A NON-ITERATIVE 2-ADIC STATEMENT OF THE 3N + 1 CONJECTURE

Daniel J. Bernstein

9/21/92

Abstract. Associated with the 3N+1 problem is a permutation Φ of the 2-adic integers. The 3N+1 conjecture is equivalent to the conjecture that 3Q is an integer if $\Phi(Q)$ is a positive integer. We state a new definition of Φ . To wit: Q and $N=\Phi(Q)$ are linked by the equations $Q=2^{d_0}+2^{d_1}+\cdots$ and $N=(-1/3)2^{d_0}+(-1/9)2^{d_1}+(-1/27)2^{d_2}+\cdots$ with $0\leq d_0< d_1<\cdots$. We list four applications of this definition.

DEFINITION AND CONJECTURE

We recall that the 2-adic integers \mathbf{Z}_2 may be defined as binary expansions which are allowed to extend infinitely far to the left $[3, \, \mathrm{Ex.} \, 4.1\text{--}31]$: for instance, $1/3 = (\dots 0101011)_2 \in \mathbf{Z}_2$. Fix odd 2-adic integers $u_0, u_1, \dots \in 1+2\mathbf{Z}_2$. For any increasing, finite or infinite, sequence $0 \leq d_0 < d_1 < \cdots$ of nonnegative integers, the sum $\sum u_i 2^{d_i}$ converges to some 2-adic integer S. In fact this map from increasing sequences to sums is one-to-one and onto all of \mathbf{Z}_2 . We construct its inverse. Given $S \in \mathbf{Z}_2$ we set d_0 to the first bit position in S, d_1 to the first bit position in $S - u_0 2^{d_0}$, and so on. If at any point $S - u_0 2^{d_0} - \dots - u_n 2^{d_n}$ is zero, we stop, and the sequence is finite.

As an example, the expansion

$$(1) Q = 2^{d_0} + 2^{d_1} + \cdots$$

is a bijection between $Q \in \mathbf{Z}_2$ and increasing sequences $d = \langle d_0, d_1, \ldots \rangle$. Finite sequences d correspond to nonnegative integers Q. (In particular the empty sequence corresponds to Q = 0.) Similarly, the expansion

(2)
$$N = \frac{-1}{3}2^{d_0} + \frac{-1}{9}2^{d_1} + \frac{-1}{27}2^{d_2} + \cdots$$

is another bijection. Together (1) and (2) determine a bijection between all $N \in \mathbf{Z}_2$ and all $Q \in \mathbf{Z}_2$. We write $N = \Phi(Q)$. For instance,

(3)
$$\Phi(-\frac{1}{3}) = \Phi(2^0 + 2^2 + 2^4 + \dots) = \frac{-1}{3}2^0 + \frac{-1}{9}2^2 + \frac{-1}{27}2^4 + \dots = 1$$

by elementary geometric series manipulations. So $1 \in \Phi((1/3)\mathbf{Z})$.

Conjecture. The set \mathbf{Z}^+ of positive integers is contained in $\Phi((1/3)\mathbf{Z})$.

 $^{1991\} Mathematics\ Subject\ Classification.\ {\bf Primary}\ 11D72.$

The author was supported in part by a National Science Foundation Graduate Fellowship. He would also like to thank Bellcore for the use of their facilities in preparing this document.

Connection with the 3N+1 problem

We define two functions H(Q) and C(N). If Q is even we set H(Q) = Q/2; otherwise we set H(Q) = Q - 1. If N is even we set C(N) = N/2; otherwise we set C(N) = 3N + 1.

Theorem 1. $C(\Phi(Q)) = \Phi(H(Q))$.

Proof. We define d as in (1). If Q is even then $d_0 > 0$ (or d has length 0) and

$$C(\Phi(Q)) = \frac{-1}{3} 2^{d_0 - 1} + \frac{-1}{9} 2^{d_1 - 1} + \dots = \Phi(2^{d_0 - 1} + 2^{d_1 - 1} + \dots) = \Phi(Q/2).$$

If Q is odd then $d_0 = 0$ and

$$C(\Phi(Q)) = 1 + 3(\frac{-1}{3} + \frac{-1}{9}2^{d_1} + \frac{-1}{27}2^{d_2} \cdots) = \frac{-1}{3}2^{d_1} + \frac{-1}{9}2^{d_2} + \cdots$$
$$= \Phi(2^{d_1} + 2^{d_2} + \cdots) = \Phi(Q - 2^{d_0}) = \Phi(Q - 1)$$

as desired. \square

The 3N+1 conjecture [4] states that, for any positive integer $N \in \mathbf{Z}^+$, some iterate $C^k(N)$ equals 1. This implies our conjecture:

Theorem 2. If $C^k(N) = 1$ then $N \in \Phi((1/3)\mathbf{Z})$.

Proof. Set $Q = \Phi^{-1}(N)$. Now $C^k(\Phi(Q)) = 1$ so $\Phi(H^k(Q)) = 1$ so $H^k(Q) = \Phi^{-1}(1) = -1/3 ∈ (1/3)\mathbf{Z}$. If $H(x) ∈ (1/3)\mathbf{Z}$ then $x ∈ (1/3)\mathbf{Z}$, so by induction $Q ∈ (1/3)\mathbf{Z}$ as desired. □

The converse is also true: our conjecture implies the 3N + 1 conjecture.

Theorem 3. If $N \in \mathbf{Z}^+$ and $N \in \Phi((1/3)\mathbf{Z})$ then $C^k(N) = 1$ for some k.

Proof. Again set $Q = \Phi^{-1}(N)$ and define d by (1) and (2). We have $3Q \in \mathbf{Z}$. Notice first that Q cannot be an integer. For if $Q \in \mathbf{Z}$ then either Q = 0, in which case N = 0; or Q is positive, in which case d is finite and N is a negative rational number by (2); or Q is negative, in which case $d_{i+1} = d_i + 1$ for all large i and so (2) again converges to a negative rational number.

So Q is 1/3 away from an integer. Thus the d_i 's eventually fall into the pattern $d_{i+1} = d_i + 2$, say for $i \geq m$. Define a map c on d corresponding to the action of C on N. Notice that c acts on d by subtracting 1 from each element, if $d_0 > 0$; or by shifting d to the left, if $d_0 = 0$. So

$$c^{d_m+m}(\langle d_0,\ldots,d_{m-1},d_m,d_m+2,d_m+4,\ldots\rangle) = \langle 0,2,4,\ldots\rangle,$$

and
$$C^{d_m+m}(N)=1$$
. \square

Hence our conjecture about the 2-adic expansions (1) and (2) is equivalent to the 3N+1 conjecture. Does this throw any light on the latter? Our map Φ is exactly the inverse of Q_{∞} in [4]. (This can alternatively be derived from Lemma 4 in [5].) Our Theorem 1, that Φ conjugates H to C, is equivalent to Theorem 1 of [1]. What is new here is the expansion (2). It gives an explicit formula for $\Phi = Q_{\infty}^{-1}$. We have therefore answered affirmatively the final question in [4].

APPLICATIONS

Our result has several immediate applications. First, say $Q \in \mathbf{Q} \cap \mathbf{Z}_2$ is rational. Then either d is finite (say of length μ) or $d_{m+\lambda} = d_m + X$ for all sufficiently large m (say $m \geq \mu$) and some fixed λ and X. In the first case $3^{\mu}N$ is an integer. In the second case

$$-3^{\mu}(3^{\lambda}-2^X)N = (3^{\lambda}-2^X)(3^{\mu-1}2^{d_0}+\cdots+3^02^{d_{\mu-1}}) + (3^{\lambda-1}2^{d_{\mu}}+\cdots+3^02^{d_{\mu+\lambda-1}})$$

by (2). So in either case N is rational.

Corollary 1.
$$\Phi(\mathbf{Q} \cap \mathbf{Z}_2) \subseteq \mathbf{Q} \cap \mathbf{Z}_2$$
.

The "Periodicity Conjecture" from [4] states that $\Phi(\mathbf{Q} \cap \mathbf{Z}_2) = \mathbf{Q} \cap \mathbf{Z}_2$. We have shown half of this.

Second, in our development of Φ we noted that Φ is a bijection from \mathbb{Z}_2 onto itself, i.e., a permutation of \mathbb{Z}_2 . In fact we see from (1) and (2) that Φ is a homeomorphism under the topology induced by the usual 2-adic metric (see [4, section 2.8]). So Theorem L of [4] follows immediately.

Third, from (1) and (2) we see that the function $Q_k(N) = \Phi^{-1}(N) \mod 2^k$ depends only on the equivalence class $N \mod 2^k$. This is the first half of Theorem B from [4]. The induced function \overline{Q}_k on equivalence classes is a permutation because Φ is. By induction the cycles of \overline{Q}_k are of length dividing 2^k . Indeed, any cycle of \overline{Q}_k of length r gives rise to either one cycle of \overline{Q}_{k+1} of length 2^r or two cycles of \overline{Q}_{k+1} of length r. This is the second half of Theorem B from [4].

Finally, we give a short proof of the following theorem of Müller [5]:

Corollary 2. Φ is nowhere differentiable.

Proof. If d is infinite then for any $k \geq 0$

$$\frac{\Phi(Q) - \Phi(Q - 2^{d_k})}{2^{d_k}} \equiv (-1)^k \pmod{4}$$

by routine computation from (2). So as $k \to \infty$ the difference ratio does not converge. If d is finite, say of length m, then for $e + f > e > d_{m-1}$

$$\frac{\Phi(Q) - \Phi(Q + 2^e + 2^{e+f})}{2^e + 2^{e+f}} = \frac{1}{3^{m+2}} \frac{3 + 2^f}{1 + 2^f}$$

again by routine computation; and the latter quantity is different mod 8 for f=1,2. So as $e\to\infty$ the difference ratio does not converge. Hence both Φ and its inverse are nowhere differentiable. \square

Note that our approach generalizes to the "AN+B problem" [2] [6]. In this generalization A and B are odd, and $N=\Phi_{A,B}(Q)=\sum (-B/A^{i+1})2^{d_i}$. This homeomorphism $\Phi_{A,B}$ conjugates H to $C_{A,B}$, where $C_{A,B}(N)$ equals N/2 for N even and AN+B for N odd.

ACKNOWLEDGMENTS

The author would like to thank Jeffrey C. Lagarias and an anonymous referee for their helpful suggestions.

References

- 1. Ethan Akin, 3x + 1, unpublished manuscript.
- 2. R. E. Crandall, On the 3x + 1 Problem, Math. Comp. **32** (1978), 1281-1292.
- 3. Donald E. Knuth, The Art of Computer Programming, volume 2: Seminumerical Algorithms, 2nd. ed., Addison-Wesley, Reading, Massachusetts, 1981.
- 4. Jeffrey C. Lagarias, The 3x + 1 Problem and Its Generalizations, Amer. Math. Monthly 92 (1985), 3-23.
- 5. Helmut Müller, Das 3n+1 Problem, Mitteilungen der Math. ges. Hamburg 12 (1991), 231-251.
- 6. Ray P. Steiner, On the Qx + 1 problem, Q odd, II, Fibonacci Quarterly 19 (1981), 293-296.
 - 5 Brewster Lane, Bellport, NY 11713