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SHARPER ABC-BASED BOUNDS

FOR CONGRUENT POLYNOMIALS

DANIEL J. BERNSTEIN

Abstract. Agrawal, Kayal, and Saxena recently introduced a new method
of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena
method depends on proven lower bounds for the size of the multiplicative
semigroup generated by several polynomials modulo another polynomial h.
Voloch pointed out an application of the Stothers-Mason ABC theorem in this
context: under mild assumptions, distinct polynomials A, B, C of degree at
most 1.2 deg h−0.2 deg rad ABC cannot all be congruent modulo h. This paper
presents two improvements in the combinatorial part of Voloch’s argument.
The first improvement moves the degree bound up to 2 deg h − deg rad ABC.
The second improvement generalizes to m ≥ 3 polynomials A1, . . . , Am of
degree at most ((3m − 5)/(3m− 7)) deg h − (6/(3m− 7)m) deg rad A1 · · ·Am.

1. Introduction

Fix a nonconstant univariate polynomial h over a field k. Assume that the
characteristic of k is at least 3 deg h−1. The main theorem of this paper, Theorem
2.3, states that if m ≥ 3 distinct polynomials A1, . . . , Am are all congruent modulo
h and coprime to h then

max{deg A1, . . . , deg Am} >
3m − 5

3m − 7
deg h −

6

(3m − 7)m
deg rad A1 · · ·Am.

As usual, rad X means the largest monic squarefree divisor of X, i.e., the product
of the monic irreducibles dividing X. If deg rad A1 · · ·Am < (m/3) deg h then this
bound is better than the obvious bound max{deg A1, . . . , deg Am} > deg h − 1.

For example, if distinct polynomials A, B, C are congruent modulo h and coprime
to h then max{deg A, deg B, deg C} > 2 deg h − deg rad ABC. No better bound is
possible in this level of generality: if h = x10 − 1, A = x20, B = x10, and C = 1
then rad ABC = rad x30 = x so 2 deg h − deg rad ABC = 19.

The proof relies on the Stothers-Mason ABC theorem. Analogous bounds in the
number-field case follow from the ABC conjecture.

Previous work. Voloch in [3] proved that max{deg A, deg B, deg C} > 1.2 deg h−
0.2 deg rad ABC. This paper improves Voloch’s result in two ways: first, it is
quantitatively stronger, in the interesting case that deg radABC < deg h; second,
it applies to larger values of m.
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Application. Consider the subgroup G of (k[x]/h)∗ generated by {x − s : s ∈ S},
where S ⊆ k and 0 /∈ h(S). The Agrawal-Kayal-Saxena primality-proving method
requires a lower bound on #G for groups G of this type, typically with #S = deg h.
The primality-proving method becomes faster as the lower bound on #G increases,
as discussed in [1, Section 7].

This paper shows that #G ≥ 1
m−1

(

b((3m−5)/(3m−7)) deg h−(6/(3m−7)m)#Sc+#S
#S

)

for

any m ≥ 3. Indeed, the binomial coefficient is the number of products of powers of
{x − s} in k[x] of degree at most b((3m − 5)/(3m − 7)) deg h − (6/(3m − 7)m)#Sc;
m distinct such products cannot all have the same image modulo h.

In particular, if #S = deg h, then #G ≥ 1
3

(

b2.1 deg hc
deg h

)

≈ 4.27689deg h. Compare

this to the bound #G ≥
(

2 deg h−1
deg h

)

≈ 4deg h obtained from a degree bound of

deg h − 1. Note that the improvement requires m > 3.
Different methods from [3] produce a lower bound around 5.828deg h, so the ABC-

based techniques in [3] and in this paper have not yet had an impact on the speed
of primality proving. However, I suspect that these techniques have not yet reached
their limits.

2. Proofs

Theorem 2.1. Let k be a field. Let h be a positive-degree element of the polynomial

ring k[x]. Assume that 1, 2, 3, . . . , 3 deg h − 2 are invertible in k. Let A, B, C be

distinct nonzero elements of k[x]. If gcd{A, B, C} = 1 and A ≡ B ≡ C (mod h)
then max{deg A, deg B, deg C} > 2 deg h − deg rad ABC.

Proof. Assume without loss of generality that deg A = max{deg A, deg B, deg C}.
The nonzero polynomial A−B is a multiple of h, so deg A ≥ deg(A−B) ≥ deg h > 0;
thus deg rad ABC > 0.

If deg A ≥ 2 deg h then deg A > 2 deg h − deg rad ABC; done.
Define U = (B−C)/h, V = (C−A)/h, and W = (A−B)/h. Then U 6= 0; V 6= 0;

W 6= 0; U, V, W each have degree at most deg A− deg h; and UA + V B + WC = 0.
Define D = gcd{UA, V B, WC}.

If deg D = deg UA then UA divides V B, WC; so A divides V WA, V WB, V WC;
so A divides gcd{V WA, V WB, V WC} = V W ; but V W 6= 0, so deg A ≤ deg V W ≤
2(deg A − deg h); so deg A ≥ 2 deg h; done.

Assume from now on that deg D < deg UA and that deg A ≤ 2 deg h − 1. Then
deg(UA/D) is between 1 and 2 deg A−deg h ≤ 3 deg h−2; so the derivative of UA/D
is nonzero. Also UA/D+V B/D+WC/D = 0, and gcd{UA/D, V B/D, WC/D} =
1. By Theorem 3.1 below, deg(UA/D) < deg rad((UA/D)(V B/D)(WC/D)).

The proof follows Voloch up to this point. Voloch next observes that D divides
gcd{UV WA, UV WB, UV WC} = UV W gcd{A, B, C} = UV W . I claim that more
is true: D rad((UA/D)(V B/D)(WC/D)) divides UV W rad ABC.

(In other words: If d = min{u + a, v + b, w + c} and min{a, b, c} = 0 then d +
[u + v + w + a + b + c > 3d] ≤ u + v + w + [a + b + c > 0]. Proof: Without loss
of generality assume a = 0. Then d ≤ u ≤ u + v + w. If d < u + v + w then
d + [· · · ] ≤ d + 1 ≤ u + v + w ≤ u + v + w + [· · · ] as claimed. If a + b + c > 0 then
d+[· · · ] ≤ u+v+w+1 = u+v+w+[· · · ] as claimed. Otherwise u+v+w+a+b+c =
d ≤ 3d so d + [u + v + w + a + b + c > 3d] = d ≤ u + v + w ≤ u + v + w + [· · · ] as
claimed.)
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Thus deg UA < deg(D rad((UA/D)(V B/D)(WC/D))) ≤ deg(UV W rad ABC).
Hence deg A < deg(V W rad ABC) ≤ 2(deg A−deg h)+deg rad ABC; i.e., deg A >
2 deg h − deg rad ABC as claimed. �

Theorem 2.2. Let k be a field. Let h be a positive-degree element of the polynomial

ring k[x]. Assume that 1, 2, 3, . . . , 3 deg h − 2 are invertible in k. Let A, B, C be

distinct nonzero elements of k[x]. If gcd{A, B, C} is coprime to h and A ≡ B ≡
C (modh) then

max{deg A, deg B, deg C}

> 2 deg h − deg rad A − deg rad B − deg rad C

+ deg rad gcd{A, B} + deg rad gcd{A, C} + deg rad gcd{B, C}.

Proof. Write G = gcd{A, B, C}. Then G is coprime to h, so A/G ≡ B/G ≡
C/G (modh). By Theorem 2.1,

max

{

deg
A

G
, deg

B

G
, deg

C

G

}

> 2 deg h − deg rad
ABC

GGG
≥ 2 deg h − deg rad ABC,

so max{deg A, deg B, deg C} ≥ 2 deg h + deg G − deg rad ABC. But deg G ≥
deg rad G = deg rad ABC−deg rad A−deg rad B−deg rad C +deg rad gcd{A, B}+
deg rad gcd{A, C} + deg rad gcd{B, C} by inclusion-exclusion. �

Theorem 2.3. Let k be a field. Let h be a positive-degree element of the polynomial

ring k[x]. Assume that 1, 2, 3, . . . , 3 deg h − 2 are invertible in k. Let S be a finite

subset of k[x] − {0}, with #S ≥ 3. If each element of S is coprime to h, and all

the elements of S are congruent modulo h, then

max{deg A : A ∈ S} >
3#S − 5

3#S − 7
deg h −

6

(3#S − 7)#S
deg rad

∏

A∈S

A.

For example, max{deg A : A ∈ S} > 1.4 deg h − 0.3 deg rad
∏

A∈S A if #S = 4,
and max{deg A : A ∈ S} > 1.25 deg h − 0.15 deg rad

∏

A∈S A if #S = 5.

Proof. Define d = max{deg A : A ∈ S} and e = deg rad
∏

A∈S A. By Theorem 2.2,

d > 2 deg h − deg rad A − deg rad B − deg rad C

+ deg rad gcd{A, B} + deg rad gcd{A, C} + deg rad gcd{B, C}

for any distinct A, B, C ∈ S. Average this inequality over all choices of A, B, C
to see that d > 2 deg h − 3 avgA deg rad A + 3 avgA6=B deg rad gcd{A, B}. On the

other hand, e ≥ #S avgA deg rad A −
(

#S
2

)

avgA6=B deg rad gcd{A, B} by inclusion-
exclusion, so

d +
3

#S
e > 2 deg h −

3#S − 9

2
avgA6=B deg rad gcd{A, B}.

Note that 3#S − 9 ≥ 0 since #S ≥ 3.
One can bound each term deg rad gcd{A, B} by the simple observation that

A/gcd{A, B} and B/gcd{A, B} are distinct congruent polynomials of degree at
most d − deg gcd{A, B}; thus d − deg gcd{A, B} ≥ deg h, so deg rad gcd{A, B} ≤
d − deg h. Hence

d +
3

#S
e > 2 deg h −

3#S − 9

2
(d − deg h);

i.e., d > ((3#S − 5)/(3#S − 7)) deg h − (6/(3#S − 7)#S)e. �
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3. Appendix: the ABC theorem

Theorem 3.1 is a typical statement of the Stothers-Mason ABC theorem, included
in this paper for completeness. The proof given here is due to Noah Snyder; see [2].

Theorem 3.1. Let k be a field. Let A, B, C be nonzero elements of the polynomial

ring k[x] with A + B + C = 0 and gcd{A, B, C} = 1. If deg A ≥ deg rad ABC then

A′ = 0.

In fact, A′ = B′ = C ′ = 0. As usual, X ′ means the derivative of X; the relevance
of derivatives is that X/rad X divides X ′.

Proof. Note that gcd{A, B} = gcd{A, B,−(A + B)} = gcd{A, B, C} = 1. By the
same argument, gcd{A, C} = 1 and gcd{B, C} = 1.

C/rad C divides both C and C ′, so it divides C ′B − CB′. Similarly, B/rad B
divides C ′B−CB′. Furthermore, C ′ = −(A′+B′), so C ′B−CB′ = −(A′+B′)B+
(A + B)B′ = AB′ − A′B; thus A/radA divides C ′B − CB′.

The ratios A/rad A, B/rad B, C/rad C are pairwise coprime, so their product
ABC/rad ABC divides C ′B − CB′. But by hypothesis deg(ABC/radABC) =
deg ABC − deg rad ABC ≥ deg BC > deg(C ′B − CB′); so C ′B − CB′ = 0; so
AB′ − A′B = 0; so A divides A′B; but A and B are coprime, so A divides A′; but
deg A > deg A′, so A′ = 0. �
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[3] José Felipe Voloch, On some subgroups of the multiplicative group of finite rings. Available

from http://www.ma.utexas.edu/users/voloch/preprint.html.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@cr.yp.to


