AN EXPOSITION OF THE AGRAWAL-KAYAL-SAXENA
PRIMALITY-PROVING THEOREM

DANIEL J. BERNSTEIN

Theorem 1 (Manindra Agrawal, Neeraj Kayal, Nitin Saxena). Let n be a positive
integer. Let q and r be prime numbers. Let S be a finite set of integers. Assume
that q divides r — 1; that n"~/9 mod r ¢ {0,1}; that gcd {n,b—b'} = 1 for all
distinct b,b’ € S; that (‘Hig_l) > n2WV"l; and that (z 4 b)™ = ™ + b in the ring
(Z/n)[z]/(z" — 1) for allb € S. Then n is a power of a prime.

Proof. Find a prime divisor p of n such that p"~Y/9 mod r ¢ {0,1}. (If every
prime divisor p of n has p(""1/9 mod r € {0,1} then n("~1/9 mod r € {0,1}.)

By hypothesis, (z + b)" = 2™ + b in F,[z]/(z" — 1) for all b € S. Substitute
a™ for z: (z" +b)" =z" " +bin F,[z]/(z™" — 1), hence in F,[z]/(z" — 1). By
induction, (z + )" = z™ +b in Fylz]/(z” — 1) for all i > 0. By Fermat’s little
theorem, (z 4+ b)"'?" = (z™ 4 b)? = 2"?’ + b in Fp[z]/(z" — 1) for all j > 0.

Consider the products nip? with 0 < i < |/r] and 0 < j < |/r|. Note for future
reference that nip/ < n?lv7l. There are (|\/r] +1)2 > r pairs (i, ) here, so there
are distinct pairs (i, ), (k,£) such that n’p’ = n*p’ (modr). Write t = nfp’ and
u = n*p’. Then 2! =% in F,[z]/(z" —1),50 (z+b)! =zt +b=2"+b= (z+b)*
in Fp[z]/(z" — 1) for all b € S.

Find an irreducible polynomial h in F,[z] dividing (" —1)/(z —1). A standard
fact about cyclotomic polynomials is that deg h is the order of p modulo r; so degh
is a multiple of ¢; so degh > q.

Now (z + b)* = (z + b)* in the finite field Fp[z]/h for all b € S. Note that
z + b € (Fp[z]/h)*, since degh > g > 2. Define G as the subgroup of (Fp[z]/h)*
generated by {z + b: b € S}; then g* = g* for all g € G.

G has at least (q+ﬁ§fl) elements: specifically, all products [],cg(z + b)® with
> p € < g—1. (The irreducibles z + b are distinct in F,[z], because each difference
(x+b)—(z+b") = b—"b' is coprime to n by hypothesis; so these products [ [, (z+b)
are distinct in Fp[z]. These products have degree smaller than g, hence smaller than
deg h, so they remain distinct modulo A.)

G is a finite multiplicative subgroup of a field, so it has an element g of order #G.
But |t —u| < n?2lV7] < (‘Hﬁg_l) < #@G, and g* = g%, so t = u. In other words,
nip? = nFpt. If i = k then p? = p® so (4, j) = (k,£), contradiction. Consequently n
is a power of p. O
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Theorem 2 (Manindra Agrawal, Neeraj Kayal, Nitin Saxena, Hendrik W. Lenstra,
Jr.). Letn and r be positive integers. Let S be a finite set of integers. Assume that
n is a primitive root modulo r; that ged {n,b — b’} =1 for all distinct b,b' € S; that
("’(T);ﬁs_l) > nV7l; and that (z + b)® = "™ + b in the ring (Z/n)[z]/(z" — 1) for
allbe S. Then n is a power of a prime.

Proof. If n = 1 then n is a power of a prime, so assume that n > 2. Let p
be a prime divisor of n. Note for future reference that ¢(r) > 1. (Otherwise
n<nlVrl < (Lp(r)—l#;ﬁs—l) = (ﬁg) =1, contradiction.)

By hypothesis, (z 4+ b)" = 2™ 4+ b in Fplz]/(z” — 1) for all b € S. Substitute
a™ for z: (z" +b)" =z +bin F,[z]/(z™" — 1), hence in Fp[z]/(z" —1). By
induction, (z + )" = z™ +b in Fylz]/(z” — 1) for all i > 0. By Fermat’s little
theorem, (z 4+ b)" P = (z™ 4 b)? = z"?’ + b in Fp[z]/(z" — 1) for all j > 0.

Consider the products n’p/ with 0 < i < |[/7] and [/7] < i+j < 2| /7).
Note for future reference that nip/ /plv7! is an integer with nip’ /plv7l < nlv7l,
There are (|1/7] + 1)? > r pairs (i,5) here, so there are distinct pairs (i, ), (k, £)
such that n'p/ = n*p® (modr). Write t = nip’/ /plv"] and u = n*p®/plv7]. Then
(z + b)tphm =gt?"Y" p =g 4 = (z + b)“l"bm in Fplz]/(z" — 1) for all
be S.

Find an irreducible polynomial h in F,[z] dividing the rth cyclotomic polynomial
®,. Observe that any polynomial g € F,[z] such that g(z™") = 0 in F,[z]/h for
all a > 0 must be divisible by ®,.. (If c € {0,1,...,7 — 1} and ged {r,c} =1 then,
by hypothesis, ¢ = n® (modr) for some a, so g(y°) = g(y™") in Fp[y]/(y" — 1), so
9(y°) = 0 in the field F,[y]/h(y). The powers y° are distinct in F,[y]/h(y), so g is
divisible by [[.(z — ¥°) = ®, in (Fp[y]/h(y))[z], hence in F,[z].)

Note that z+b € (Fp[z]/h)*. (If z+b = 0in F,[z]/h then 2™ +b= (z+b)"" =0
in Fy[z]/h for all a, so ®, divides z + b; but deg ®(r) = ¢(r) > 1.)

Define G as the subgroup of (F,[z]/h)* generated by {z+b:b€ S}. Then
g = gunt

for all g € G; pth powering is invertible in Fp[z]/h, so g* = g*.

G has at least (¢(r);¢§s—1) elements: specifically, all products [],.g(z + b)®
with >, es < ¢(r) — 1. (The irreducibles x + b are distinct in F,[z], because each
difference (x +b) — (z +b') = b—b' is coprime to n by hypothesis; so these products
[1,(z + b)* are distinct in Fp[z]. Now assume that two products e = [],(z + b)®
and f = [[,(z + b)f are the same in Fy[z]/h. Then e = [[,(z + b)""® =
[1,(z"" +b) = e(z"") in Fp[z]/h for all a > 0; similarly f** = f(z™") in Fpz]/h;
so e(z"") = f(z™") in Fp[z]/h. Thus ®, divides e — f. Both e and f have degree
smaller than ¢(r) = deg ®(r), so e = f in Fp[z].)

G is a finite multiplicative subgroup of a field, so it has an element g of order #G.
But |t —u| < nlvrl < (“"(r)ygs_l) < #@G, and g* = g%, so t = u. In other words,
nip? = nkpt. If i = k then p’ = p® so (4, ) = (k,£), contradiction. Consequently n
is a power of p. |
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Appendix: how the AKS algorithm works. Agrawal, Kayal, and Saxena use
Theorem 1 to determine in polynomial time whether a given integer n > 1 is prime.

The idea is to find a small odd prime r such that n{"~1/4 mod r ¢ {0,1} and
(9571) > n2LV7l; here g is the largest prime divisor of r—1, and s is any moderately
large integer. A theorem of Fouvry from analytic number theory implies that a
suitable r exists on the scale of (logn)®, with s on the scale of (logn)*.

(For readers who care about ease of run-time analysis: Carl Pomerance points
out that one can use a theorem of Goldfeld, older and simpler than the theorem of
Fouvry, if 6 and 4 are replaced by substantially larger numbers. As an alternative,
Lenstra has a generalization of Theorem 1 and Theorem 2, allowing many more
r’s at some expense in speed; one can very easily prove that r and s suitable for
Lenstra’s generalization exist on the scale of (logn)®.)

Given such a (g,r, s), one can easily test that n has no prime divisors smaller
than s, and test that (z 4+ b)™ = 2™ + b in the ring (Z/n)[z]/(z" — 1) for allb € S,
where S = {0,1,...,5—1}. Any failure of the first test reveals a prime divisor of
n. Any failure of the second test proves that n is composite. If both tests succeed,
then n is a prime power by Theorem 1. One can easily check whether n is a square,
cube, etc. to see whether n is prime.

(For readers who care about speed: A suitable r and s are conjectured to exist
on the scale of (logn)?, with ¢ = (r — 1)/2. One can easily choose r and s to
minimize the time spent checking the conditions (z + b)™ = z™ + b. The time is
essentially linear in 7s(lgn)2. The minimum value of rs(lgn)? is conjectured to be
(0.017...40(1))(Ign)® with Theorem 2, or (2.25...+0(1))(lgn)® with Theorem 1.
In contrast, in the algorithm stated by Agrawal, Kayal, and Saxena, the value of
rs(lgn)? is conjectured to be (1024 +0(1))(lgn)®; the Agrawal-Kayal-Saxena paper
imposes the unnecessarily strong conditions ¢ > 44/rlgn and s > 24/rlgn.)
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