SHARPER ABC-BASED BOUNDS
FOR CONGRUENT POLYNOMIALS

DANIEL J. BERNSTEIN

ABSTRACT. Agrawal, Kayal, and Saxena recently introduced a new method
of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena
method depends on proven lower bounds for the size of the multiplicative
semigroup generated by several polynomials modulo another polynomial A.
Voloch pointed out an application of the Stothers-Mason ABC theorem in this
context: under mild assumptions, distinct polynomials A, B,C of degree at
most 1.2deg h—0.2 degrad ABC cannot all be congruent modulo h. This paper
presents two improvements in the combinatorial part of Voloch’s argument.
The first improvement moves the degree bound up to 2degh — degrad ABC.
The second improvement generalizes to m > 3 polynomials Aj,...,Am of
degree at most ((3m —5)/(3m — 7)) degh — (6/(3m — 7)m) degrad Ay - - - Aps.

Theorem 1. Let k be a field. Let h be a positive-degree element of the polynomial
ring k[z]. Assume that 1,2,3,...,3degh — 2 are invertible in k. Let A,B,C be
distinct nonzero elements of k[z]. If gcd{A,B,C} =1 and A = B = C (modh)
then max{deg A,deg B,deg C'} > 2degh — degrad ABC.

As usual, rad X means the largest monic squarefree divisor of X, i.e., the product
of the monic irreducibles dividing X. For example, say h = z'0 — 1, A = 220,
B =z'° and C = 1; then rad ABC =rad z?° = z, so 2degh — degrad ABC = 19.

When degrad ABC < degh, this theorem is an improvement over the bound
max{deg A,deg B,deg C} > 1.2degh — 0.2degrad ABC proved by Voloch in [2],
and an improvement over the obvious bound max{deg A, deg B,deg C} > degh.

See Theorem 3 for a generalization to m > 3 polynomials Ay, As,..., A, In
the number-field case, analogous bounds follow from the ABC conjecture.

Proof. Assume without loss of generality that deg A = max{deg A, deg B,deg C'}.
The nonzero polynomial A— B is a multiple of &, so deg A > deg(A—B) > deg h > 0;
thus degrad ABC > 0.

If deg A > 2degh then deg A > 2deg h — degrad ABC; done.

DefineU = (B—C)/h,V = (C—A)/h,and W = (A—B)/h. Then U # 0; V # 0;
W # 0; U, V,W each have degree at most deg A —degh; and UA+VB+WC = 0.
Define D = ged{UA,VB,WC}.

If deg D = deg U A then U A divides VB, W(; so A divides VWA, VW B, VWC;
so A divides gcd{VWA,VWB,VWC} =VW;but VW #£0,s0deg A < degVW <
2(deg A — degh); so deg A > 2 deg h; done.
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Assume from now on that deg D < degU A and that deg A < 2degh — 1. Then
deg(UA/D) is between 1 and 2 deg A—deg h < 3deg h—2; so the derivative of UA/D
is nonzero. Also UA/D+VB/D+WC/D =0, and gcd{UA/D,VB/D,WC/D} =
1. By Theorem 4 below, deg(UA/D) < degrad((UA/D)(VB/D)(WC/D)).

The proof follows Voloch up to this point. Voloch next observes that D divides
gcd{UVWA,UVWB,UVWC} =UVW ged{A, B,C} = UVW. I claim that more
is true: Drad((UA/D)(VB/D)(WC/D)) divides UVW rad ABC.

(In other words: If d = min{u + a,v + b, w + ¢} and min{a,b,c} = 0 then d +
u+tv+wt+a+b+c>3d <ut+v+w+[a+b+c > 0] Proof: Without loss
of generality assume ¢ = 0. Thend < u <u+v+w. If d < v+ v+ w then
d+[--]<d+1<u+v+w<ut+v+w+][--] as claimed. If a4+ b+ ¢ > 0 then
d+[--] Lutv+w+1l = u+v+w+][ - -] as claimed. Otherwise u+v+w+a+b+c =
d<3dsod+[ut+v+w+a+b+c>3d=d<ut+v+w<utv+w+][--]as
claimed.)

Thus degUA < deg(Drad((UA/D)(VB/D)(WC/D))) < deg(UVW rad ABC).
Hence deg A < deg(VW rad ABC) < 2(deg A—degh)+degrad ABC; i.e., deg A >
2degh — degrad ABC as claimed. O

Theorem 2. Let k be a field. Let h be a positive-degree element of the polynomial
ring k[z]. Assume that 1,2,3,...,3degh — 2 are invertible in k. Let A,B,C be
distinct nonzero elements of klz]. If gcd{A, B,C} is coprime to h and A = B =
C (mod h) then

max{deg A, deg B,deg C}
> 2degh — degrad A — degrad B — degrad C
+ degrad ged{ A, B} + degrad gcd{A4, C'} + degrad gcd{ B, C}.

Proof. Write G = gcd{A,B,C}. Then G is coprime to h, so A/G = B/G =
C/G (mod h). By Theorem 1,

A B C ABC

= = = _ it _
max{deg G,deg G,deg G} > 2degh — degrad GGG > 2deg h — degrad ABC,

so max{deg A,deg B,degC} > 2degh + degG — degrad ABC. But degG >
degrad G = degrad ABC —degrad A —degrad B — degrad C' +degrad gcd{A4, B} +
degrad gcd{A, C} + degrad ged{B, C'} by inclusion-exclusion. O

Theorem 3. Let k be a field. Let h be a positive-degree element of the polynomial
ring k[z]. Assume that 1,2,3,...,3degh — 2 are invertible in k. Let S be a finite
subset of k[z] — {0}, with #S > 3. If each element of S is coprime to h, and all
the elements of S are congruent modulo h, then

3#S 5 6
345 — 7 (35 — 7)#35 I8 radgsA'

For example, max{degA: A€ S} > l.4degh — 0.3degrad[[ 4.5 A4 if #S = 4,
and max{deg A: A € S} > 1.25degh — 0.15degrad [] ;¢ A if #S = 5.
Proof. Define d = max{degA: A € S} and e = degrad [[ ;.4 A. By Theorem 2,
d > 2degh — degrad A — degrad B — degrad C
+ degrad ged{ A4, B} + degrad gcd{A, C} + degrad gcd{B,C?}

max{degA: Ae S} > degh —
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for any distinct A, B,C € S. Average this inequality over all choices of A, B,C
to see that d > 2degh — 3avg, degrad A + 3avg, 5 degrad gcd{A4, B}. On the
other hand, e > #S avg 4, degrad A — (#25) avg 4. degrad gcd{A, B} by inclusion-
exclusion, so

3#S

$#5 -9 avg 4, p degrad gcd{ 4, B}.

d+ ——e > 2degh — 5

3
#S
Note that 3#S — 9 > 0 since #S > 3.

One can bound each term degradgcd{A, B} by the simple observation that
A/gcd{A, B} and B/gcd{A, B} are distinct congruent polynomials of degree at
most d — degged{ A4, B}; thus d — deggcd{A, B} > degh, so degrad gcd{4, B} <
d — deg h. Hence

d+ %e > 2degh — 3#ST_Q(d—degh);
ie,d> ((3#S —5)/(3#S — 7)) degh — (6/(3#S — 7)#S)e. O

Theorem 4. Let k be a field. Let A, B,C be nonzero elements of the polynomial
ring k[z] with A+ B+ C =0 and gcd{A,B,C} = 1. If deg A > degrad ABC then
A'=0.

In fact, A’ = B’ = C' = 0. As usual, X' means the derivative of X; the relevance
of derivatives is that X/rad X divides X’.

Theorem 4 is a typical statement of the Stothers-Mason ABC theorem, included
in this paper for completeness. The following proof is due to Noah Snyder; see [1].

Proof. Note that gcd{A, B} = gcd{A,B,—(A+ B)} = gcd{4,B,C} = 1. By the
same argument, gcd{A4,C} =1 and ged{B,C} = 1.

C/rad C divides both C and C’, so it divides C'B — CB’. Similarly, B/rad B
divides C'B— CB'. Furthermore, C' = —(A'+B’),so C'B-CB' = —(A'+B')B+
(A+ B)B' = AB' — A'B; thus A/rad A divides C'B — CB'.

The ratios A/rad A, B/rad B,C/rad C are pairwise coprime, so their product
ABC//rad ABC divides C'B — CB’. But by hypothesis deg(ABC/rad ABC) =
deg ABC — degrad ABC > deg BC' > deg(C'B — CB'); so C'B — CB' = 0; so
AB’' — A’'B = 0; so A divides A'B; but A and B are coprime, so A divides A’; but
deg A > deg A',s0 A’ =0. O
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