Draft. Aimed at Mathematics of Computation.

DOUBLY FOCUSED ENUMERATION OF
LOCALLY SQUARE POLYNOMIAL VALUES

DANIEL J. BERNSTEIN

ABSTRACT. Let f be an irreducible polynomial. Which of the values f(c+ 1),
fle+2),...,f(c+ H) are locally square at all small primes? This paper
presents an algorithm that answers this question in time H/M 2+0(1) for an
average small ¢ as H — co, where M = H1/1982108 H Ip contrast, the usual
method takes time H/M1+"(1). This paper also presents the results of two
computations: an enumeration of locally square integers up to 24-264, and an
enumeration of locally square values of 3 4 y7 for small z and y.

1. INTRODUCTION

This paper reports two record-setting computations. The first computation
showed that every non-square positive integer below 24264 is locally non-square at
some prime in {2, 3,...,283}. The second computation, which has not been started
as of this draft, will enumerate all locally square values of 2% + y” for roughly 1020
small pairs (z,y).

Section 2 explains doubly focused enumeration, a technique used in both of these
computations. Section 3 discusses the asymptotic speed of enumeration of locally
square polynomial values. Section 4 discusses the 283 computation; the reader may
wish to skip to Section 4 as an alternate introduction to this paper. Section 5
discusses the z3 + 37 computation.

2. DOUBLY FOCUSED ENUMERATION

Consider the problem of finding all integers z € [1, H] such that z mod m; € S;
and £ mod my € Sy. Here H is a positive integer; m; and mg are coprime positive
integers; S; is a subset of Z/m; and Sy is a subset of Z/ms.

This section discusses three methods to solve this problem. The methods do not
have standard names; I call them “unfocused enumeration,” “focused enumeration,”
and “doubly focused enumeration.” In most situations, focused enumeration is
asymptotically faster than unfocused enumeration, and doubly focused enumeration
is asymptotically faster than focused enumeration.

The reader should imagine the moduli m; and mo as each being a few digits
smaller than H, and the sizes #51 and #S55 as each being a few digits smaller than
mj and ms. A typical application has m; &~ ma &~ H/2%0 and #5; ~ #Ss ~ H/2%°,
so H(#S1/m1)(#S2/m2) ~ H/2?°. In many situations, one can prove that the
number of outputs is approximately H(#S1/m1)(#S2/mz).

Date: 20011231.
1991 Mathematics Subject Classification. Primary 11Y16.

1

2 DANIEL J. BERNSTEIN

Unfocused enumeration. The first method is to consider the possibilities x = 1,
x = 2, z = 3, and so on, checking for each z in turn whether z mod m; € S; and
z mod mqy € Ss.

The sets S; and Sy could be represented in the obvious way as circular arrays
of m; and mgo bits respectively. There is very little work for each new z: check
the next bit in each array, and record z on the rare occasions that both bits are 1.
Common general-purpose computers can check 32 or 64 values of x simultaneously.

In most applications, it is easy to generate bits of S; and S; on the fly, using far
fewer than m; + my bits of memory.

Focused enumeration. The second method is to generate, for each r € Sy, the
arithmetic progression of z € [1, H] such that £ mod m; = r, and then check for
each x successively whether £ mod mo € S5.

The advantage of focused enumeration over unfocused enumeration is that the
number of operations drops from H to about H(#5S1/m1)++#51. The disadvantage
is that S3 is no longer checked sequentially.

Doubly focused enumeration. The third method uses the following special case
of the explicit Chinese remainder theorem: every integer z € [1, H] may be written
as a difference between a reasonably small multiple of m; and a reasonably small
multiple of my. More precisely: may be written in the form a; — ay, where a; is a
multiple of m; in [mq, H+ (m1 —1)m2] and a2 is a multiple of mg in [0, (m1 —1)ma].
Notice that £ mod m; € S; if and only if —a; mod m; € S1, and £ mod my € S5 if
and only if a; mod mg € Ss.

Here is the algorithm. Enumerate, in increasing order, the multiples a1 of m;
in [my, H + (m1 — 1)mg] such that a1 mod mq € S2. Simultaneously enumerate, in
increasing order, the multiples as of m2 in [0, (m1 —1)ms] such that —az mod m; €
S1. Merge these two lists to see all differences a; — a2 in [1, H].

The advantage of doubly focused enumeration over focused enumeration is that
the number of operations drops from about H(#S1/m1) + #5S1 to, typically, about
H(#S1/m1)(#S2/m2) + #S51 + #S2. The disadvantage is that each operation is
fairly complicated: for example, a multidigit comparison.

Doubly focused enumeration is so simple that it must have been written down
before. However, I have not been able to locate it in the literature, and it is certainly
not widely known in the context of the applications discussed later in this paper.

3. LOCALLY SQUARE POLYNOMIAL VALUES

This section reviews the concept of a local square, discusses the general problem
of enumerating locally square values of an irreducible polynomial f, and discusses
the asymptotic speed of doubly focused enumeration of locally square values of f.

Locally square integers. An integer is locally square at a prime p if it is a
square in the p-adic field Q,,.

An integer is locally square at 2 if and only if it is of the form 22¢f where f is
an odd square modulo 8§, i.e., f mod 8 = 1.

An integer is locally square at an odd prime p if and only if it is of the form p2° f
where f is a nonzero square modulo p, i.e., f®~1/2 mod p = 1.

DOUBLY FOCUSED ENUMERATION OF LOCALLY SQUARE POLYNOMIAL VALUES 3

Locally square polynomial values. Consider the problem of finding all integers
x € [1, H| such that f(c+ z) is locally square at all primes p < 2log H. Here H is a
positive integer, c is an integer, and f is an irreducible polynomial in one variable
over Z.

The statement of this problem may seem overly complicated. Why not absorb
c into f? The answer is that one can prove a realistic asymptotic upper bound on
the average number of solutions z if f is fixed, ¢ varies over an interval of length
approximately H?, and H — oo.

Fix f. Theorem 3.1 below implies that there is some « such that, if p is prime
and r mod p is uniformly distributed, the probability that f(r) is a square modulo
pis at most (1+a/,/p)/2. Theorem 3.1 is a standard application of Weil’s theorem.

The product of these probabilities over all primes p < 2log H is at most M ~2+°(1)
where M = 2(log H)/loglog H — fr1/lglog H [pdeed, the number of primes p < 2log H
isin (14 o(1))(2log H)/log(2log H) = (2 + 0(1)) 1g M, so the product of 1/2 over
all primes p < 2log H is in 1/M?*°(). The product of 1 + a/,/p over all primes
p < 2log H is in exp(O(+/Tog H)), hence in M°(),

Therefore, if r is a uniform random element of an interval of length [[p ~ H?,
there is at most a 1/M?2*+°(1) chance that f(r) is a square modulo all p < 2log H,
hence at most a 1/M?*°(1) chance that f(r) is locally square at all p < 2log H.

I do not know whether a similar result is true for intervals of length only H.

Theorem 3.1. Let d be a positive integer. Let f be an irreducible polynomial of
degree d over Z. Let p be an odd prime number that does not divide the leading
coefficient of f and does not divide the discriminant of f. Then there are at most
(p+ (d—1)\/p+d)/2 elements r of Z/p such that f(r) is a square in Z/p.

Proof. Define x : Z/p — {—1,0,1} as the Legendre symbol modulo p. Define
X;={re€Z/p: x(f(r)) =i}. Define a as the leading coefficient of f. Define g as
the polynomial a=! f over the field Z/p.

Check the conditions of Weil’s theorem, as stated in [11, Theorem 5.41]: x is
a multiplicative character of Z/p of order 2; g is a monic polynomial over Z/p of
positive degree (namely, degree d); g is not a square, because otherwise p would
divide the discriminant of f; and g has at most d (in fact, exactly d) distinct roots
in its splitting field over Z/p.

Conclusion: X; — X_1 = > x(f(r)) = >, x(ag(r)) is at most (d — 1),/p. But
X1 + Xo + X_; is exactly p; and X, is exactly the number of roots of f in Z/p,
which is at most d. Add: 2X; +2Xo <p+(d—1)/p+d. O

Doubly focused enumeration of locally square polynomial values. Here is
an algorithm that, given H and c and f as above, finds all integers = € [1, H] such
that f(c+) is locally square at all primes p < 2log H.

Select coprime positive integers m; and mgy such that miymeo is a product of
some—usually most, but not quite all—primes p < 2log H. Define S; as the set
of r € Z/m; such that f(c+ r) is a square in Z/m4, and define S> as the set of
r € Z/mg such that f(c+r) is a square in Z/my. Enumerate all integers z € [1, H]
such that £ mod m; € S; and x mod my € S5, as explained in Section 2. Check,
for each such z, whether f(c+ z) is locally square at all primes p < 2log H.

In the asymptotic time analysis, assume as above that f is fixed, that c is a
uniform random element of an interval of length []p, and that H — co. Again
write M = H'/8l°8H Also assume that ¢ has at most M°() digits. The basic

4 DANIEL J. BERNSTEIN

operations in the algorithm—checking whether f(c+ z) is a square modulo various
primes, or is locally square at various primes—then take time M°(1) with negligible
memory.

The algorithm has three bottlenecks that should be balanced:

e Checking whether f(c + z) is locally square at all primes p < 2log H, for
each = € [1, H| such that z mod m; € S; and mod my € Sy. There are
at most H/M?+°() candidates z for an average c, as explained above, if
mims has (2+ o(1))(log H)/loglog H prime divisors.

e Checking whether a; mod my is in S3, for each multiple a; of m; between
my and H + (mq — 1)my. There are at most H/M?2+°(!) multiples to check
if my is at most H/M?+°(1) and m, is at least M2+e(1),

e Checking whether —as; mod m; is in S;, for each multiple as of m, between
0 and (m; — 1)my. There are at most H/M?*°(1) multiples to check if m;
is at most H/M?**+°(),

One can select m; and mgo to satisfy all the asymptotic conditions; see Theorem
3.2 below. The algorithm then takes time H/M 2+o(1) for an average c. In contrast,
focused enumeration takes time H/M+o(),

Theorem 3.2. Let H be a positive integer. Define uw = log H and M = exp(u/lgu).
Assume that u > 15. Let k be an integer with k < (1 — 2/lgu)u/log2u < k + 2.
Define my as the product of the first k prime numbers, and define mo as the product
of the next k prime numbers. Then there are (2 4+ o(1))u/logu prime divisors of
mimsy; both my and my are between M>*+°(D) gnd H/M?; and all prime divisors of
mims are smaller than 2u.

Why not simply define k¥ = |[(1 — 2/lgu)u/log2u|? Because there is no proof
that this choice of k is easy to compute: (1 — 2/lgu)u/log2u might be extremely
close to an integer. The range k < (1—2/lgu)u/log2u < k+2 allows the logarithms
to be computed in low precision.

Proof. Apply one of the Rosser-Schoenfeld theorems from [15]: there are more than
2u/log 2u > 2k primes in [1, 2u], since 2u > 17.

The remaining estimates are easy: mims has 2k € (2 + o(1))u/logu prime
divisors; my is below (2u)* < exp((1 — 2/lgu)u) = H/M?; and m, /6 is a product
of (1+ o(1))u/logu = (2 + o(1)) log, M primes exceeding 4. O

Practical improvements. There are several ways to save time at the expense of
memory. These speedups do not affect the asymptotic formula H/M 2+o(1) but
they are useful in practice.

One can build, for each prime p, a table of r € Z/p such that f(c+r) is a square
in Z/p. One can combine these tables into larger tables for products of primes.

It is possible to choose m; and my as large as H/M'+°() if H/M?+°(1) bits
of memory are available. In fact, it is possible to choose m; and my as large as
H/M'*oW) if \/H /M**°(1) bits of memory are available; see [4].

4. EXAMPLE: LOCALLY SQUARE INTEGERS

Let = be a positive non-square integer in 1 + 8Z. What is the smallest odd
prime p such that z(P~1/2 mod p # 1? The answer dictates the speed of standard
deterministic algorithms for various problems: proving primality, for example, and
finding roots of polynomials modulo primes.

DOUBLY FOCUSED ENUMERATION OF LOCALLY SQUARE POLYNOMIAL VALUES 5

It is widely conjectured that p/logp is at most (1 + o(1))lg =, where lg = log,.
See, e.g., [7], [2], and [14]. In fact, no examples are known in which p/logp is larger
than Ig z.

I have verified that p < 283 for all < 24 - 264 ~ 4.4 - 10%°. Here are the cutoffs
for each p between 149 and 281 inclusive:

p<149 if z< 26250887023729
p<157 if z< 112434732901969
p<173 if z< 178936222537081
p<181 if z< 696161110209049
p<193 if z< 2854909648103881
p<197 if z< 6450045516630769

p<211 if < 11641399247947921
p<227 if z< 190621428905186449
p<229 if z< 196640248121928601
p<233 if z< 712624335095093521
p<239 if x< 1773855791877850321
p<241 if z< 2327687064124474441
p<251 if < 6384991873059836689
p <257 if < 8019204661305419761
p <263 if z < 10198100582046287689
p<277 if z< 69848288320900186969
p <281 if =z < 208936365799044975961
p<283 if z< 24 - 254 (not maximal)

This computation took ten days, about 1.2 - 10'® clock cycles, on a Pentium 4
running at 1406MHz.

A series of previous computations, initiated by Kraitchik in 1924 and continued
by Lehmer, Lehmer, Shanks, Patterson, Williams, Stephens, and Lukes, showed
with considerably more effort that p < 281 for all z up to about 7-10'%. See [8],
[9], [10], [16], [13, page 134], and [14].

My computation was a doubly focused enumeration, as explained in Section 2
and Section 3, of all small y such that 1 4 24y is a non-unit square modulo both
my =41-43-47-53-59-61-71-73 and mg =5-7-11-13-17-19-23-29-31-37-67.
There are about H /1386487 such values of y in [1, H].

Further speed improvements are possible. I could have used somewhat larger
moduli m; and meo, for example, especially if I had balanced the primes. But
there’s no point in doing that until I rewrite my program to go past 64 bits.

For comparison: The computation of Lukes, Patterson, and Williams in [14] was
a focused enumeration of all small y such that 1+ 24y is a non-unit square modulo
m1 =5-7-11-13. There are about H/27 such values of y in [1, H].

A note on terminology: pseudosquares. Lehmer in [9] defined, for each prime
g > 3, the corresponding “pseudo-square” L, as the smallest positive non-square
integer # € 1+ 8Z for which p > ¢. The same terminology is used in [17, page 522],
[13], and [14].

On the other hand, Lehmer, Lehmer, and Shanks in [10] defined a “pseudo-
square” for ¢ as any non-square integer x € 1 + 8Z for which p > ¢q. The same
terminology is used in [5]. The “Table of Pseudo-Squares” in [10, page 434] includes
one “least solution” column and one “least prime solution” column. A “prime

DANIEL J. BERNSTEIN

pseudo-square” in this terminology does not have a short name in the previous
terminology.

of

in

1

2

[13

(14
(15
(16

[17

“Pseudo-squares” have a completely different definition in [1] and [3]: a sequence
“pseudo-squares” is a sequence of integers in which the nth integer is close to n?
the usual metric.

5. EXAMPLE: LOCALLY SQUARE VALUES OF z3 4 y”

For each y, enumerate x. Results to be reported in the next draft.

REFERENCES

] A. O. L. Atkin, On pseudo-squares, Proceedings of the London Mathematical Society, Third
Series 14a (1965), 22—27. ISSN 0024-6115. MR 34 #2547.

| Eric Bach, Lorenz Huelsbergen, Statistical evidence for small generating sets, Mathematics
of Computation 61 (1993), 69-82. MR 93k:11089.

| R. Balasubramanian, D. S. Ramana, Atkin’s theorem on pseudo-squares, Institut Mathé-
matique, Publications, Nouvelle Série 63 (1998), 21-25. ISSN 0350-1302. MR 99e:11012.

| Daniel J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d), Mathematics of
Computation 70 (2001), 389—-394. Available from http://cr.yp.to/papers.html.

| Nathan D. Bronson, Duncan A. Buell, Congruential sieves on FPGA computers, in [6], 547—
551. MR 95k:11165.

| Walter Gautschi (editor), Mathematics of Computation 1943-1993: a half-century of com-
putational mathematics, American Mathematical Society, Providence, 1994. ISBN 0-8218-
0291-7. MR 95j:00014.

] Marshall Hall, Quadratic residues in factorization, Bulletin of the American Mathematical
Society 39 (1933), 758-763.

| Derrick H. Lehmer, The mechanical combination of linear forms, American Mathematical
Monthly 35 (1928), 114-121.

| Derrick H. Lehmer, A sieve problem on “pseudo-squares”, Mathematical Tables and Other
Aids to Computation 8 (1954), 241-242. MR 16,113e.

| Derrick H. Lehmer, Emma Lehmer, Daniel Shanks, Integer sequence having prescribed qua-
dratic character, Mathematics of Computation 24 (1970), 433-451. MR 42 #5889.

] Rudolf Lidl, Harald Niederreiter, Finite fields, 2nd edition; Encyclopedia of Mathematics
and its Applications, 20, Cambridge University Press, Cambridge, 1997. ISBN 0-521-39231—
4. MR 97i:11115.

] John H. Loxton (editor), Number theory and cryptography, London Mathematical Society

Lecture Note Series 154, Cambridge University Press, Cambridge, 1990. ISBN 0-521-39877—

0. MR 90m:11003.

Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Numerical sieving devices: their

history and some applications, Nieuw Archief voor Wiskunde Series 4 13 (1995), 113-139.

MR 96m:11082.

] Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Some results on pseudosquares, Math-
ematics of Computation 65 (1996), 361-372. MR 96e:11010.

] J. Barkley Rosser, Lowell Schoenfeld, Approzimate formulas for some functions of prime
numbers, Illinois Journal of Mathematics 6 (1962), 64-94. MR 25 #1139.

| A. J. Stephens, Hugh C. Williams, An open architecture number sieve, in [12], 38-75. MR 1
055 399.

] Hugh C. Williams, Jeffrey O. Shallit, Factoring integers before computers, in [6], 481-531.
MR 95m:11143.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), THE UNI-

VERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045

E-mail address: djb@cr.yp.to

