
CIRCUITS FOR INTEGER FACTORIZATION: A PROPOSAL

DANIEL J. BERNSTEIN

Abstract. The number field sieve takes time L1.901···+o(1) on a general-
purpose computer with L0.950···+o(1) bits of memory; here L is a particular

subexponential function of the input size. It takes the same time on a parallel
trial-division machine, such as Cracker or TWINKLE, of size L0.950···+o(1).

It takes time only L1.185···+o(1) on a machine of size L0.790···+o(1) explained

in this paper. This reduction of total cost from L2.852···+o(1) to L1.976···+o(1)

means that a ((3.009 · · ·+o(1))d)-digit factorization with the new machine has

the same cost as a d-digit factorization with previous machines.

0. Preface

This paper is an excerpt from a grant proposal that I submitted to NSF DMS
at the beginning of October 2001.

The same techniques can be applied to other congruence-combination algorithms
for factoring, discrete logarithms, class groups, etc. See [3] for a bibliography.

Priority dates. I realized on 13 September 2000 that special-purpose hardware
would change the exponent in the cost of integer factorization. I announced the
exponent reduction from 3 +o(1) to 2.5 +o(1) for real (two-dimensional) circuits in
a seminar at Butler University on 23 March 2001, a rump-session presentation at
Eurocrypt 2001 on 7 May 2001, and a talk at the Algorithms and Number Theory
conference at Dagstuhl on 14 May 2001. I realized on 9 August 2001 that the
sieving exponent could easily be reduced from 2.5 + o(1) to 2 + o(1).

1. Introduction

It is conjectured that one can find the prime factors of an integer n in time LO(1),
where L = exp((log n)1/3(log log n)2/3).

More precisely: Write c = (92+26
√

13)1/3. The number field sieve, with sensibly
chosen parameters, takes time Lc/3+o(1) = L1.9018836118···+o(1) on a general-purpose
computer with Lc/6+o(1) = L0.9509418059···+o(1) bits of memory, and is conjectured
to find the prime factors of n.

I realized recently that the same computation can be carried out in time only
Lc/4+o(1) = L1.4264127088···+o(1) on a different machine of size Lc/6+o(1). Another
parameter choice takes time Ld+o(1) = L1.1856311014···+o(1) on a machine of size
L2d/3+o(1) = L0.7904207343···+o(1), and is still conjectured to find the prime factors
of n. Here d = (5/3)1/3.

Date: 20011109.
2020 Mathematics Subject Classification. Primary 11Y05. Secondary 68W10.

The author was supported by the National Science Foundation under grant DMS-9970409.

1

2 DANIEL J. BERNSTEIN

The cost of factorization—the product of the time and the cost of the machine—
has thus dropped from Lc/2+o(1) = L2.8528254177···+o(1) to

L5d/3+o(1) = L1.9760518358···+o(1).

In other words, for a given cost, the number of digits of n has grown by a factor of
(3c/10d+ o(1))3 = 3.0090581972 · · ·+ o(1).

This is a tremendously exciting observation; it demands further investigation.
What do all the o(1)’s look like in practice? Are these machines more cost-effective
than general-purpose computers for current ranges of n? See sections 2 through 6
of this proposal.

A team led by Herman te Riele used the number field sieve on general-purpose
computers to factor a difficult 512-bit integer in August 1999. Is it now possible to
factor 1536-bit integers at reasonable cost?

2. Odd-even transposition sorting

Odd-even transposition sorting is a straightforward algorithm that sorts m num-
bers in m steps on a one-dimensional machine of size m. Readers familiar with the
algorithm may skip to the next section; this section is purely expository.

The machine has m cells, each cell holding one number, each cell connected
to the adjacent cells. In the first step, the first and second cells sort their two
numbers; the third and fourth cells sort their two numbers; etc. In the second step,
the second and third cells sort their two numbers; the fourth and fifth cells sort
their two numbers; etc. The third step is just like the first step; the fourth step is
just like the second step; and so on.

There are several ways to prove that m steps suffice to sort the entire list of
numbers. See, e.g., [7, exercise 5.3.4–37].

The following table is an example of odd-even transposition sorting, with m = 8:

Time 0: 8 9 7 9 3 2 3 4
Time 1: 8 9 7 9 2 3 3 4
Time 2: 8 7 9 2 9 3 3 4
Time 3: 7 8 2 9 3 9 3 4
Time 4: 7 2 8 3 9 3 9 4
Time 5: 2 7 3 8 3 9 4 9
Time 6: 2 3 7 3 8 4 9 9
Time 7: 2 3 3 7 4 8 9 9
Time 8: 2 3 3 4 7 8 9 9

The notation a b
c d means c = min {a, b} and d = max {a, b}.

3. Schimmler sorting

Schimmler’s algorithm sorts m2 numbers in 8m− 8 steps on a two-dimensional
machine of size m2, when m is a power of 2.

The machine consists of m2 cells in an m×m mesh, each cell holding one number,
each cell connected to the adjacent cells. There are several natural orderings of cells
in an m×m mesh. Schimmler’s algorithm can sort using the left-to-right order

(1, 1), (1, 2), . . . , (1,m), (2, 1), (2, 2), . . . , (2,m), (3, 1), (3, 2), . . . , (3,m), . . . ;

CIRCUITS FOR INTEGER FACTORIZATION: A PROPOSAL 3

the right-to-left order

(1,m), (1,m− 1), . . . , (1, 1), (2,m), (2,m− 1), . . . , (2, 1),

(3,m), (3,m− 1), . . . , (3, 1), . . . ;

or the snakelike order

(1, 1), (1, 2), . . . , (1,m), (2,m), (2,m− 1), . . . , (2, 1), (3, 1), (3, 2), . . . , (3,m),

Schimmler’s algorithm works as follows. Recursively sort the top-left quadrant
of the mesh, left to right; the top-right quadrant of the mesh, left to right; the
bottom-left quadrant of the mesh, right to left; and the bottom-right quadrant
of the mesh, right to left. Sort each column independently, top to bottom, with
odd-even transposition sort. Sort each row independently, snakelike. Sort each
column independently, top to bottom. Finally, sort each row independently, using
the desired order, left to right or right to left or snakelike.

For example, take the following array:

3 1 4 1 5 9 2 6
5 3 5 8 9 7 9 3
2 3 8 4 6 2 6 4
3 3 8 3 2 7 9 5
0 2 8 8 4 1 9 7
1 6 9 3 9 9 3 7
5 1 0 5 8 2 0 9
7 4 9 4 4 5 9 2

Sort the quadrants:

1 1 2 3 2 2 2 3
3 3 3 3 4 5 5 6
3 4 4 5 6 6 7 7
5 8 8 8 9 9 9 9
1 1 0 0 2 2 1 0
4 4 3 2 5 4 4 3
7 6 5 5 9 8 7 7
9 9 8 8 9 9 9 9

Sort the columns, top to bottom:

1 1 0 0 2 2 1 0
1 1 2 2 2 2 2 3
3 3 3 3 4 4 4 3
3 4 3 3 5 5 5 6
4 4 4 5 6 6 7 7
5 6 5 5 9 8 7 7
7 8 8 8 9 9 9 9
9 9 8 8 9 9 9 9

4 DANIEL J. BERNSTEIN

Sort the rows, snakelike:

0 0 0 1 1 1 2 2
3 2 2 2 2 2 1 1
3 3 3 3 3 4 4 4
6 5 5 5 4 3 3 3
4 4 4 5 6 6 7 7
9 8 7 7 6 5 5 5
7 8 8 8 9 9 9 9
9 9 9 9 9 9 8 8

Sort the columns, top to bottom:

0 0 0 1 1 1 1 1
3 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 5 4 4 4 4
6 5 5 5 6 5 5 5
7 8 7 7 6 6 7 7
9 8 8 8 9 9 8 8
9 9 9 9 9 9 9 9

Sort the rows, left to right:

0 0 0 1 1 1 1 1
2 2 2 2 2 2 2 3
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 5
5 5 5 5 5 5 6 6
6 6 7 7 7 7 7 8
8 8 8 8 8 9 9 9
9 9 9 9 9 9 9 9

The array is now sorted, left to right.
To prove the correctness of an algorithm of this type, select a cutoff value v,

and consider the positions of numbers larger than v. After the recursive sorting,
all that matters is how many such numbers are in each quadrant. It is then easy
to analyze where those numbers appear in subsequent steps.

History. Thompson and Kung in [21] showed that an m ×m mesh can sort m2

numbers in O(m) steps. Schnorr and Shamir in [18] showed that an m×m mesh can
sort m2 numbers in snakelike order in (3 + o(1))m steps. Schimmler’s algorithm
appeared in [17]; it is considerably simpler than the Schnorr-Shamir algorithm,
although it is not as fast.

Similar comments apply to higher-dimensional meshes. Unfortunately, it is dif-
ficult in practice to build an m×m×m mesh for large m.

A philosophical note. I always thought that common general-purpose computers
were the pinnacle of realistic computational power. Special-purpose computer archi-
tectures, such as Lehmer’s bicycle chain sieve or Pomerance’s Cracker or Shamir’s
TWINKLE, were at best a constant factor faster. Quantum computers are asymp-
totically faster for many computations, but it is unclear whether they can actually
be built.

CIRCUITS FOR INTEGER FACTORIZATION: A PROPOSAL 5

I also thought that parallel computing reduced the time, not the cost, of com-
putations. Ten processors might perform a computation in one tenth the time of a
single processor, but they are ten times as expensive, so the cost of the computation
remains the same.

I was wrong. Schimmler’s machine, with m2 processors, can be built for m2+o(1)

dollars, just like a single-processor computer with m2+o(1) bits of memory. It can
sort m2 numbers in time m1+o(1), while the single-processor machine needs time
m2+o(1). The cost of the computation has dropped from m4+o(1) to m3+o(1).

4. Circuits for linear algebra

Let A be a square matrix over F2 with y1+o(1) columns and with yo(1) nonzero
entries in each column. The obvious method of computing Av, given a vector v over
F2, takes time y1+o(1) on a general-purpose computer with y1+o(1) bits of memory.

One can do better with Schimmler sorting: time y0.5+o(1) on another machine
of size y1+o(1). In particular, this machine can compute a dot product in time
y0.5+o(1). Here are the details.

Select m ∈ y0.5+o(1) as a power of 2 large enough that m2 exceeds the number
of nonzero entries of A plus twice the number of rows of A. Build an m×m mesh
of cells, each cell having O(log y) bits of storage.

Store the nonzero entries of v—the integers j such that vj = 1—in these cells in
any order. Also store the nonzero entries of M—the pairs (i, j) such that Mi,j = 1—

in cells in any order; note that there are only yo(1) pairs for each j. Store 0 in all
remaining cells.

Sort all the integers j and pairs (i, j) in order of j, with the cells in snakelike
order. For example:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(3, 3) (2, 3) (3, 2) (2, 1) (1, 1) 1 0 0
(8, 3) 5 (1, 5) (4, 5) 6 7 (6, 7) (15, 7)
(1, 12) 12 (13, 11) (1, 10) (1, 9) (8, 8) (2, 8) 8
(10, 12) 13 (1, 13) (2, 13) 14 (1, 14) (3, 14) (4, 14)
(11, 16) (3, 16) (2, 16) 16 (5, 15) (4, 15) (2, 15) (1, 15)

This takes m1+o(1) = y0.5+o(1) steps, and brings each j within distance yo(1) of all
the cells with pairs (i, j). Communicate each j to those cells; this takes yo(1) steps.
Then replace the j’s by new numbers: i in a cell that has both j and (i, j); 0 in all
other cells. For example:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(3, 3) (2, 3) (3, 2) 2, (2, 1) 1, (1, 1) 0 0 0
(8, 3) 0 1, (1, 5) 4, (4, 5) 0 0 6, (6, 7) 15, (15, 7)

1, (1, 12) 0 (13, 11) (1, 10) (1, 9) 8, (8, 8) 2, (2, 8) 0
10, (10, 12) 0 1, (1, 13) 2, (2, 13) 0 1, (1, 14) 3, (3, 14) 4, (4, 14)
11, (11, 16) 3, (3, 16) 2, (2, 16) 0 (5, 15) (4, 15) (2, 15) (1, 15)

6 DANIEL J. BERNSTEIN

Sort (snakelike) these new numbers; this takes y0.5+o(1) steps. For example:

1 1 1 1 1 2 2 2
10 8 6 4 4 3 3 2
11 15 0 0 0 0 0 0

(3, 3) (2, 3) (3, 2) (2, 1) (1, 1) 0 0 0
(8, 3) 0 (1, 5) (4, 5) 0 0 (6, 7) (15, 7)
(1, 12) 0 (13, 11) (1, 10) (1, 9) (8, 8) (2, 8) 0
(10, 12) 0 (1, 13) (2, 13) 0 (1, 14) (3, 14) (4, 14)
(11, 16) (3, 16) (2, 16) 0 (5, 15) (4, 15) (2, 15) (1, 15)

Compare each cell to one of its two (snakelike) neighbors, as in the first step of an
odd-even transposition sort; if the two cells have the same number i, replace that
number by 0 in both cells. Then sort once more. For example:

1 2 2 3 3 4 4 6
0 0 0 0 15 11 10 8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 (1, 1) (2, 1) (3, 2) (2, 3) (3, 3)

(1, 9) (8, 8) (2, 8) (15, 7) (6, 7) (4, 5) (1, 5) (8, 3)
(1, 10) (13, 11) (1, 12) (10, 12) (1, 13) (2, 13) (1, 14) (3, 14)
(11, 16) (3, 16) (2, 16) (5, 15) (4, 15) (2, 15) (1, 15) (4, 14)

At this point there are at most two occurrences of each i. Compare each cell to
both of its neighbors, and cancel any remaining duplicates. That’s it. The nonzero
entries of v and M have been replaced by the nonzero entries of Mv and M .

Computing kernels. Wiedemann’s algorithm in [22] computes the minimal poly-
nomial f of A as follows.

Select uniform random vectors u and v. The minimal polynomial g of the bit
sequence uv, uAv, uA2v, . . . is a divisor of f . The least common multiple of a few
such divisors is, with high probability, f .

One can compute g very quickly from the first y1+o(1) bits in the sequence. The
algorithms in [19], [13], [4], and [14], with the help of fast multiplication, do this in
time y1+o(1) on a general-purpose computer with y1+o(1) bits of memory.

The obvious method of computing these y1+o(1) bits, multiplying v by A repeat-
edly and multiplying each result by u, takes time y2+o(1) on the same computer. It
takes time only y1.5+o(1) on the machine described above.

Given the minimal polynomial of A, one can easily construct random elements of
the kernel of A. The obvious method again takes time y2+o(1) on a general-purpose
computer with y1+o(1) bits of memory; the machine described above takes time
y1.5+o(1).

Plans. I will investigate the cost of these computations in detail. Exactly how ex-
pensive are linear-algebra circuits of various sizes? Computer programs are available
to help construct and simulate dedicated circuits and FPGAs, producing precise
measurements of size and speed.

Are there better representations of matrices and vectors? For example, should
j and (i, j) be assigned permanently to cells? Should the third sorting step be
eliminated? Can repeated i’s be profitably removed in the middle of Schimmler’s

CIRCUITS FOR INTEGER FACTORIZATION: A PROPOSAL 7

algorithm? Is it practical to use the Schnorr-Shamir algorithm instead of Schimm-
ler’s algorithm? There is a huge literature on mesh routing and mesh sorting, with
dozens of potentially useful techniques.

There are many more ways to save constant factors. Wiedemann’s algorithm
can handle additional pairs (u, v) much more quickly once a large divisor of f is
known. One can use Lanczos-type algorithms instead of Wiedemann’s algorithm;
see [8] for a survey. I will explore all of these possibilities.

A block version of Wiedemann’s algorithm allows further parallelization, al-
though it does not change the cost of the computation. See [6]. It should be
possible to combine y0.1+o(1) of these machines, for example, to construct random
elements of the kernel of A in time y1.4+o(1).

5. Circuits to find smooth numbers

Consider a set of y2+o(1) numbers, each with (log y)O(1) digits. How long does it
take to find all the y-smooth numbers?

RAM sieving. Common practice is to partition the set into y1+o(1) pieces, each
of size y1+o(1), and sieve each piece. See [3] for a method that achieves similar
performance even if the numbers are not sieveable.

Sieving seems very efficient. It handles y2+o(1) numbers in y2+o(1) steps. How-
ever, it requires y1+o(1) bits of memory, only a few of which are performing pro-
ductive work at any moment. Most of the bits are simply sitting around, twiddling
their thumbs. The cost of sieving is y3+o(1).

Parallel trial division. Another approach is to divide each of the y2+o(1) numbers
by each of the y1+o(1) primes.

This may seem slower than sieving: it takes y3+o(1) steps. However, it uses only
yo(1) bits of memory, so it can easily be parallelized. One can handle separate
numbers in parallel, or handle separate primes in parallel, or both. One can also
speed up the trial division by a factor of yo(1) when the numbers are sieveable.

The cost of any of these approaches is y3+o(1): in other words, within a factor
yo(1) of the cost of sieving. This applies, in particular, to Pomerance’s Cracker, and
Shamir’s TWINKLE.

Parallel ECM. Trial division is not the state of the art in low-memory smoothness-
testing methods. ECM, Lenstra’s elliptic-curve method in [10], has conjecturally

negligible chance of error, and takes time at most exp
√

(2 + o(1)) log y log log y per
integer. HECM, the Lenstra-Pila-Pomerance hyperelliptic-curve method in [11],
has provably negligible chance of error, and takes time at most exp((log y)2/3+o(1))
per integer. Both methods use yo(1) bits of memory.

Consequently a parallel ECM or HECM machine, handling y1+o(1) numbers in
parallel, has size y1+o(1), and tests smoothness of y2+o(1) numbers in time y1+o(1).
The cost of this computation is only y2+o(1).

Note that numbers are handled by this machine much more quickly than they
could be communicated through a serial link. This machine is not useful unless it
receives inputs in parallel. If there are many outputs then the outputs also need to
be handled in parallel.

8 DANIEL J. BERNSTEIN

Plans. As in section 4, I will investigate the cost of these computations in detail.
There are several ways to achieve cost y2.5+o(1): parallel Pollard rho, for example,

or sieving via Schimmler’s algorithm. These methods may be faster than ECM for
current values of y, and can be profitably used as a first step in any case.

There are many more options to explore. For example, as shown by Pomerance
in [15], early aborts discard a sizable fraction of useful inputs, but reduce the time
by a larger fraction, when the abort parameters are chosen properly.

6. Circuits for integer factorization

The number field sieve tries to factor an integer n ≥ 15 as follows, when n is odd
and not a prime power. The specific parameter choices here are due to Coppersmith
in [5].

Define α = (log n)1/3(log log n)−1/3 and

L = n1/α
2

= exp((log n)1/3(log log n)2/3).

Note that (1 + o(1))α logα = (1/3 + o(1)) logL.
Select an integer degree d ∈ (1.4017532352 · · ·+o(1))α with d ≥ 2. The constant

here is (92 + 26
√

13)1/3(−5 + 2
√

13)/9.
Select an integer m close to n1/d. Write n as md + fd−1m

d−1 + · · · + f1m + f0
with each fi bounded by n(1+o(1))/d. There are some bad choices of fi’s that will
make the rest of the algorithm fail, but a random choice is conjectured to succeed
with high probability.

Consider all pairs (a, b) of coprime positive integers bounded by

L0.9509418059···+o(1).

There are L1.9018836118···+o(1) such pairs. Sieve the integers a − bm, using all
primes up to L0.9509418059···+o(1), to see which integers are smooth. This takes time
L1.9018836118···+o(1) on a general-purpose computer with L0.9509418059···+o(1) bits of
memory.

Both a and b are bounded by Lo(1)α, and m is bounded by L(0.7133923253···+o(1))α,
so each a − bm is bounded by L(0.7133923253···+o(1))α. It is conjectured that the
fraction of smooth integers is exp(−(1 + o(1))u log u), where

u =
(0.7133923253 · · ·+ o(1))α

0.9509418059 · · ·+ o(1)
= (0.7501955649 · · ·+ o(1))α;

this means that there are L1.9018836118···−0.7501955649.../3+o(1) = L1.6518184235···+o(1)

pairs (a, b) for which a− bm is smooth.
Now, for each integer k up to L0.1250325942···+o(1), and for each of the

L1.6518184235···+o(1)

pairs (a, b) where a− bm is smooth, check smoothness of

Nk(a, b) = ad + fd−1a
d−1b+ · · ·+ (f1 + k)abd−1 + (f0 − km)bd,

using all primes up to L0.9509418059···−0.1250325942···+o(1) = L0.8259092117···+o(1). The
constant in the k bound is 9/(92 + 26

√
13)2/3(−5 + 2

√
13).

Coppersmith checks smoothness here with the elliptic-curve method, which takes
time Lo(1) per integer, totalling

L1.6518184235···+0.1250325942···+o(1) = L1.7768510177···+o(1).

CIRCUITS FOR INTEGER FACTORIZATION: A PROPOSAL 9

See [3] for another method.
It is commonly believed that this use of ECM makes Coppersmith’s variant

impractical. Standard practice is to instead sieveNk(a, b) over all (a, b, k). However,
there are relatively few pairs (a, b) for which a − bm is smooth; for large n, this
outweighs any speed advantages of sieving.

The quantity Nk(a, b) is bounded by

L(0.7133923253···+0.9509418059····1.4017532352···+o(1))α = L(2.0463780783···+o(1))α.

Consequently it is conjectured that there are

L1.7768510177···−(2.0463780783.../0.8259092117...)/3+o(1) = L0.9509418059···+o(1)

pairs (a, b) for which both a− bm and Nk(a, b) are smooth.
Every such pair is a “relation mod n” among L0.9509418059···+o(1) primes of various

number fields. It is conjectured that there will be more relations than primes, if the
o(1) in the bound on a and b is chosen large enough, so there will be a nontrivial
dependency modulo 2 among those relations. One can discover such a dependency
in time L1.9018836118···+o(1) on a general-purpose computer with L0.9509418059···+o(1)

bits of memory: apply Wiedemann’s algorithm to the relation matrix.
Finally, perform a square-root computation to find a divisor of n. This takes time

just L0.9509418059···+o(1) on a general-purpose computer with L0.9509418059···+o(1) bits
of memory. The divisor is conjectured to be a nontrivial factor of n with probability
bounded away from 0.

Circuits. One can use, instead of a general-purpose computer, the machine de-
scribed in section 5 to find pairs (a, b) for which a − bm and Nk(a, b) are smooth,
and the machine described in section 4 to find a dependency in the relation matrix.

However, since the machine in section 5 is relatively fast, it is better to consider
more pairs (a, b), so as to reduce the time spent on linear algebra, when n is
sufficiently large. One can balance the time taken by the two machines as follows.

Define α and L as before. Select an integer degree d ∈ (1.4227573217 · · ·+o(1))α
with d ≥ 2, and select m, fd−1, . . . , f0 as before. The constant here is (5/3)1/3(6/5).

Consider all pairs (a, b) of coprime positive integers bounded by

L0.9880259179···+o(1),

and select y ∈ L0.7904207343···+o(1). The constants here are (5/3)1/3(5/6) and
(5/3)1/3(2/3).

Find all pairs (a, b) for which a− bm and N0(a, b) are both y-smooth. This takes
time

L2·0.9880259179···−0.7904207343···+o(1) = L1.1856311014···+o(1)

on a machine of size L0.7904207343···+o(1), as explained in section 5. The product of
a− bm and N0(a, b) is bounded by

L2/1.4227573217···+0.9880259179····1.4227573217···+o(1) = L2.8114422176+o(1)

so the number of relations is conjectured to be

L2·0.9880259179···−(2.8114422176.../0.7904207343...)/3+o(1) = L0.7904207343···+o(1)

which, as before, should exceed the number of relevant primes. Finding a depen-
dency takes time L1.5·0.7904207343···+o(1) = L1.1856311014···+o(1) on a machine of size
L0.7904207343···+o(1), as explained in section 4. The final square root takes time
L0.7904207343···+o(1) on a general-purpose computer of size L0.7904207343···+o(1).

10 DANIEL J. BERNSTEIN

Plans. I already have tools that accurately predict the yield of the number field
sieve for various parameter choices. It should be straightforward to optimize these
choices, given the exact costs of the computations described in sections 4 and 5.

Credits. I started thinking about the cost of factorization—rather than simply the
time taken on common general-purpose computers—after I heard a talk by Arjen
Lenstra on TWINKLE. See [9].

Silverman in [20] pointed out that many previous analyses of the difficulty of
factorization were wildly underestimating the cost of sieving and linear algebra. I
agree. Silverman’s estimates were much more accurate. However, they are now
obsolete.

References

[1] —, Proceedings of the 18th annual ACM symposium on theory of computing, Association

for Computing Machinery, New York, 1986. ISBN 0–89791–193–8.
[2] Alfred V. Aho (chairman), Conference record of the fifth annual ACM symposium on the

theory of computing, Association for Computing Machinery, New York, 1973.

[3] Daniel J. Bernstein, How to find small factors of integers, to appear, Mathematics of Com-
putation. Available from http://cr.yp.to/papers.html.

[4] Richard P. Brent, Fred G. Gustavson, David Y. Y. Yun, Fast solution of Toeplitz systems of

equations and computation of Padé approximants, Journal of Algorithms 1 (1980), 259–295.
MR 82d:65033.

[5] Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology 6 (1993),

169–180. MR 94h:11111.
[6] Erich Kaltofen, Austin A. Lobo, Distributed matrix-free solution of large sparse linear sys-

tems over finite fields, Algorithmica 24 (1999), 331–348. MR 2000b:65093.

[7] Donald E. Knuth, The art of computer programming, volume 3: sorting and searching, 2nd
edition, Addison-Wesley, Reading, 1998. ISBN 0–201–89685–0.

[8] Robert Lambert, Computational aspects of discrete logarithms, Ph.D. thesis, 1996. Available
from http://www.cacr.math.uwaterloo.ca/techreports/2000/lambert-thesis.ps.

[9] Arjen K. Lenstra, Adi Shamir, Analysis and optimization of the TWINKLE factoring device,

in [16] (2000), 35–52.
[10] Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics 126

(1987), 649–673. MR 89g:11125.

[11] Hendrik W. Lenstra, Jr., Jonathan Pila, Carl Pomerance, A hyperelliptic smoothness test,
I, Philosophical Transactions of the Royal Society of London Series A 345 (1993), 397–408.

MR 94m:11107.

[12] Hendrik W. Lenstra, Jr., Robert Tijdeman (editors), Computational methods in number
theory I, Mathematical Centre Tracts 154, Mathematisch Centrum, Amsterdam, 1982. ISBN

90–6196–248–X. MR 84c:10002.

[13] Robert T. Moenck, Fast computation of GCDs, in [2] (1973), 142–151.
[14] Peter L. Montgomery, An FFT extension of the ellpitic curve method of factorization, Ph.D.

thesis, University of California at Los Angeles, 1992.
[15] Carl Pomerance, Analysis and comparison of some integer factoring algorithms, in [12]

(1982), 89–139. MR 84i:10005.

[16] Bart Preneel (editor), Advances in cryptology: EUROCRYPT 2000, Lecture Notes in Com-
puter Science 1807, Springer, Berlin, 2000. ISBN 3–540–67517–5.

[17] Manfred Schimmler, Fast sorting on the instruction systolic array, Report 8709, Christian

Albrecht University Kiel, 1987.
[18] Claus P. Schnorr, Adi Shamir, An optimal sorting algorithm for mesh-connected computers,

in [1] (1986), 255–261.

[19] Arnold Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Informatica 1
(1971), 139–144.

[20] Robert D. Silverman, A cost-based security analysis of symmetric and asymmetric key

lengths, Bulletin 13, RSA Laboratories, Bedford, Massachusetts, 2000. Available from
http://www.rsasecurity.com/rsalabs/bulletins/index.html.

CIRCUITS FOR INTEGER FACTORIZATION: A PROPOSAL 11

[21] C. D. Thompson, H. T. Kung, Sorting on a mesh-connected parallel computer, Communi-

cations of the ACM 20 (1977), 263–271.

[22] Douglas H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions
on Information Theory 32 (1986), 54–62. MR 87g:11166.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, IL 60607–7045

Email address: djb@pobox.com

