SHARPER ABC-BASED BOUNDS FOR CONGRUENT POLYNOMIALS

DANIEL J. BERNSTEIN

ABSTRACT. Agrawal, Kayal, and Saxena recently introduced a new method of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena method depends on proven lower bounds for the size of the multiplicative semigroup generated by several polynomials modulo another polynomial h. Voloch pointed out an application of the Stothers-Mason ABC theorem in this context: under mild assumptions, distinct polynomials A, B, C of degree at most $1.2 \deg h - 0.2 \deg \operatorname{rad} ABC$ cannot all be congruent modulo h. This paper presents two improvements in the combinatorial part of Voloch's argument. The first improvement moves the degree bound up to $2 \deg h - \deg \operatorname{rad} ABC$. The second improvement generalizes to $m \geq 3$ polynomials A_1, \ldots, A_m of degree at most $((3m-5)/(3m-7)) \deg h - (6/(3m-7)m) \deg \operatorname{rad} A_1 \cdots A_m$.

Theorem 1. Let k be a field. Let h be a positive-degree element of the polynomial ring k[x]. Assume that $1, 2, 3, \ldots, 3 \deg h - 2$ are invertible in k. Let A, B, C be distinct nonzero elements of k[x]. If $\gcd\{A, B, C\} = 1$ and $A \equiv B \equiv C \pmod{h}$ then $\max\{\deg A, \deg B, \deg C\} > 2 \deg h - \deg \operatorname{rad} ABC$.

As usual, rad X means the largest monic squarefree divisor of X, i.e., the product of the monic irreducibles dividing X. For example, say $h=x^{10}-1$, $A=x^{20}$, $B=x^{10}$, and C=1; then rad $ABC=\operatorname{rad} x^{30}=x$, so $2 \operatorname{deg} h - \operatorname{deg} \operatorname{rad} ABC=19$.

When $\deg \operatorname{rad} ABC < \deg h$, this theorem is an improvement over the bound $\max\{\deg A, \deg B, \deg C\} > 1.2 \deg h - 0.2 \deg \operatorname{rad} ABC$ proved by Voloch in [2], and an improvement over the obvious bound $\max\{\deg A, \deg B, \deg C\} \geq \deg h$.

See Theorem 3 for a generalization to $m \geq 3$ polynomials A_1, A_2, \ldots, A_m . In the number-field case, analogous bounds follow from the ABC conjecture.

Proof. Assume without loss of generality that $\deg A = \max\{\deg A, \deg B, \deg C\}$. The nonzero polynomial A-B is a multiple of h, so $\deg A \ge \deg(A-B) \ge \deg h > 0$; thus $\deg \operatorname{rad} ABC > 0$.

If deg $A \ge 2 \deg h$ then deg $A > 2 \deg h - \deg \operatorname{rad} ABC$; done.

Define U = (B-C)/h, V = (C-A)/h, and W = (A-B)/h. Then $U \neq 0$; $V \neq 0$; $W \neq 0$; U, V, W each have degree at most deg A – deg h; and UA + VB + WC = 0. Define $D = \gcd\{UA, VB, WC\}$.

If deg $D = \deg UA$ then UA divides VB, WC; so A divides VWA, VWB, VWC; so A divides $\gcd\{VWA, VWB, VWC\} = VW$; but $VW \neq 0$, so $\deg A \leq \deg VW \leq 2(\deg A - \deg h)$; so $\deg A \geq 2 \deg h$; done.

 $Date {:}\ 20030314.$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11C08.

The author was supported by the National Science Foundation under grant DMS-0140542, and by the Alfred P. Sloan Foundation. He used the libraries at the Mathematical Sciences Research Institute and the University of California at Berkeley.

Assume from now on that $\deg D < \deg UA$ and that $\deg A \le 2 \deg h - 1$. Then $\deg(UA/D)$ is between 1 and $2 \deg A - \deg h \le 3 \deg h - 2$; so the derivative of UA/D is nonzero. Also UA/D + VB/D + WC/D = 0, and $\gcd\{UA/D, VB/D, WC/D\} = 1$. By Theorem 4 below, $\deg(UA/D) < \deg \operatorname{rad}(UA/D)(VB/D)(WC/D)$.

The proof follows Voloch up to this point. Voloch next observes that D divides $\gcd\{UVWA, UVWB, UVWC\} = UVW\gcd\{A, B, C\} = UVW$. I claim that more is true: $D\operatorname{rad}((UA/D)(VB/D)(WC/D))$ divides $UVW\operatorname{rad}ABC$.

(In other words: If $d=\min\{u+a,v+b,w+c\}$ and $\min\{a,b,c\}=0$ then $d+[u+v+w+a+b+c>3d] \le u+v+w+[a+b+c>0]$. Proof: Without loss of generality assume a=0. Then $d\le u\le u+v+w$. If d< u+v+w then $d+[\cdots]\le d+1\le u+v+w\le u+v+w+[\cdots]$ as claimed. If a+b+c>0 then $d+[\cdots]\le u+v+w+1=u+v+w+[\cdots]$ as claimed. Otherwise $u+v+w+a+b+c=d\le 3d$ so $d+[u+v+w+a+b+c>3d]=d\le u+v+w\le u+v+w+[\cdots]$ as claimed.)

Thus $\deg UA < \deg(D\operatorname{rad}((UA/D)(VB/D)(WC/D))) \leq \deg(UVW\operatorname{rad}ABC)$. Hence $\deg A < \deg(VW\operatorname{rad}ABC) \leq 2(\deg A - \deg h) + \deg\operatorname{rad}ABC$; i.e., $\deg A > 2\deg h - \deg radABC$ as claimed.

Theorem 2. Let k be a field. Let h be a positive-degree element of the polynomial ring k[x]. Assume that $1, 2, 3, \ldots, 3 \deg h - 2$ are invertible in k. Let A, B, C be distinct nonzero elements of k[x]. If $\gcd\{A, B, C\}$ is coprime to h and $A \equiv B \equiv C \pmod{h}$ then

 $\max\{\deg A, \deg B, \deg C\}$

 $> 2 \deg h - \deg \operatorname{rad} A - \deg \operatorname{rad} B - \deg \operatorname{rad} C$

 $+\,\deg\operatorname{rad}\gcd\{A,B\}+\deg\operatorname{rad}\gcd\{A,C\}+\deg\operatorname{rad}\gcd\{B,C\}.$

Proof. Write $G = \gcd\{A, B, C\}$. Then G is coprime to h, so $A/G \equiv B/G \equiv C/G \pmod{h}$. By Theorem 1,

$$\max\left\{\deg\frac{A}{G}, \deg\frac{B}{G}, \deg\frac{C}{G}\right\} > 2\deg h - \deg \operatorname{rad}\frac{ABC}{GGG} \geq 2\deg h - \deg \operatorname{rad}ABC,$$

so $\max\{\deg A, \deg B, \deg C\} \geq 2 \deg h + \deg G - \deg \operatorname{rad} ABC$. But $\deg G \geq \deg \operatorname{rad} G = \deg \operatorname{rad} ABC - \deg \operatorname{rad} A - \deg \operatorname{rad} B - \deg \operatorname{rad} C + \deg \operatorname{rad} \gcd\{A, B\} + \deg \operatorname{rad} \gcd\{A, C\} + \deg \operatorname{rad} \gcd\{B, C\}$ by inclusion-exclusion. \square

Theorem 3. Let k be a field. Let h be a positive-degree element of the polynomial ring k[x]. Assume that $1, 2, 3, \ldots, 3 \deg h - 2$ are invertible in k. Let S be a finite subset of $k[x] - \{0\}$, with $\#S \geq 3$. If each element of S is coprime to h, and all the elements of S are congruent modulo h, then

$$\max\{\deg A: A \in S\} > \frac{3\#S - 5}{3\#S - 7}\deg h - \frac{6}{(3\#S - 7)\#S}\deg \operatorname{rad}\prod_{A \in S}A.$$

For example, $\max\{\deg A:A\in S\}>1.4\deg h-0.3\deg \operatorname{rad}\prod_{A\in S}A$ if #S=4, and $\max\{\deg A:A\in S\}>1.25\deg h-0.15\deg \operatorname{rad}\prod_{A\in S}A$ if #S=5.

Proof. Define $d = \max\{\deg A : A \in S\}$ and $e = \deg \operatorname{rad} \prod_{A \in S} A$. By Theorem 2,

$$d > 2 \deg h - \deg \operatorname{rad} A - \deg \operatorname{rad} B - \deg \operatorname{rad} C$$

 $+ \operatorname{deg} \operatorname{rad} \operatorname{gcd} \{A, B\} + \operatorname{deg} \operatorname{rad} \operatorname{gcd} \{A, C\} + \operatorname{deg} \operatorname{rad} \operatorname{gcd} \{B, C\}$

for any distinct $A,B,C\in S$. Average this inequality over all choices of A,B,C to see that $d>2\deg h-3\operatorname{avg}_A\deg\operatorname{rad} A+3\operatorname{avg}_{A\neq B}\deg\operatorname{rad}\gcd\{A,B\}$. On the other hand, $e\geq \#S\operatorname{avg}_A\deg\operatorname{rad} A-\binom{\#S}{2}\operatorname{avg}_{A\neq B}\deg\operatorname{rad}\gcd\{A,B\}$ by inclusion-exclusion, so

$$d+\frac{3}{\#S}e>2\deg h-\frac{3\#S-9}{2}\operatorname{avg}_{A\neq B}\operatorname{deg}\operatorname{rad}\gcd\{A,B\}.$$

Note that $3\#S - 9 \ge 0$ since $\#S \ge 3$.

One can bound each term $\deg \operatorname{rad} \gcd\{A,B\}$ by the simple observation that $A/\gcd\{A,B\}$ and $B/\gcd\{A,B\}$ are distinct congruent polynomials of degree at most $d-\deg \gcd\{A,B\}$; thus $d-\deg \gcd\{A,B\} \geq \deg h$, so $\deg \operatorname{rad} \gcd\{A,B\} \leq d-\deg h$. Hence

$$d + \frac{3}{\#S}e > 2\deg h - \frac{3\#S - 9}{2}(d - \deg h);$$

i.e.,
$$d > ((3\#S - 5)/(3\#S - 7)) \deg h - (6/(3\#S - 7)\#S)e$$
.

Theorem 4. Let k be a field. Let A, B, C be nonzero elements of the polynomial ring k[x] with A + B + C = 0 and $gcd\{A, B, C\} = 1$. If $deg A \ge deg rad ABC$ then A' = 0.

In fact, A' = B' = C' = 0. As usual, X' means the derivative of X; the relevance of derivatives is that X/rad X divides X'.

Theorem 4 is a typical statement of the Stothers-Mason ABC theorem, included in this paper for completeness. The following proof is due to Noah Snyder; see [1].

Proof. Note that $gcd\{A, B\} = gcd\{A, B, -(A+B)\} = gcd\{A, B, C\} = 1$. By the same argument, $gcd\{A, C\} = 1$ and $gcd\{B, C\} = 1$.

C/rad C divides both C and C', so it divides C'B - CB'. Similarly, B/rad B divides C'B - CB'. Furthermore, C' = -(A' + B'), so C'B - CB' = -(A' + B')B + (A + B)B' = AB' - A'B; thus A/rad A divides C'B - CB'.

References

- Noah Snyder, An alternate proof of Mason's theorem, Elemente der Mathematik 55 (2000), 93-94. ISSN 0013-6018. MR 2001g:11033.
- [2] José Felipe Voloch, On some subgroups of the multiplicative group of finite rings (2002). Available from http://www.ma.utexas.edu/users/voloch/preprint.html.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045

E-mail address: djb@cr.yp.to