MATHEMATICS OF COMPUTATION
VOLUME 000, NUMBER 0
0000, PAGES 000-000

MATRIX INVERSION MADE DIFFICULT

DANIEL J. BERNSTEIN

ABSTRACT. If ADA = A and DAD = D then D is a quasiinverse of A. This
paper presents generalized Gaussian elimination, which builds a quasiinverse
of an arbitrary homomorphism out of quasiinverses of two smaller homomor-
phisms. In conjunction with fast matrix multiplication, generalized Gaussian
elimination is a fast, reasonably stable method that can (1) invert any in-
vertible matrix, (2) solve any soluble set of linear equations, and (3) compute
a basis for the kernel of any matrix. A fast algorithm for (1) was already
obtained by Bunch and Hopcroft, but the construction here is simpler. Fast
algorithms for (2) and (3) appear to be new.

1. INTRODUCTION

Let A:V - W and D : W — V be module homomorphisms. Then D is a
quasiinverse of A if ADA = A and DAD = D.

If A has a left inverse then its quasiinverses are exactly its left inverses, and if A
has a right inverse then its quasiinverses are exactly its right inverses. In particular,
when A is invertible, its only quasiinverse is its inverse.

Any quasiinverse D determines a coimage of A in V, namely im D, and a
cokernel of A in W, namely ker D. (It is tempting to say that D is co4; D
reverses all exact sequences related to A.) Then V splits as (ker A) @ (im D) and
W splits as (ker D) @ (im A). Note that A is an isomorphism from im D to im 4,
with D as its inverse.

A quasiinverse D respects a basis for W if ker D is generated by a subset of
that basis. Similarly, D respects a basis for V if im D is generated by a subset of
that basis. Note that the corresponding columns of A then form a basis for im A.

Any matrix over a field has a quasiinverse respecting any given bases for V' and

w.

Outline of this paper. Section 2: Generalized Gaussian elimination con-
structs a quasiinverse of A given quasiinverses for a pivot and a reduced map.
Section 3: Given a matrix A over a field, Algorithm Q computes a respectful
quasiinverse D of A, along with bases for ker D and im D. Algorithm N computes
a basis for ker A. Algorithm S solves linear equations.
Section 4: The algorithms of section 3 run at essentially the speed of matrix
multiplication.

Received by the editor 19951021 (draft 7).
1991 Mathematics Subject Classification. Primary 65F05, 15A009.
Thanks in advance to anyone who suffers through the first few drafts of this paper.

©0000 American Mathematical Society
0025-5718/00 $1.00 + $.25 per page

2 DANIEL J. BERNSTEIN

Fast matrix operations. Strassen [4] showed that one can multiply two n-by-n
matrices in time n? for a certain 8 < 3. (Currently the best known f is a bit below
2.38 [2].) For moderately large matrices Strassen’s method is much faster than the
usual algorithm.

Strassen then suggested block Gaussian elimination as a fast method to invert
an n-by-n matrix. Unfortunately, this method can fail even if the original matrix is
invertible. (It is also rather unstable.) Bunch and Hopcroft [1] fixed this problem
with a tricky series of nested pivots; they proved that one can invert any invertible
n-by-n matrix at roughly multiplication speed.

Generalized Gaussian elimination achieves the same result as the Bunch-Hopcroft
method for invertible matrices, in a much less convoluted way. Strassen, Bunch,
and Hopcroft chopped up A both horizontally and vertically; generalized Gaussian
elimination chops up A in just one direction. This simplification depends crucially
on the concept of a quasiinverse.

Generalized Gaussian elimination also produces useful results for non-invertible
matrices. Examples: (1) it computes a basis for ker A; (2) it points out a basis for
im A; (3) it solves systems of linear equations—if D is any quasiinverse of A, and
w € im A, then w = A(Dw).

Relation to Gaussian elimination. In section 2, S may be chosen to be one-
dimensional. This special case is exactly Gaussian elimination with partial
pivoting [XXX]. The latter algorithm is normally viewed as searching for a pivot
element in (let’s say) the first row of A, and then using the corresponding column
to reduce A. I' prefer to view the entire first row as being the pivot. The inverse of
the pivot element is really a quasiinverse of the pivot row. In generalized Gaussian
elimination, the pivot may be any subset of the rows of A; the quasiinverse of the
pivot amounts to the inverse of some maximal nonsingular square submatrix.

Quasiinverses in maximum generality. I have stated the results of section 2
for modules over any ring, not just vector spaces over a field, on the theory that
unnecessary hypotheses distract attention from the essence of the proofs. For a
more thorough application of this philosophy, see [3].

One could go even further, and rephrase section 2 in the language of abelian
category theory; note that diagram theorems true for modules are true for all
abelian categories [XXX]. I have no intention of carrying out this project.

Quasiinverses in the literature. It seems that there is no standard name for
my concept of a quasiinverse. The word “quasiinverse” has been used [XXX] for a
map D satisfying merely ADA = A. I suggest that such a map be called a “right
quasiinverse” or “splitting” of A.

Any matrix over the real numbers has a unique pseudoinverse, a particular
quasiinverse determined by the singular value decomposition. The singular
value decomposition supplies orthonormal bases for im D and im A upon which A
acts diagonally. See [XXX] for further details.

Another example of a quasiinverse is [XXX]; thanks to Henri Gillet and Lawrence
Ein for bringing this to my attention.

Note that the construction of the reduced map C from the pivot B in Theorem
2 generalizes the construction of the Schur complement [XXX].

1T have abandoned the practice of mechanically replacing “I” with “we” in my papers.

MATRIX INVERSION MADE DIFFICULT 3

Terminology. Iabbreviate module homomorphism as map. Following convention
and ignoring psychology I write maps on the left. S @ T is the direct sum of S and
T; it is the same as S + T, with the side condition that S NT = {0}. #Z is the
number of elements of Z.

2. GENERALIZED (GAUSSIAN ELIMINATION

Consider a map A : V — S @ T. This section presents generalized Gaussian
elimination, which builds a quasiinverse D of A out of (1) a quasiinverse E of a
pivot B:V — S and (2) a quasiinverse F' of a reduced map C: V — T.

Theorem 1. Let A: V — W and m : W — S be maps. Define B: V — S by
B = wA. Assume that B has a quasiinverse E : S — V. Define P:V — V by
P=1-EBandQ:W - W byQ =1— AEn. Then PE=0, BP =0, PP=P,
QA= AP, and T1QA = 0.

Proof. First PE=FE—EBE =0;next BP=B—-BEB=0so PP=P—-EBP =
P;next QA=A — AErA=A— AEB = AP; finally 1QA=7nAP =BP =0. O

Theorem 2. In the situation of Theorem 1, assume that S is a submodule of W
and that 7w = 7. Define T =kerw. Define C : V — T by C = QA. Assume that
C has a quasiinverse F : T — V. Define D: W — V by D = En + PF(1 —7)Q.
Then D is a quasiinverse of A. Furthermore imD = im E + im F' and ker D =
ker E + ker F'.

The assumptions on S and W mean that W = S @& T'; = projects W onto S and
1 — m projects W onto T'.

Proof. By Theorem 1, CE = APE =0and CP=APP = AP =_C.

Now DA = ErA+ PF(1 —m)QA = EB+ PFC so ADA = AEB + APFC =
AEB+CFC =AEB+C = A.

Furthermore BD = BE7w + BPF(1 — 7)Q = BEn since BP = 0; thus EBD =
EBEn = Ew. Also CD =CEn+ CPF(1—7)Q = CF(1 —m)Q since CE =0 and
CP =C; thus FCD =FCF(1-m)Q = F(1—m)Q.

Hence DAD = EBD + PFCD = Ern+ PF(1—-m)Q = D.

Coimage: First DAE = EBE + PFCE = E since CE = 0; thus im E C im D.
Similarly DAF = EBF+PFCF = EBF+PF = F;thusim F C im D. Conversely
D=Enr+PF(1-m)Q=En+F(1-7)Q—-EBF(1-7m)QsoimD CimFE+imF.

Cokernel: If s = ws and Es = 0 then Enrs = 0 so Qs = s so Ds = Enws +
PF(1 —7)Qs = PF(1 —7)s = 0; thus ker E C kerD. If it = 0 and Ft = 0
then Qt = ¢t so Dt = Ent + PF(1 — n)Qt = PF(1 —)t = PFt = 0; thus
ker F' C ker D. Conversely, say Dw = 0. Then Erw = EBDw = 0, so Qw = w, so
F(l-mw=F(1—-7)Qw = FCDw = 0. Thus w = nrw+(1—7)w € ker E+ker F.OJ

Theorem 3. In the situation of Theorem 2, let M be a submodule of ker A. As-
sume that kerC = (M +im E) ® N for some module N. Then ker A= M & PN,
and P is an isomorphism between N and PN.

Proof. If v € N and Pv € M then v=Pv+ EBv € M +imE so v = 0. Thus (1)
P is injective on N and (2) M N PN = {0}.

If v € N then APv = Cv =0 so Pv € ker A. Hence PN C ker A.

If Av =0 then Cv = QAv = 0sov=m+ Es+n for some m € M, s € S,
and n € N. Next A(Es+n) = Av — Am =0, so Es +n = P(Es+ n) = Pn, so
v=m-+Pne M+ PN. Hence ker A C M + PN. O

4 DANIEL J. BERNSTEIN

3. COMPUTATION

The following algorithms use generalized Gaussian elimination, recursively, to
solve various problems in linear algebra over a field.

A vector space of dimension n is normally represented inside a computer by
the integer m. Its basis vectors are represented by the integers 1,2,...,n (or
0,1,...,n — 1). A respectful subspace is represented as a list of basis vectors.
Subspace sum and intersection then correspond to list union and intersection.

Say X is a basis for V', and Y is a basis for W. Recall that a matrix is a function
a that assigns a field element to each pair (y,z) € Y x X. This matrix represents
the map A : V — W defined by A(z) = >_ a(y,z)y. If I C X and J C Y, the
notation A on J X I means the submatrix a on J x I, i.e., the function a restricted
to J x I. Note that a on J x I determines A, provided that (1) the span of Y — J
is contained in ker A and (2) im A is contained in the span of I.

In these algorithms, V and W are respectful finite-dimensional subspaces of some
(irrelevant) larger space. A is a map from V to W. M is a respectful subspace of
V, with M C ker A. X is a basis for V minus a basis for M, Y is a basis for W,
and a = AonY X X; note that a determines A. X and Y are represented as finite
lists of integers.

Computing a quasiinverse. The following algorithm computes a quasiinverse for
A. Tt avoids storing matrix rows and columns that are guaranteed by construction
to be entirely zero.

Algorithm Q. Given (X,Y,a), compute Q(X,Y,a) = (I,J,D on I x J). Here
D : W — V is a quasiinverse of A; I is a basis for im D, with I C X; and Y — J is
a basis for ker D, with J C Y.
1. If a = 0: Set d to the empty matrix. Return ({},{},d).
2. If Y has just one element y: Select v € X such that a(v,y) # 0. Set d to the
1-by-1 matrix 1/a(v,y). Return ({v},{y},d).
3. Select Z C Y, Z # {}. (In the language of section 2: Z is a basis for S, and
Y — Z is a basis for T.)
Extract b=aon Z x X. (b represents B = wA.)
Recursively compute (I, J,e) = Q(X, Z,b). (e represents E.)
Extract ¢y =aon (Y — Z) x I.
Compute the product t2 = tje, a matrix on (Y — Z) x J. (¢ represents
(1-m)AE.)
Extract t3 =bon J x (X —I). (t3 represents B off im E.)
9. Compute the product ¢4 = tat3, a matrix on (Y —Z) x (X —1I). (¢4 represents
(1-7m)AEB off imE.)
10. Extract ts =aon (Y — Z) x (X —I). (t5 represents (1 — m)A off im E.)
11. Compute ¢ = t5 — t4, a matrix on (Y — Z) x (X — I). (c represents C =
(1-mA—-(1—-m)AEB.)
12. Recursively compute (G, H, f) = Q(X — I,Y — Z,c). (f represents F.)
13. Extract tg =tz on J x G.
14. Compute the product t7 = tgf, a matrix on J x H. (t; represents BF'.)
15. Compute the product tg = et7, a matrix on I x H.
16. Compute tg = ts — f, a matrix on (GUI) x H. (ty represents —PF =
EBF —F.)
17. Extract t19 = tg on H X J. (t10 represents the projection of (1—7)AFE to the

NS o

®

MATRIX INVERSION MADE DIFFICULT 5

coimage of F.)

18. Compute the product t1; = tgt1g, a matrix on (GUI) x J. (t11 represents
—PF(1—7m)AE.)

19. Compute d = e + t1; — tg, a matrix on (GU I) x (H U J). (d represents
D=En—PF(1—n)AEw+ PF(1—m).)

20. Return (GUI,H U J,d).

Note that the quasiinverse is square: if r is the rank of A, then #I = #J = r.
Note also that it is easy to adapt Algorithm Q to compute the determinant of a
maximal nonsingular submatrix of A.

Solving a system of linear equations. Fix w € W. The following algorithm
finds a solution z to the equation Az = w, if any solution exists. It is a straightfor-
ward optimization of the following procedure: first find a quasiinverse D of A by
Algorithm Q; then compute z = Dw; then throw away D.

Algorithm S. Given (X,Y,a,w), compute S(X,Y,a) = (I, Dw on I), where D is
some respectful quasiinverse of A and I is a basis for im D.
1. If a = 0: Halt if w # 0; there is no solution. Otherwise set z to the empty
vector and return ({}, z).
2. If'Y has just one element y: Select v € X such that a(v,y) # 0. Set z to the
length-1 vector (u/a(v,y)), where w = uy. Return ({v},2).
Select Z CY, Z #{}.
Extract b=aon Z x X.
Compute (I, J,e) = Q(X, Z,b).
Compute t1, to, t3, t4, t5, ¢ as in Algorithm Q.
Compute wo = w on J.
Compute w3 = w on (Y — Z).
Compute wy = tows, a vector on Y — Z.
Recursively compute (G,z1) = S(X —I,Y — Z,c, w3 — wa).
11. Extract t12 =bon J X G.
12. Compute ws = t1221, a vector on J.
13. Compute z2 = e(wz — ws), a vector on I.
14. Compute z = z; + 22, a vector on GU I.
15. Return (G U, z2).

=
LN W

Computing a basis for the nullspace. By assumption ker A contains a re-
spectful subspace M of X. The following algorithm computes a (generally non-
respectful) subspace N of X such that ker A = M @ N. It represents N as a
matrix whose columns form a basis for V. Presumably we know a basis for M—for
example, we could start with M = {0}—so we can compute a basis for ker A.

Algorithm N. Given (X,Y,a,w), compute N(X,Y,a).
1. If a = 0: Return the identity matrix on X x X.
2. If Y has just one element y: Select v € X such that a(v,y) # 0. For each
z € X with z # v, form the vector z — (a(z,y)/a(v,y))v. Return the matrix
of these vectors.
Select Z CY, Z #{}.
Extract b=aon Z x X.
Compute (I, J,e) = Q(X, Z,b).
Compute t1,t2, t3, t4, t5, c as in Algorithm Q.

S otk w

6 DANIEL J. BERNSTEIN

7. Recursively compute Ny = N(X — 1LY — Z, ¢).
8. Compute the product Ny = t3NV;.
9. Compute the product N3 = eN,.

10. Return N; — N3.

Numerical analysis. The following observations are well known for the special
case of Gaussian elimination with partial pivoting.

Say A is a matrix over the real numbers. Each of the above algorithms appears
to be numerically stable, provided that, in step 2, one selects the element largest
in absolute value.

Inexact computations may lead to spurious failures when Algorithm S is applied
to a singular system of linear equations. To avoid this one should treat sufficiently
small numbers as zero in step 1. Another possibility is to skip the failure case
entirely; w is thus projected (in some direction) onto im A.

4. SPEED

In this section T’ll consider the speed of Algorithms Q, S, and N, from three
points of view: (1) asymptotically, if we use fast matrix multiplication; (2) in the
special case #Z = 1; (3) in practice.

Preliminaries. Write n = #X and m = #Y, so that a is an m-by-n matrix. In
step 2 of each algorithm we split Y into two subsets, Z and Y — Z; write p = #Z,
with 0 < p < m. Define r and s as the ranks of A and B respectively.

Algorithm Q computes (for m > 2) five matrix products, of sizes m — p by s by
s,m—pbysbyn—s,sbyr—sbyr—s,sbysbyr—s,andr byr—sbys. It
also calls itself recursively with a p-by-n matrix of rank s and an (m —p)-by-(n—s)
matrix of rank r — s.

Algorithm S computes matrix products of sizes m — p by s by s, m — p by s by
n—s,m—pbysbyl,sbyr—sbyl,and s by s by 1. It calls Algorithm Q with a
p-by-n matrix of rank s; it calls itself recursively with an (m — p)-by-(n — s) matrix
of rank 7 — s.

Algorithm N computes matrix products of sizes m — p by s by s, m — p by s by
n—s,sbyn—sbyn—r,and s by s by n —r. It calls Algorithm Q with a p-by-n
matrix of rank s; it calls itself recursively with an (m — p)-by-(n — s) matrix of rank
r—s.

Fast quasiinversion. Say we can compute the product of two k-by-k matrices
with at most ak? field multiplications. Here o and /3 are real numbers with 8 > 2.
Then one can find a quasiinverse of a k-by-k matrix, together with a basis for the
nullspace of the matrix, in O(k?) field multiplications.

Theorem 4. Assume that m is a power of 2, that n is a positive multiple of m, and
that p is always chosen as m/2 when m > 2 in Algorithm Q. Set v = 7/(2° — 4).
Then Algorithm Q uses at most aynmP=1 field multiplications.

Proof. For m =1 Algorithm Q performs no multiplications.

For m > 2 the matrix products in Algorithm Q may be broken up into, at
worst, n/p + 5 products of p-by-p matrices, using a total of a(n + 5p)p®~! field
multiplications. The two recursive calls are each of size at worst p by n, so by
induction they take at most 2aynp®~! field multiplications.

Since p = m/2 < n/2 we have n + 5p + 2yn < (7/2 + 2y)n = y28~1n. O

MATRIX INVERSION MADE DIFFICULT 7

Under the same assumptions, Algorithm S uses at most a/(§;nm? =1 +6,m?) +m?
field multiplications, and Algorithm N uses at most a(63n?mP~2 4 (4v/7)nmP~1 +
8ymP) field multiplications. Here §; = (2 + 27)/(2% — 2), d2 = 1/(2° — 1), and
6 = (4+29)/(2° - 2).

One-dimensional pivots. If p = 1, my algorithms reduce to Gaussian elimination
with partial pivoting.

Theorem 5. Assume that p is always chosen as 1 in Algorithm Q. Then Algorithm
Q takes at most rb(m,n,r) field multiplications, where b(m,n,r) = mn +7r? — 1 —
m(r—1)/2 —n(r +1)/2.

For » = m this bound factors as m(m — 1)(m + n + 2)/2. For r = m = n the
bound is roughly m3; for r = m < n the bound is roughly m?n/2.

Proof. For r = 0 there are no multiplications. For m = 1 and r = 1 there are again
no multiplications; and b(1,n,1) = 0.

For m > 2 we have two cases. If s = 0, Algorithm Q ends up doing nothing
except calling itself recursively with an (m — 1)-by-n matrix of rank r; by induction
this takes at most rb(m — 1,n,r) < rb(m,n,r) multiplications.

If s = 1, Algorithm Q does various matrix products totalling (m —1)n+2r(r —1)
field multiplications. It also calls itself recursively with an (m —1)-by-(n—1) matrix
of rank r— 1. Total: (r—1)b(m—1,n—1,7—1)+(m—1)n+2r(r—1) = rb(m,n,r)
multiplications. O

Similarly, Algorithm S uses at most r(mn—m(r—3)/2—n(r+1)/2+(r*—1)/3)
multiplications. For r = m = n this is roughly m®/3. For r = m < n this is
roughly m?n/2.

Algorithm N uses at most XXX. For r = m = n this is roughly m3/3. For

r = m < n this is roughly mn?2.

Practical concerns. XXX Reader beware: I have not yet tested these algorithms;
I have merely proven them correct.

How should we choose p in practice? One sensible possibility is p = [m/2]. This
takes maximum advantage of fast multiplication, for large m. Even without fast
multiplication, it is a good idea to break the original matrix into solid chunks rather
than peeling off one row at a time, because this uses the cache very effectively.

On the other hand, there is a mild source of inefficiency in Algorithm Q as
p grows. The reason is that Algorithm Q always computes all of C' in Theorem
2, even though in principle only a portion of C' should be necessary. Imagine, for
example, that C' is a matrix with 100 rows and 10000 columns. Its quasiinverse F is
determined by at most 100 of those columns. If we somehow knew which columns to
look at, or if we guessed the right columns and verified them against some magically
acquired knowledge of C’s rank, we could avoid computing the other columns of C.
Note that Strassen’s (failure-prone) method avoids this slight slowdown, essentially
by assuming that the first 100 columns of C form a nonsingular matrix. One could
perhaps modify Algorithm Q to optimistically check for this case, and to back off
if those columns turn out to be singular.

I recommend experimenting with various choices of p between 1 and m/2, for
whatever type of matrix is at hand.

Note that there is a dual form of generalized Gaussian elimination, in which
V, rather than W, is split up. Perhaps one could gain some speed in practice by
combining the original method with its dual.

8 DANIEL J. BERNSTEIN

REFERENCES

1. J. R. Bunch and J. E. Hopcroft, XXX, Mathematics of Computation 28 (1974), 231-236.

2. Donald Coppersmith and S. Winograd, XXX, Journal of Symbolic Computation 9 (1990),
251-280.

3. Carl Linderholm, Mathematics made difficult, XXX, XXX.

4. Volker Strassen, Gaussian elimination is not optimal, Numerische Mathematik 13 (1969),
354.

X. XXX, XXX, to appear, XXX XXX (XXX), XXX-XXX.

5 BREWSTER LANE, BELLPORT, NY 11713

