) logU
14— log 1 log 2.
<u < + “loglos(U/L) exp(304/loglog U log 2.56u)

as desired. O

Lemma 26.4. Fizx n > expexp1000. Set u = loglog2n. Fix v with 1 < v <
logsn. Let S be the set of primes k such that there is a kth power in the interval
[n—n'=Y n+4+n'=Y"]. Then

#5 < 3vu® exp(30+/ulog 2.56u).

Proof. Set L = n —n'"Y? and U = n+ n'~'/? < 2n. By Lemma 25.3, logU <
—2vloglog(U/L). Also U > n > expexp 1000, and U/L < (1+1/5)/(1 —1/5) < e,
so by Lemma 26.3

#8S < (loglogU)3 (1 + 2uexp (30\/log log U log(2.56 log log U))) .

Finally loglogU < u. O
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Corollary 26.5. The interval [n,n + /n] contains fewer than

exp(40+/loglog nlogloglogn)

perfect powers for n > 16.

Proof. Let S be the set of primes p such that there is a pth power in I = [n, n++/n].
Each perfect power in I is a pth power for some prime p. On the other hand, I
is too short to contain two pth powers: if 2P > n then (x + 1) > 2P + paP~t >
n+pnt=1/P >n 4 v/n. Hence the number of perfect powers in [ is at most the size
of S.

Write ¢ = loglogn. We will show that #S < exp(40/tlogt). For ¢t < 1000 this
is easy. If p € S then p <lg(n+ /n) <lg2n. So #S < lgn = exp(t — loglog2) <
exp(40+/tlogt) by Lemma 25.4.

For ¢ > 1000 we apply Lemma 26.4 with v = 2. Set u = loglog2n. Then #5 <

6u> exp (30\/ulog 2.56u) . Finally, by Lemma 25.5, #S < exp(40y/tlogt). O

Notes. Corollary 26.5 was stated in [19, Theorem 1]. There is a gap in the proof in
[19]: it incorrectly assumes that, in our notation, ag/ko +a1/k1 +- - + am/km # 0.
(Note that “—ap41b;j/bm41” in [19] was a typo for “+am11b;/bmi1.”)

John Loxton graciously supplied a corrected proof to this author. The idea of
the correction is expressed above in Step 2 and Step 4 of Lemma 26.2. Other than
this, the approach here is the same as the approach of [19, Theorem 1], modified
slightly to handle more general intervals [L, U].

The conclusion of Lemma 26.2 could easily be improved. Each column of our
matrix @ has sum at most (IgU)/K. From this one can prove with Hadamard’s
inequality [14, exercise 4.6.1-15] or with Gershgorin’s inequality—see [12, problem
6.1-3]—that the determinant of @ is at most ((IgU)/K)™.

In general the bounds in this section are very far from best possible. A more
careful study would produce many quantitative improvements and perhaps some
qualitative improvements.

Let S be the set of exponents k such that there is a kth power in [L,U]. We
could prove a bound on the size of S as follows. Lemma 26.3 gives us a bound—call
it m—on the number of primes in S. Every k € S is built up from those primes.
Hence the size of S is at most the number of products < lg U of those primes, which
is at most the number of products < lgU of the first m prime numbers, which in
turn can be estimated by analytic techniques. See [27] and [9].

27. Final F(n) analysis

In this section we use Lemma 26.4 to prove an upper bound for the function
F(n) = Y oc,<1gn(gp)max {1,1gn — d(n, (round n'/?)?)} introduced in section
16. T

Lemma 27.1. Fizn > expexp 1000. Set u = loglog2n. Then

F(n) < (Ignlglgn) (1 + 3u® exp(30+/u log 2.56u) 1g(41g n)) .

This upper bound is in (Ign)' o),
Proof. Write g(p) = (roundn!/P)P. Also abbreviate K = 3u® exp(30y/ulog 2.56u).
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The critical idea here is to sort our primes p by d(n, g(p)). Let ¢ < lgn be the
number of primes between 2 and lgn. Let py,po,...,p. be the primes, in such an
order that d(n, g(p;)) is a nondecreasing function of j.

Now F(n) =3, ;<. (lgp;) max{1,lgn — d(n,g(p;))}. We estimate this sum in
two pieces: first where 1 < 5 < K, second where K < j <c.

There are fewer than K terms in the first piece, and each term is less than
lgnlglgn, so the sum of the terms in the first piece is less than Klgnlglgn.

In the second piece, set v = j/K > 1. We have j < ¢ < lgn and K > 3 so
v < logs n.

Suppose that lgn — d(n, g(p;)) > 1+ (1/v)lgn. Then

In — g(p;)| < 209+ < 9d(mg(pi))+1 o 9(1=1/v)lgn _ p1-1/v
for all i < j. So there is a p;th power within n!=1/% of n for 1 < i < j. But that is
impossible, since by Lemma 26.4 there are fewer than Kv = j primes p with a pth
power so close to n.

Hence lgn — d(n, g(p;)) < 1+ (1/v)lgn. So the sum of this piece is at most
Yor<j<clglgn)(1 + (K/j)lgn) < (glgn) 3o ;<. (1 + (K/j)lgn) < clglgn +
Klgnlglgnlg2c. O

Notes. Various constants here can of course be improved.
Part VI. Practical improvements

28. Summary of Part VI

In section 30 we present 2-adic methods to compute a tentative kth root = of n,
and to check whether zF = n. Section 29 explains how the 2-adic methods differ
from the methods in Part IT and Part III.

We may compute n mod ¢ (and  mod ¢) for one or more primes ¢g. In section
31 we discuss several ways to take advantage of this information.

The word “improvements” in the title of Part VI should be understood to refer
to some of the techniques here, not necessarily all of them.

29. Advertisement for the 2-adic variant

In the next section we describe a 2-adic variant of Algorithm X. With this
variant, we can work with integers rather than floating-point numbers; we no longer
need guard bits; we can jump directly into Newton’s method without a preliminary
binary search; and a proper error analysis takes a few lines rather than several
pages. We do not use any 2-adic machinery in our presentation.

Let’s review how we check if n is a kth power. First we compute a tentative kth
root of n—an integer x such that no integer other than x can possibly be the kth
root of n. Then we test whether z* = n.

To find a tentative kth root we find a number that is close to a kth root of n in
the real numbers R. Here we measure closeness with R’s usual metric.

We use the real metric again when we test whether ¥ = n. We compute 2" in
low precision and see whether it is close to n; we increase the precision and repeat
the test until we are sure about the sign of z* — n.
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Nothing in the original problem demands that we use the metric obtained from
R. There are other metrics on the integers. In particular, the g-adic integers Z,
supply a metric where ¢ and j are close if ¢ — j is divisible by a high power of q.

In the next section we explain (1) how to use the 2-adic metric in constructing a
tentative kth root of n and (2) how to use the 2-adic metric in checking a tentative
kth root of n. We avoid further references to Zs or the 2-adic metric; using the
2-adic metric comes down to working modulo 2™ for an increasing sequence of m.

30. The 2-adic variant

In this section we describe our 2-adic variant of Algorithm X. We refer back to
Part II and Part III for detailed explanations of our approach; this variant works
along the same lines, with the modifications explained in section 29.

It will be convenient to restrict attention to odd n. See section 31 for a method
to handle even n.

Notation. In this section we deviate from the notation of Parts I, II, and III: we
let r, y, and 2z denote odd integers rather than positive floating-point numbers.
We write ¢ mod j for ¢ — j |i/j], the remainder when i is divided by j. When
j is a power of 2 we may “read off” ¢ mod j as the bottom lgj bits of i’s binary
expansion.
We write ¢ =4’ (mod j) when ¢ mod j =4’ mod j.

Lemma 30.1. If2i =25 (mod 2°*1) and b > 1 then i® = j2 (mod 2°*1).

Proof. Either i = j or i = j 4 2°. In the first case i = j*. In the second case
2= (j+20)2 =242+ 2® =52 O

2-adic approximate powers. Fix positive integers k and b. For any integer
m define pow, ,(m, k) = mF mod 2°. See section 7 for methods of computing
pow, ,(m, k) without many multiplications.

Note that, as we compute pow, ,(m, k), we may keep track of an “overflow bit”
and thus figure out whether m* mod 2° = mF*.

Checking tentative kth roots. Here is a straightforward algorithm for checking
tentative kth roots.

Algorithm C2. Given positive integers n,x, k, we see if n = z*. In advance set

f=lg2n|.

1. If z = 1: Print 0 if n = 1, 2 otherwise. Stop.

Set b+ 1.

Compute 7 < powy (7, k). Simultaneously figure out if r = xF.
If n mod 2° # r, print 2 and stop.

If b > f: Print 0 if » = 2%, 2 otherwise. Stop.

Set b + min {2b, f}. Go back to step 3.

S ot N

Lemma 30.2. Algorithm C2 prints 0 if and only if n = z*.

Proof. If n = ¥ then r = pow, ,(z, k) = 2* mod 2° = n mod 2" so we never stop
in step 4. Hence we stop in step 5. When we do, b > f, so 7 = n mod 2/ =n = z*.
Thus we print 0.

Conversely, say we print 0. Then 2*¥ =r =nmod 2f =n. O
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2-adic approximate multiplication and division. Fix b > 1. If m is an integer
and k is a positive integer we write muls ;,(m, k) = km mod 2°.

If k is odd we write diva p(m, k) for the unique integer between 0 inclusive and
2% exclusive such that m = kdivg ;(m, k) (mod 2°).

Finding 2-adic approximate kth roots. Fix an odd integer y and a positive
odd integer k. We compute an approximate negative kth root of y by Newton’s
method. For motivation see section 11. (Question: Why do we insist that k be
odd? Answer: Square roots introduce a bit of difficulty. See Algorithm S2 below.)

For each b > 1 we define and construct an odd integer nroots ,(y, k), between 0
and 2%, by the following algorithm:

Algorithm N2. Given an odd integer y and positive integers b, k with k& odd, we
compute nroots ;(y, k). In advance set b’ = [b/2].

If b= 1: nrooty(y, k) = 1. Stop.

Compute z < nroots (v, k) by Algorithm N2.

Set 7o < muls (2, k + 1).

Set 13 < ypowy (2, k + 1) mod 2°.

Set r4 < divyp(re — r3, k). Now nroots p(y, k) = ra.

U L=

Lemma 30.3. If k is odd and r = nroots ;(y, k) then r*y mod 2° = 1.

Proof. For b =1 we have r =1 and y mod 2 = 1.

If b > 2 then r shows up as r4 in Algorithm N2. Note that ¥’ < b. By induction
z¥y mod 2Y" = 1. So by =1+ Zb,j for some integer j.

Note that 222" = 0 (mod 2°). So (k —2¥' )% = kF — k2¥ jkF—1 = k*(1 — 2'§) by
the binomial theorem.

By construction o = (k4 1)z, r3 = z
2(k+1—2Fy) = 2(k — 2'5). So

kt+ly and kry = ro — r3. Hence kry =

Errby = 2Py (k — 2b,j)k =(1+ 2b/j)kk(1 — 2b,j) =Kk - 22b,j2) = k"

But k* is odd, so r*y = rfy =1 (mod 2%) as claimed. O

Finding 2-adic approximate square roots. Again fix an odd integer y. For
each b > 1 we define and construct nroots ;(y, 2) by the following algorithm:

Algorithm S2. Given an odd integer y and a positive integer b, we compute an
integer nroots ;(y, 2). In advance set ' = [(b+ 1)/2].

If b = 1: nroota (y,2) is 1 if y mod 4 = 1, 0 otherwise. Stop.

If b= 2: nrooty;(y,2) is 1 if y mod 8 = 1, 0 otherwise. Stop.

Compute z < nrootsy i (y, 2) by Algorithm S2.

If z = 0: nroota (y,2) = 0. Stop.

Set 7o < muls 441(%, 3).

Set r3 < ypowy (2, 3) mod 271,

Set r4 ¢ (r2 — r3)/2 mod 2°. Now nroots ,(y,2) = 74.

o Ot e

Lemma 30.4. Set r = nroota ;(y,2). If i%y mod 2Y*1 = 1 for some odd integer i
then r # 0. If r # 0 then r?y mod 207! = 1.

Proof. First consider b = 1. If ymod4 = 1 then r = 1 so r’ymod 4 = 1. If
y mod 4 = 3 then r = 0 and i?y mod 4 = 3 for any 1.
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Next consider b = 2. If y mod 8 = 1 then r = 1 s0 72y mod 8 = 1. If y mod 8 # 1
then 7 = 0 and 7%y mod 8 = y mod 8 # 1 for any i.

If b > 3 then r shows up as r4 in Algorithm S2. Note that b’ < b. If z = 0 then
by induction 2y mod 2V'+1 is never 1, so 32y mod 2! is never 1; and we set r = 0.

If z # 0 then by induction 22y mod 2+l = 1. So 22y =1+ 2b/+1j for some
integer j. Note that (1 —2°5)2 =1 —20"+1j 492052 =1 _ 2V"+1; (mod 20+1) since
20 > b+ 1.

By construction ro = 3z (mod 2°*1), r3 = 23y, and 2ry = ro — r3. Hence
2ry = 2(3 — 2%y) = 2(2 — 2¥*1§). By Lemma 30.1, 72 = 22(1 — 2V j)2. Thus

rly=riy=22y(1 -2 5> = (1 + 2" ) (1 — 20 Thj) =1 - 22V 7252 =1

as claimed. O

Perfect-power decomposition. We imitate Algorithm K from section 14: to see
if n is a kth power, we compute and then check a tentative kth root.

Algorithm K2. Given an positive odd integer n, an integer k > 2 such that either
k = 2 or k is odd, and an odd integer y (see Lemma 30.5), we see if n is a kth
power. In advance set f = |lg2n]| and b= [f/k].

1. Calculate r < nroots ;(y, k).

If k=2: If r =0, print 0 and stop.

Check if n = * with Algorithm C2. If so, print  and stop.

If k = 2: Check if n = (2° —r)* with Algorithm C2. If so, print 2° — r and stop.
Print 0 and stop.

Lemma 30.5. Set f = |lg2n| and b = [f/k]. Assume that yn mod 2°*1 = 1. If
n is a kth power, Algorithm K2 prints n'/*. If n is not a kth power, Algorithm K2
prints 0.

U N

Proof. We consider three cases.

Case 1: n is not a kth power. Then n # 7% and n # (2° —r)*, so Algorithm K2
does not stop in steps 3 or 4. So it prints 0.

Case 2: n =z, and k is odd. By Lemma 30.3, r*y mod 2* = 1. Furthermore
ynmod 2° =1 s0 r* =n = 2% (mod 2°).

Put ¢ = r*=1 4 7*=2z 4 ... 4 2F~1; each term in this sum is odd, and there are
k terms, so ¢ is odd. But 2° divides 7% — 2% = (r — 2)c so 2 divides r — 2. Both r
and z are positive integers smaller than 2°, so r = 2. Hence n = r* and we print r
in step 3.

Case 3: n = 2*, and k = 2. By Lemma 30.4, r is nonzero, since yz? mod 20! =
1. By Lemma 30.4 again, 72y mod 2°*! = 1. Hence r? = 2% (mod 2°*1).

We have either r = 2 (mod 4) or r = —z (mod 4). If r = z (mod 4) then
r+2z =2 (mod 4). Since 2°*! divides 2 — 22 = (r — x)(r + ), and only one power
of 2 divides 7+ z, we must have 7 = z (mod 2°). Both r and z are positive integers
smaller than 2%, so 7 = x, so we print 7 in step 3.

If r = —x (mod 4) then r # x so r? # n so we do not print 7 in step 3. However,
2 —r =z (mod 4), and 2°*! divides (2° — 7)? — 22, 50 2 —r = x (mod 2°) as
above. Thus 2° — r = z and we print 2° — 7 in step 4. O

Algorithm X2. Given an odd integer n > 2, we attempt to decompose n as a perfect
power. In advance set f = |lg2n].



DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 35

1. Compute y < nroots [f/2141(n, 1).

2. For each prime number p < f:

3. Apply Algorithm K2 to (n,p,y); let x be the result.
4 If x > 0, print (x,p) and stop.

5. Print (n,1).

Lemma 30.6. Ifn is a perfect power, Algorithm X2 prints a prime number p and
a positive integer x such that xP = n. If n is not a perfect power, Algorithm X2
prints (n,1).

Proof. By Lemma 30.3, yn mod 2///21+1 = 1. If Algorithm X2 stops in step 4 then
2P = n by Lemma 30.5. If Algorithm X2 never stops in step 4 then, by Lemma
30.5, n is not a pth power for any prime p < f, so n is not a perfect power. [

We could synthesize Algorithm X and Algorithm X2. For each k we can compute
a tentative kth root x by either Algorithm N or Algorithm N2. We can then check
whether ¥ = n by either Algorithm C or Algorithm C2. We could even run
Algorithm C and Algorithm C2 in parallel, stopping as soon as either one sees that
n # x¥. After Algorithm N it is probably best to try Algorithm C2 first; after
Algorithm N2 it is probably best to try Algorithm C first. We have a great deal of
flexibility here.

We could convert n into base g for ¢ > 2, and then use the g-adics instead of the
2-adics. This is probably not worthwhile in practice, unless for some strange reason
n is already known in base ¢q. But it may be worthwhile to compute n mod q. See
the next section for further discussion.

Notes. See [14, exercise 4.1-31] for an introduction to the 2-adic numbers.

Two g-adic applications of Newton’s method are generally known as “Hensel’s
lemma.” The first is the use of Newton’s method to refine a g¢-adic root of a
polynomial; see [29, page 14] or [11, page 84]. The second is the more general use
of Newton’s (multidimensional) method to refine a g-adic factor of a polynomial;
see [14, exercise 4.6.2-22], [21, Theorem 8.3], or [24, page 40].

See [14, exercise 4.4-14] or [7] for a fast method of converting n into base q.

Our previous perfect-power run-time analysis does not apply if we use Algorithm
C2 in place of Algorithm C. The results of Part IV would remain valid, but to prove
that the resulting perfect-power detection algorithm runs in essentially linear time
we would need g-adic versions of the theorems in Part V, and in particular of [19,
Theorem 4].

31. Trial division

As usual fix n > 2. In this section we discuss several tricks based on computing
n mod ¢ for one or more primes q.

If n has no small prime divisors, lower the exponent bound. If n is odd
and n = 2 then z is also odd. So z > 3 and k < logs n. We have reduced the
upper bound for exponents from logy, n all the way down to logsn with a single
test.

More generally we may compute n mod ¢ for all primes ¢ < T. If n mod ¢ is
always nonzero, we need to check exponents up to only log; n. In some applications,
such as factoring, we may already have tested that n is not divisible by ¢ for any
q up to some large bound 7. In other applications we could attempt to choose a
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smart cutoff T in advance so as to minimize our total run time. Another approach
is to simultaneously (1) check n mod ¢ for larger and larger primes ¢ and (2) check
whether n is a kth power for larger and larger exponents k, until the two tests
“meet in the middle.”

If n has a prime divisor, find its order. What if we find that n is divisible
by some prime ¢? We first compute the number ord, n of factors ¢ in n, together
with n/q°"ds™. Then we check, for each p dividing ord, n, whether n/q°™d«" is a
pth power. Otherwise n cannot be a perfect power. (Note that n/q¢°*% ™ may be 1,
in which case no testing is necessary.)

Recall that the 2-adic method in section 30 requires that n be odd. This is not
a serious restriction. If n is even and we use the method here, we end up checking
whether n/2°742" is a pth power, for various primes p; and n,/2°"42" is odd.

There are several plausible ways to compute the number of factors ¢ in n.

If ¢ = 2 then ord, n is the number of 0 bits at the bottom of n’s binary expansion.

If ¢ > 2, we could do a binary search upon the number of factors. The idea is
to compute n mod ¢ and [n/q¢| for some integer ¢ = (log,n)/2. If n mod ¢ # 0
then ord,n = ordg(n mod ¢°); if n mod ¢° = 0 then ordyn = ¢+ ordy(n/q¢%). We
chop ¢ in half and repeat. This method takes essentially linear time if we use fast
multiplication and the algorithms from section 11.

We could instead do a linear search; this amounts to always taking ¢ =1 in the
above description. This will be faster than a binary search on average. We could
compromise with a sequence of ¢ that is at first optimistic but backs off quickly if
necessary. For example, we may begin with ¢ = 1, double ¢ if n mod ¢¢ = 0, and
chop c¢ in half if n mod ¢¢ # 0.

Check the character of residues of n. If n is a kth power, and ¢ is a prime with
gmod k = 1, then n¢=1/¥ mod ¢ is either 0 or 1. A non-kth power has roughly a
1/k chance of passing this test.

Compute many n mod ¢ simultaneously. We can compute together n mod ¢
and n mod ¢’ almost as quickly as we can compute n mod ¢ alone: first we find
m = n mod qq’; then we find m mod g and m mod ¢'.

In general we may calculate n mod ¢ for every ¢ in a set S by binary splitting:
(1) calculate m = nmod [[ c5¢; (2) split S into two subsets, S" and S — S
(3) recursively calculate m mod ¢ for every ¢ € S’; and (4) recursively calculate
m mod ¢ for every g € S — 5.

Check the residues of tentative roots. If n = z* then n mod ¢ = z* mod g¢.
So if we know n mod ¢ we can try to weed out a tentative root x by calculating the
kth power modulo ¢ of z mod g. In practice this test is quite powerful: if n # z*
then very few primes ¢ divide n — x*.

In this test ¢ need not be prime. It might be convenient to check, for example,
whether n agrees with ¥ modulo 232, although this is redundant if we already use
the 2-adic methods described in the previous section.

We could develop a fast randomized power-testing algorithm along these lines.
Start from a tentative root x. First check if ¥ < 2n. Then check if n mod ¢ equals
2* mod ¢ for a set of “random” primes ¢ with product larger than n. This test will
succeed if and only if n = 2*. If n # ¥ then we expect to test very few ¢’s.

Check for small divisors of tentative roots. If n is not divisible by any primes
q <T,and n = 2", then 2 is not divisible by any primes ¢ < T. So we may throw
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away any tentative root x that has prime factors smaller than 7. This is much
weaker than testing whether n mod ¢ = x* mod ¢ for each ¢ < T, but it is also
much faster.

Notes. See generally [3] for precedents. The approach of [3] is, for each k, to
precompute a database of primes ¢ with ¢ mod k = 1, and then to systematically
compute the characters n(¢=1/% mod ¢ for each ¢ in the database. [3] also suggests
(1) checking whether n is divisible by small primes, (2) lowering the exponent bound
if n is not divisible by any small primes, and (3) finding ord, n (with a linear search)
if ¢ divides n.

Our binary search method for computing ord, n is a straightforward optimization
of the following procedure: first apply [14, exercise 4.4-14] to write n in base g;
then see how many of the low “qits” are zero.

The binary splitting method described above appears in, e.g., [1, page 291].

See [18] for an overview of practical and theoretical methods for checking whether
2 (or n) has a prime factor smaller than T.

In some applications we may know n mod ¢, or a representation of n from which
n mod ¢ is easy to derive. Victor Miller points out that if n is represented in the
factorial base [14, equation 4.1-10] then it is easy to compute n mod ¢ for small
primes q.

We have many options here. Each subset of options poses a new optimization
problem—e.g., if we use characters as in [3] but with fast arithmetic and binary
splitting, how much trial division should we do?—for which an exact answer will
depend heavily on characteristics of the computer at hand. Having not yet solved
all such problems, the author does not feel competent to declare one algorithm the
“winner.”

32. Table of notation

#S  the number of elements of S
j! g factorial; 5! = (5 — 1)ly
[t] the largest integer less than or equal to ¢
[t] the smallest integer greater than or equal to ¢
[t| the absolute value of ¢; tif t >0, —tift <0
[L,U] the closed interval {t: L <t < U}
a an integer; the exponent for a floating-point number
A; areal number; A; > 4; upper bound for H(«;) §24
« a rational number
adj@ the adjoint of Q; the matrix of cofactors of @
b a positive integer; bits of precision
B bits used in computing nroot(y, k); B = [1g(66(2k + 1))] for Al-
gorithm B; for Algorithm N, B = b+5if b—[lgk] is odd, B = b+6
otherwise 811
B areal number; B > 4; upper bound for H(f;;) 824
B a rational number
c a positive integer
C a positive integer
6 a positive floating-point number; power of 2
) logarithmic distance from i to j; |i — j| < 24(5)+1 §13
det Q the determinant of Q)
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divg p(r, k
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nroots (Y, k)

o(1)

ordg x

p

P(k)
pow, (7’, k)

powz,b(x, k)
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a floating-point approximation to r/k; 1 < r/kdivy(r, k) < 14+217°

86
a 2-adic approximation to r/k; 7 = kdive (7, k) (mod 2°) §30
the base for natural logarithms; e = ijo 1/4! = 2.71828
a real number
the exponential of ¢; expt = ¢!
a positive integer; 2/~ <n < 2/; f = |lg2n]
difficulty of distinguishing n from a perfect power 816
an integer
the greatest common divisor of the elements of S
height of « 824
I(t)=> < logp~t §19
ﬁg(t):ngtlogzpztlogtft §19
a matrix 826
an integer
an interval
an integer
a positive integer; exponent
a real number
a real number
(t) =3 ,<,(1/p)logp ~ logt §19
a real number
a real number; linear form in logarithms §24
lgt =log, t = (logt)/(log2)
the natural logarithm of ¢
an integer
an upper bound on the time used to find the product of two b-bit
integers 84
a nondecreasing upper bound for M (b)/b 84

the largest element of S

the smallest element of S

for j > 0, the remainder when i is divided by j; ¢ = j[i/j] +
(7 mod 7) §30
mul(r, k) = kr 85
muly (m, k) = km mod 2° §30
a positive integer

negative kth root; a floating-point approximation to y~/*; 1 —

270 <y~ /nrooty(y, k) < 1 +27° §11

negative kth root; an odd integer z such that zFy mod 20 =
§30

the set of functions e such that lim;_, . €(t) =0

the number of powers of ¢ in z 831

a prime number
number of multiplications involved in computing a kth power;

P(k) < 2|lgk] §7
a floating-point approximation to 7¥; 1 < 7%/ pow,(r, k) < (1 +
2171))2]{)71 §7

a 2-adic approximation to z*; powy (7, k) = o mod 2° §30
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q a prime number
() a matrix §26
r a positive floating-point number

round¢ the nearest integer to ¢; integer ¢ such that |i —¢] < 1/2 §14
s a positive floating-point number
S aset

t a real number
T a real number
trunc, r  a b-bit floating-point approximation to 7; 1 < 7/ truncy r < 14+217°
56
a real number
a real number
a real number
a vector
a positive floating-point number
a positive integer; base
a positive floating-point number
a positive floating-point number
a real number 824

Duwe 8 &8 S Te
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