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A NON-ITERATIVE 2-ADIC STATEMENT
OF THE 3N +1 CONJECTURE
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ABSTRACT. Associated with the 3N + 1 problem is a permutation ® of the 2-adic
integers. The 3N+ 1 conjecture is equivalent to the conjecture that 3Q is an integer if
®(Q) is a positive integer. We state a new definition of ®. To wit: @ and N = ®(Q)
are linked by the equations @ = 2% + 291 4 ... and N = (—1/3)2% + (-1/9)291 +
(=1/27)2% + ... with0 < dp < d1 < ---. We list four applications of this definition.

DEFINITION AND CONJECTURE

We recall that the 2-adic integers Zs may be defined as binary expansions
which are allowed to extend infinitely far to the left [3, Ex. 4.1-31]: for instance,
1/3 = (...0101011)y € Z,. Fix odd 2-adic integers ug, u1,... € 1 + 2Zy. For any
increasing, finite or infinite, sequence 0 < dyp < d; < --- of nonnegative integers,
the sum Y u;2% converges to some 2-adic integer S. In fact this map from increas-
ing sequences to sums is one-to-one and onto all of Zs. We construct its inverse.
Given S € Zy we set dg to the first bit position in .S, d; to the first bit position in
S —up2%, and so on. If at any point § — ug2% — ... — u,2%" is zero, we stop, and
the sequence is finite.

As an example, the expansion

(1) Q:2d0+2d1+_,_

is a bijection between @ € Z; and increasing sequences d = (dp, ds, ... ). Finite se-
quences d correspond to nonnegative integers Q. (In particular the empty sequence
corresponds to @ = 0.) Similarly, the expansion
_ -1 do -1 dy -1 d2

(2) N=52% 4 oot 4 —oo% 4
is another bijection. Together (1) and (2) determine a bijection between all N € Z,
and all Q € Zy. We write N = ®(Q). For instance,

1 -1 -1 1

3 B(—)=d(2+22+20 )= —204 224 2ty ... =1
3) (-3) =@+ 27+ 20+ )= 5204 27+ 2+

by elementary geometric series manipulations. So 1 € ®((1/3)Z).

Conjecture. The set Z of positive integers is contained in ®((1/3)Z).
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CONNECTION WITH THE 3N + 1 PROBLEM

We define two functions H(Q) and C(N). If @ is even we set H(Q) = Q/2;
otherwise we set H(Q) = Q — 1. If N is even we set C(N) = N/2; otherwise we set
C(N)=3N +1.

Theorem 1. C(2(Q)) = ®(H(Q)).
Proof. We define d as in (1). If @ is even then dy > 0 (or d has length 0) and

C(®(Q)) = %12‘10*1 + %12‘11*1 4=l po2hil ) = 3(Q/2).

If Q is odd then dy = 0 and

-1 -1 -1 -1 -1
C(2(Q) =1+3(5 + ?2‘11 + ﬁ2‘12 c) = ?2‘11 + ?2‘12 4

= B(h 2% 4 ) = B(Q - 2%) = 8(Q - 1)

as desired. O

The 3N + 1 conjecture [4] states that, for any positive integer N € Z*, some
iterate C*(N) equals 1. This implies our conjecture:

Theorem 2. If C*(N) =1 then N € ®((1/3)Z).

Proof. Set Q = ®71(N). Now C*(®(Q)) = 1 so ®(H*(Q)) = 1 so H*(Q) =
@ 1(1) = —-1/3 € (1/3)Z. If H(z) € (1/3)Z then = € (1/3)Z, so by induction
Q € (1/3)Z as desired. O

The converse is also true: our conjecture implies the 3N + 1 conjecture.
Theorem 3. If N € Z+ and N € ®((1/3)Z) then C*(N) =1 for some k.

Proof. Again set @ = & !(N) and define d by (1) and (2). We have 3Q € Z.
Notice first that @ cannot be an integer. For if Q € Z then either @ = 0, in which
case N = 0; or Q) is positive, in which case d is finite and N is a negative rational
number by (2); or Q is negative, in which case d;1; = d; + 1 for all large 7 and so
(2) again converges to a negative rational number.

So @ is 1/3 away from an integer. Thus the d;’s eventually fall into the pattern
di+1 = d; + 2, say for ¢ > m. Define a map c on d corresponding to the action of C
on N. Notice that ¢ acts on d by subtracting 1 from each element, if dy > 0; or by
shifting d to the left, if dy = 0. So

At ((do,y .. dm—1, Ay dm + 2,dim +4,...)) = (0,2,4,...),

and C4m+t™(N)=1. O

Hence our conjecture about the 2-adic expansions (1) and (2) is equivalent to
the 3N + 1 conjecture. Does this throw any light on the latter? Our map  is
exactly the inverse of Q. in [4]. (This can alternatively be derived from Lemma
4 in [5].) Our Theorem 1, that ® conjugates H to C, is equivalent to Theorem
1 of [1]. What is new here is the expansion (2). It gives an explicit formula for
® = Q7 !. We have therefore answered affirmatively the final question in [4].
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APPLICATIONS

Our result has several immediate applications. First, say @ € QN Zs is rational.
Then either d is finite (say of length u) or dyqx = dp + X for all sufficiently large
m (say m > p) and some fixed XA and X. In the first case 3“N is an integer. In the
second case

—31(3* —2X )N = (3% —2X)(3#12d0 ... 1 309du-1) 4 (32— 12d ... 300duta1)

by (2). So in either case N is rational.
Corollary 1. $(QNZ;) C QN Zs,.

The “Periodicity Conjecture” from [4] states that ®(QNZ3) = QNZ,. We have
shown half of this.

Second, in our development of ® we noted that ® is a bijection from Zs onto itself,
i.e., a permutation of Z5. In fact we see from (1) and (2) that ® is a homeomorphism
under the topology induced by the usual 2-adic metric (see [4, section 2.8]). So
Theorem L of [4] follows immediately.

Third, from (1) and (2) we see that the function Qx(N) = @ !(N) mod 2*
depends only on the equivalence class N mod 2*. This is the first half of Theorem
B from [4]. The induced function Q,, on equivalence classes is a permutation because
® is. By induction the cycles of Q,, are of length dividing 2. Indeed, any cycle of
Q,, of length r gives rise to either one cycle of Q, 41 of length 2r or two cycles of
Q41 of length 7. This is the second half of Theorem B from [4].

Finally, we give a short proof of the following theorem of Miiller [5]:

Corollary 2. @ is nowhere differentiable.

Proof. If d is infinite then for any k£ > 0

— — dk
AA=HC=2) — ((1)F (moa 4)

by routine computation from (2). So as k — oo the difference ratio does not
converge. If d is finite, say of length m, then for e+ f > e > d,,_1

Q) -2@Q+2°+2H) 1 3+
2¢ 4 2e+f 3mt+21 4 2f

again by routine computation; and the latter quantity is different mod 8 for f =1, 2.
So as e — oo the difference ratio does not converge. Hence both & and its inverse
are nowhere differentiable. [

Note that our approach generalizes to the “AN + B problem” [2] [6]. In this
generalization A and B are odd, and N = ®,4 5(Q) = > (—B/A**1)2%. This
homeomorphism ®4 g conjugates H to Ca g, where C4 g(IN) equals N/2 for N
even and AN + B for N odd.
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