ENUMERATING AND COUNTING SMOOTH INTEGERS

DANIEL J. BERNSTEIN

950518 (draft T)

ABSTRACT. We present a linear-time algorithm to list the y-smooth integers up to
z, and an even faster algorithm to count the y-smooth integers up to z. We also
show how all multiplications can be replaced by an equal number of additions.

1. Introduction

An integer is y-rough if it has a prime factor larger than y; otherwise it is y-
smooth. Let P(z,y) be the set of y-smooth integers between 1 and z inclusive,
and let ¥(z,y) = #P(z,y) be the number of such integers.

In section 2 we present a straightforward algorithm that, with fewer than 2% (z, y)
multiplications, lists the elements of P(z,y). In section 3 we present a faster algo-
rithm to compute ¥(z,y) without enumerating P(z,y). In section 4 we show how
to adapt these algorithms to use addition instead of multiplication.

For convenience we rely on the following nontraditional statement of unique
factorization. Consider the set S of integers p2k, where p is a prime number and
k is a nonnegative integer; the first few elements of S are {2,3,4,5,7,9,11,13,16}.
For any finite subset T" of S, the product of T—i.e., the product of the elements of
T—is a positive integer. Unique factorization now says that every positive integer
is the product of a unique finite subset of S.

Similarly, if S = {pzk : p < y}, the y-smooth integers are exactly the products of
finite subsets of S.

In general we will consider any set S of positive integers such that distinct finite
subsets of S have distinct products. We write P(z,S) for the set of products, no
larger than z, of finite subsets of S; and we write ¥(z,S) = #P(z,S) for the
number of such products.

Now the algorithm in section 2 enumerates P(z, S) for any S, and the algorithm
in section 3 computes ¥(z, S). The P algorithm is in fact a critical component of
the ¥ algorithm.

Our algorithms could be applied in much greater generality. We use just two
facts about positive integers: (1) if p > = then ps > z; (2) if ps > z and s’ > s
then ps’ > z.

See [1] for more information about .

1991 Mathematics Subject Classification. Primary 11Y16.
This paper was included in the author’s thesis at the University of California at Berkeley. The
author was supported in part by a National Science Foundation Graduate Fellowship.

Typeset by AMS-TEX

2 DANIEL J. BERNSTEIN

2. Enumerating smooth integers

Fix S, and fix an integer z > 1. One can enumerate P(z,S) by starting from
a single integer, 1, and multiplying by elements of S every which way, tossing out
results larger than x:

Algorithm 1. We compute P(z, S).

1. Set P « {1}.

2. For each s € S:

3. Set @ < {}.

4. For each p € P:

5. If ps < z: Add ps to Q.
6 Set P+ PUQ.

7. Stop. The answer is P.

To save time we consider the elements of S in order. Once we find ps > z, we
need not multiply p by any later elements of S, since s’ > s implies ps’ > ps > z.
In this case we say that p is dead and we move it to a dead pile, D:

Algorithm 2. We compute P(z, S), given S in order.
1. Set P+ {1}, D «+ {}.
2. For each s € S, in increasing order:
3. (Now P is nonempty.) Set @ + {}.
For each p € P:
If ps < z: Add ps to Q.
Otherwise: Remove p from P. Add p to D.
Set P < PUQ.
If P is empty: Stop. The answer is D.
9. Stop. The answer is P U D.

®© N> o

Lemma 2.1. Let S be a set of positive integers such that distinct finite subsets of
S have distinct products. Then Algorithm 2 enumerates P(z,S) with fewer than
29 (z, S) multiplications.

Since P is nonempty in step 3, we always run through the inner loop of Algorithm
2 at least once for every iteration of the outer loop. Hence Algorithm 2 takes time
linear in ¥(z, S). (It is easy to compute P UQ and P U D if we represent P and Q
and D as linked lists.)

Proof. Note that, by hypothesis on .S, each integer is added to) at most once and
to D at most once.

Write m for the exact number of multiplications so far. Then m = 2#D+#P—1
when we reach step 3 or step 8, and m = 2#D + #(P U Q) — 1 when we reach
step b or step 7. Indeed, the first time we reach step 3, we have D = {} and
P ={1},s0 2#D + #P —1 = 0; and m = 0. In steps 5 and 6, we either add a
new element to () or we move an element from P to D. Either way we increase
2#D+#(PUQ®)—1 by 1; and we also increase m by 1. At the beginning of step 7,
we have m = 2#D + #(PUQ) — 1. We replace P by PUQ, som = 2#D+#P —1
at the beginning of step 8.

Finally, when we stop in step 8 or step 9, m < 2#D + #P < 2#(DU P) =
29(z,S). O

ENUMERATING AND COUNTING SMOOTH INTEGERS 3

It will be convenient in the next section to have the output of Algorithm 2 in
order. This is not a problem, since one can sort in time linear in the number of
output bits.

3. Counting smooth integers

To find ¥(z, S) one can compute P(z,.S) by Algorithm 2 above. We do better by
splitting S into two pieces, T' and U. Then each element of P(z,.S) is the product
of an element of P(z,T) and an element of P(z,U).

Algorithm 8. We compute ¥(z,S). In advance select a subset T C S and put
U=8-T.

1. Compute the elements p; > pa > -+ > py, of P(z,T), by Algorithm 2.

. Compute the elements ¢; < g2 < --- < g, of P(z,U), by Algorithm 2.

.Set j 1, ¥+ 0.

.Fori=1,2,...,m:

If 5 <n and p;q; < z: Increase j by 1 and repeat this step.

Set U« ¥ 445 —1.

. Stop. The answer is V.

N oUW N

Lemma 3.1. At the beginning of step 6 of Algorithm 8, p;qr, < = if and only if
k<j, forl1<k<n.

So Algorithm 3 walks along the curve of approximate solutions (i, j) to p;g; = .

Proof. Say piqr < x. Since we passed step 5 we have either j > n or p;q; > z. If
j > n then j > k. If p;g; > « then p;q; > pigx so j > k.

Conversely, say k < j. How did j increase past k7 We must have found ppqr < =
for some h < i. But then p; < pp, so pigx < z. O

Lemma 3.2. Let S be a set of positive integers such that distinct finite subsets
of S have distinct products. Then Algorithm 3 computes ¥(z, S) with fewer than
3(¥(z,T) + ¥(z,U)) multiplications.

In general ¥(z,T)¥(z,U) > ¥(z,S) so ¥(z,T)+¥(z,U) > 24/¥(z,S). On the
other hand ¥(z,T)+ ¥ (z,U) < 2¥(z, S). So the bound in Lemma 3.2 is 6¥(z, S)*
for some a between 1/2 and 1.

Proof. First we show that Algorithm 3 works. By Lemma 3.1,
#{k:pigp <z} =#{k:k<j}=j7-1

By summing j — 1 for all 4, we count the number of (i, k) such that p;qx < z, i.e.,
the number of products p;qx no larger than z, i.e., ¥(z, S).

In step 1 of Algorithm 3 we use fewer than 2¥(z,T') multiplications, by Lemma
2.1. In step 2 we use fewer than 2¥(z, U) multiplications. In step 5 we use at most
m+n=Y(z,T)+ ¥(z,U) multiplications, because the quantity 7 + j starts at 2,
never exceeds m + n + 1, and increases on each trip through step 5. [

How do we choose T" and U? It seems reasonable to toss elements of S alternately
into T" and U. If we are counting smooth numbers this means that the first few
elements of T are {2,4,7,11,16} and the first few elements of U are {3,5,9,13,17}.
Perhaps this is close to optimal; it should be possible to use the structure of P(z, S)
to find a realistic lower bound on ¥(z,T) + ¥(z,U).

4 DANIEL J. BERNSTEIN

4. Avoiding multiplications

In computing ¥ we multiply positive integers and check whether the products
exceed x. We can survive without multiplication; the idea is to represent each
positive integer by an integer approximation to its logarithm. Here are the details.

Select b such that 2° > z + 1, and select Z > 2°%2bh 4+ 2. Let p be a positive
integer; we say that r represents p if |[r — Zlogp| < lgp. Here lgp = log p/log2.

For any positive integer p there is an integer r that represents p. For p = 1 we
take 7 = 0. For p > 2 we select an integer r within 1 of Zlog p. (We may construct
r from a precomputed table of log(2¥/(2% — 1)), by writing p as an approximate
product of terms of the form 2% /(2% —1). See [2, exercise 1.2.2-25].)

Lemma 4.1. Ifr represents p and r’ represents p' then r +r' represents pp'.
Proof. |r+71' — Zlogpp'| <|r— Zlogp|+|r' — Zlogp'| <lgp+1gp’' =lgpp’. O

Lemma 4.2. Let s represent x, and let r represent p. Then p < x if and only if
r < s+ 2b.

Proof. If p < z then
r—s=r—Zlogp+Zlogp—s<r—Zlogp+Zlogz—s <lgp+lgz <2lgz < 2b

sor <s+2b. If p>ax+1 then

1 1 1 1
logp—logx210g<1+x) 210g<1+26_1> ——log<1—2b> >§

SO

r—s+2b>r—s+2lgz > (Zlogp—Ilgp) — (Zlogz +1gz) +2lgz

1 1\1_Z-2
=(z-—=) (logp-1 Z-— =225
(log2)(ogp °gm)>(log2)2b>

20 =
sor>s+2b O

We have thus replaced multiplication and comparison against x with addition
and comparison against s+ 2b. One final trick: We can store differences of adjacent
logarithms in the arrays of Algorithms 2 and 3. These differences are (usually)
relatively small, so we save some space and time.

References

1. E. R. Canfield, Pal Erdés, Carl Pomerance, On a problem of Oppenheim concerning “factori-
satio numerorum”, Journal of Number Theory 17 (1983), 1-28.

2. Donald E. Knuth, The Art of Computer Programming, volume 1: Fundamental Algorithms,
2nd edition, Addison-Wesley, Reading, Massachusetts, 1973.

5 BREWSTER LANE, BELLPORT, NY 11713

