
Aimed at Math. Comp. I need to do some software verification first.

REMOVING REDUNDANCY IN

HIGH-PRECISION NEWTON ITERATION

DANIEL J. BERNSTEIN

Abstract. This paper presents new algorithms for several high-precision op-
erations in the power series ring C[[x]]. Compared to computing n coefficients
of a product in C[[x]], computing n coefficients of a reciprocal in C[[x]] takes
1.5+o(1) times longer; a quotient or logarithm, 2.16666 . . .+o(1) times longer;
a square root, 1.83333 . . .+o(1) times longer; an exponential, 2.83333 . . .+o(1)
times longer. Previous algorithms had worse constants. The same ideas apply
to high-precision computations in R, Q

p
, etc.

1. Introduction

Let f ∈ C[[x]] be a power series with constant coefficient 1. How can one
compute 1/f?

The standard answer is Newton’s method, which computes (1/f) mod x2n from
(1/f) mod xn with a few size-n polynomial multiplications: (1/f) mod x2n = g0 +
(1 − fg0)g0 mod x2n where g0 = (1/f) mod xn. One can compute g0 by the same
method recursively. One can use FFTs to carry out the polynomial multiplications
using O(n lg n) operations in R.

Similar comments apply to f1/2, log f , et al.
The point of this paper is that there are certain redundancies inside typical

FFT-based Newton iterations: known coefficients of products (Section 3), repeated
multiplicands (Section 4), sums of products (also Section 4), and something for
which I don’t have a catchy name (Section 5). This paper systematically eliminates
the redundancies to achieve various constant-factor speedups.

The bottom line is that one can compute

• (1/f) mod xn using (36 + o(1))n lg n operations in R;
• (g/f) mod xn using (52 + o(1))n lg n operations in R;
• ((1/f) mod xn, (g/f) mod xn) using (56 + o(1))n lg n operations in R;
• f1/2 mod xn using (44 + o(1))n lg n operations in R;
• (f1/2 mod xn, f−1/2 mod xn) using (60 + o(1))n lg n operations in R;
• log f mod xn using (52 + o(1))n lg n operations in R;
• exp f mod xn, when f has constant coefficient 0, using (68 + o(1))n lg n

operations in R; and
• (exp f mod xn, (1/ exp f) mod xn) using (84 + o(1))n lg n operations in R.

For comparison: Computing fg mod xn uses (24 + o(1))n lg n operations in R.

Date: 2004.03.09. Permanent ID of this document: def7f1e35fb654671c6f767b16b93d50.
2000 Mathematics Subject Classification. Primary 68W30; Secondary 65Y20.
The author was supported by the National Science Foundation under grants DMS–9600083,

DMS–9970409, and DMS–0140542.

1

2 DANIEL J. BERNSTEIN

Generalizations. Newton’s method is not limited to C[[x]]. For example, the
same formula g0 + (1 − fg0)g0 can be used

• to compute high-precision reciprocals of power series f in k[[x]] using very
few operations in k, where k is a finite field;

• to compute high-precision reciprocals of real numbers f using very few bit
operations;

• to compute high-precision reciprocals of p-adic numbers f using very few
bit operations;

and so on. The details of the algorithms for p-adic numbers rely on some easy
roundoff error analysis; see, e.g., [2, section 21]. The details of the algorithms for
real numbers rely on some not-so-easy roundoff error analysis; see, e.g., [2, section
8]. Some functions, such as f 7→ log f , require completely different methods for real
numbers; see, e.g., [5], [3, Sections 15–16], and [4].

In each setting, multiplication can be performed in essentially linear time; see,
e.g., [3, Sections 2–5]. Newton’s method then takes essentially linear time.

The techniques of this paper can be adapted to each setting. For example, the
same constant-factor speedups apply to division in each setting. I have focused on
C[[x]] in this paper because it is the simplest case.

Previous work. Shortly after it became widely known that one could multiply
integers in essentially linear time, Cook in [6, pages 77–86] presented an essentially-
linear-time algorithm for high-precision reciprocals in R. Cook also mentioned,
without giving details, that Newton’s method could be used to compute square
roots and other algebraic functions.

Sieveking in [11] published an essentially-linear-time algorithm for reciprocals
in C[[x]]. Kung in [9] pointed out that Sieveking’s algorithm was an example of
Newton’s method and was analogous to Cook’s algorithm. Brent in [5] stated
essentially-linear-time algorithms to compute square roots, logarithms, et al. in R

and in C[[x]].
There have been several attempts to squeeze constant factors out of the time

taken to compute reciprocals. The simplest Newton iteration for reciprocals is
4 + o(1) times slower than multiplication; see, e.g., [1, Section 4]. Brent in [5]
presented an algorithm achieving 3+o(1). Schönhage, Grotefeld, and Vetter in [10,
page 256] announced 2 + o(1) without giving details. This paper presents a messy
1.5 + o(1) algorithm (which I discovered in 1999 and announced in 2000) and a
clean 1.66666 . . . + o(1) algorithm (2002).

For quotients (and thus logarithms in the C[[x]] case), Brent’s algorithm achieved
4+o(1). Schönhage, Grotefeld, and Vetter announced 3+o(1) without giving details.
Karp and Markstein in [7] presented an idea for saving time but did not analyze its
speed. In 1998, after I published an early draft of this paper, Rob Harley told me
that he had achieved 2.625 + o(1) a few years earlier. This paper presents a messy
2.16666 . . .+ o(1) algorithm (1999) and a clean 2.33333 . . .+ o(1) algorithm (2002).

For square roots, the simplest Newton iteration achieves 7 + o(1); see, e.g., [1,
Section 4]. Brent’s algorithm achieved 4.5 + o(1). Paul Zimmermann achieved
3.5 + o(1) in unpublished work. This paper presents a clean 1.83333 . . . + o(1)
algorithm (2004; same bound achieved messily in 1999).

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION 3

For exponentials (in the C[[x]] case), Brent’s algorithm achieved 7.33333 . . . +
o(1). This paper presents a messy 2.83333 . . . + o(1) algorithm (1999) and a clean
3.33333 . . . + o(1) algorithm (2004).

2. Newton’s method

This section applies Newton’s method to reciprocals, quotients, square roots,
logarithms, and exponentials. The resulting algorithms have various redundancies
that will be removed in subsequent sections. The same ideas can also be applied to
other functions computed with Newton’s method.

Model of computation. A polynomial f0 + f1x+ f2x
2 + · · · ∈ C[x], known to be

of degree below n, is represented as a sequence of n coefficients (f0, f1, . . . , fn−1).
Each complex number c is represented as a pair (re c, im c) of real numbers. Thus
each polynomial is represented as a sequence of real numbers.

A power series f = f0 + f1x + f2x
2 + · · · ∈ C[[x]] is represented as a polynomial

f mod xn = f0 + f1x + · · · + fn−1x
n−1 approximating f to a specified precision n.

Operations on polynomials and power series thus boil down to operations on real
numbers. The only operations in R used in this paper are additions, subtractions,
and multiplications; I evaluate algorithm speed by counting these operations. For
example, a complex multiplication takes 6 operations in R.

Tools: polynomial multiplication. Given two polynomials u, v ∈ C[x] with
deg u < n and deg v < n, one can compute uv using (24 + o(1))n lg n operations in
R. This is the bottleneck in all the algorithms in this section. See [3, Section 2] for
the underlying FFT algorithms and [3, Section 4] for multiplication via the FFT.

In particular, say f, g ∈ C[[x]]. Given f mod xn and g mod xn, one can compute
fg mod xn = (f mod xn)(g mod xn) mod xn using (24 + o(1))n lg n operations in
R.

There are two different methods to achieve the constant 24: the “split-radix
FFT” and the “real-factor FFT.” Older articles on Newton’s method sometimes use
slower FFT algorithms. Perhaps faster FFT algorithms will be discovered someday.
One should, of course, substitute the best available FFTs into the algorithms in
this paper.

Reciprocal. Let f ∈ C[[x]] be a power series with constant coefficient 1, as in
Section 1. Define g = 1/f . Consider the problem of computing a high-precision
approximation to g given a high-precision approximation to f .

If g mod xn = g0 then g mod x2n = g0−(fg0−1)g0 mod x2n = g0−εg0 mod x2n

where ε = (fg0 − 1) mod x2n. The same formula holds with 2n − 1 in place of 2n;
but for ease of exposition I will focus on 2n and ignore 2n − 1.

Multiplying f mod x2n by g0 uses (48+ o(1))n lg n operations in R. Subtracting
1 is fast. Reducing modulo x2n to obtain ε = ((f mod x2n)g0 − 1) mod x2n is fast:
this is simply throwing away coefficients. Multiplying ε by g0 uses (48 + o(1))n lg n
operations in R. Reducing modulo x2n is fast. Subtracting from g0 to obtain
g mod x2n is fast.

The total effort is (96+o(1))n lg n operations in R to compute g mod x2n starting
from g mod xn. Therefore one can recursively compute g mod xn for any desired
n, starting from g mod x1 = 1, using (96 + o(1))n lg n operations in R.

4 DANIEL J. BERNSTEIN

Quotient. Let f ∈ C[[x]] be a power series with constant coefficient 1. Let h ∈

C[[x]] be a power series. Define g = 1/f and q = hg = h/f . Consider the problem of
computing a high-precision approximation to q given high-precision approximations
to f and h.

The obvious strategy to compute a quotient is as a reciprocal followed by a
product: first compute g = 1/f , then compute q = hg. This strategy takes (120 +
o(1))n lg n operations in R.

Karp and Markstein in [7] suggested a different strategy. Recall the algorithm for
computing g mod x2n from g0 = g mod xn: one has g mod x2n = g0(1−ε) mod x2n

where ε = (fg0 − 1) mod x2n. One can multiply h by 1− ε and then by g0, without
computing g0(1 − ε). This strategy also takes (120 + o(1))n lg n operations in R.

Subsequent sections of this paper will accelerate the second strategy slightly more
than the first strategy. On the other hand, the second strategy produces solely q,
while the first strategy also produces g, which is useful for further divisions by f .
The second strategy also has the temporary disadvantage of being patented.

Square root. Let h ∈ C[[x]] be a power series with constant coefficient 1. Define
f = h1/2 and g = 1/f = h−1/2. Consider the problem of computing high-precision
approximations to f and g given a high-precision approximation to h.

The reader may be interested solely in h1/2 and may wonder why h−1/2 is being
considered at the same time. Answer: Newton’s method for the equation f 2−h = 0
says that if f0 is a good approximation to f then f0 − (f2

0 − h)/2f0 is a better
approximation. The reciprocal 1/f0 is approximately h−1/2.

Write f0 = f mod xn, g0 = g mod xn, and δ = f2
0 − h mod x2n. Then f mod

x2n = f0 − δ/2f0 mod x2n = f0 − δg0/2 mod x2n.
Squaring f0 takes (24 + o(1))n lg n operations in R. Subtracting h mod x2n

to obtain δ is fast. Multiplying δ by g0 takes (48 + o(1))n lg n operations in R.
Reducing modulo x2n is fast. Multiplying by 1/2 and subtracting from f0, to obtain
f mod x2n, is fast. Computing g mod x2n then takes (96 + o(1))n lg n operations
in R.

The total effort is (168+o(1))n lg n operations in R to compute both f mod x2n

and g mod x2n starting from f mod xn and g mod xn. Therefore one can recursively
compute f mod xn and g mod xn, starting from f mod x1 = g mod x1 = 1, using
(168 + o(1))n lg n operations in R.

If g is not desired then one can skip the computation of g in the last step of the
recursion. One obtains f mod xn using (120 + o(1))n lg n operations in R.

Logarithm. Let f ∈ C[[x]] be a power series with constant coefficient 1. Define
g = log f . Consider the problem of computing a high-precision approximation to g
given a high-precision approximation to f .

Brent in [5, Section 13] suggested computing g from the formula D(g) = D(f)/f ,
where D(

∑

aix
i) =

∑

iaix
i. Starting from f mod xn one multiplies the ith coef-

ficient by i to compute D(f) mod xn; then divides by f , as above, to compute
D(g) mod xn; then multiplies the ith coefficient by 1/i (for i ≥ 1) to compute g.

The bottleneck here is the quotient, which uses (120 + o(1))n lg n operations in
R.

Exponential. Let h ∈ C[[x]] be a power series with constant coefficient 0. De-
fine f = exph and g = 1/f . Consider the problem of computing high-precision
approximations to f and g, given a high-precision approximation to h.

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION 5

Write f0 = f mod xn, g0 = g mod xn, δ = f0g0−1, and ε = (log f0)−h mod x2n.
Then f mod x2n = f0 − εf0 mod x2n and D(ε) ≡ (1 + δ)D(ε) ≡ (1 + δ)D(f0)/f0 −

(1 + δ)D(h) ≡ D(f0)g0 − D(h) − δD(h0) (mod x2n).
Multiplying f0 by g0 takes (24 + o(1))n lg n operations in R. Subtracting 1,

to obtain δ, is fast. Multiplying D(f0) by g0 takes (24 + o(1))n lg n operations in
R. Multiplying δ by D(h0) takes (48 + o(1))n lg n operations in R. Subtracting
to obtain D(f0)g0 − δD(h0) is fast. Reducing modulo x2n is fast. Subtracting
D(h) mod x2n, to obtain D(ε), is fast. Multiplying ε by f0 takes (48 + o(1))n lg n
operations in R. Subtracting from f0, and reducing modulo x2n to obtain f mod
x2n, is fast. Computing g mod x2n then takes (96 + o(1))n lg n operations in R.

The total effort is (240+o(1))n lg n operations in R to compute both f mod x2n

and g mod x2n starting from f mod xn and g mod xn. Therefore one can recursively
compute f mod xn and g mod xn, starting from f mod x1 = g mod x1 = 1, using
(240 + o(1))n lg n operations in R.

If g is not desired then, as before, one can skip the computation of g in the last
step of the recursion. One obtains f mod xn using (192 + o(1))n lg n operations in
R.

3. Known coefficients of products

Here is a common form of redundancy: an algorithm computes a polynomial
product uv when some top or bottom coefficients of uv are already known in other
ways. This section identifies and eliminates this form of redundancy in each of the
algorithms of Section 2.

The same form of redundancy also shows up outside the context of Newton’s
method. I should add references here.

Tools: polynomial multiplication modulo x2n − 1. Given two polynomials
u, v ∈ C[x] with deg u < 2n and deg v < 2n, one can compute uv mod x2n−1 using
(24 + o(1))n lg n operations in R, provided that n is ultrasmooth.

Here ultrasmooth means that n = 2km for an odd integer m ≥ 1 and an integer
k ≥ m2 − 1. For example, the integers 21000050, 21000051, 21000052, . . . , 21000099,
21000150, . . . are ultrasmooth. Observe that the ratios of successive ultrasmooth
integers converge to 1.

The algorithm to compute uv mod x2n − 1 is the same FFT-based algorithm
that was used in Section 2 to compute uv when deg u < n and deg v < n. This
section exploits the fact that the algorithm actually allows larger inputs u, v, and
multiplies them modulo x2n − 1.

(For readers familiar with FFTs: Say n = 2km where m is odd. One can compute
a size-2n FFT by combining a split-radix FFT with a brute-force size-m DFT. This
takes 8nk + O(mn) operations in R, and therefore (8 + o(1))n lg n operations in R

if n is ultrasmooth.)
The restriction to ultrasmooth integers n does not pose a problem. If n is not

ultrasmooth then one can find the smallest ultrasmooth integer n′ ≥ n and multiply
modulo x2n′

− 1. This uses (24 + o(1))n′ lg n′ operations in R, which is the same
as (24 + o(1))n lg n operations in R since n′ ∈ (1 + o(1))n.

There are two ways to achieve further 1 + o(1) speedups when n is not a power
of 2. First, one can reduce n′/n by expanding the set of ultrasmooth integers; this
requires more work in the multiplication algorithm. Second, one can allow moduli
other than x2n − 1; this allows some slightly faster multiplication algorithms. The

6 DANIEL J. BERNSTEIN

important property of the moduli x2n − 1, as the reader will see, is that one can
quickly divide by xn modulo x2n − 1.

How to exploit known coefficients. The point of this section is that, if uv is
known except for a stretch of 2n unknown coefficients, then one can compute uv
by computing uv mod x2n − 1.

Specifically, say one knows a polynomial w such that deg(uv−w) < x3n and uv ≡

w (mod xn). I claim that (uv−w)/xn is the same as (xn(uv−w)) mod x2n−1: both
sides are polynomials of degree below 2n, and they are congruent modulo x2n − 1.
Hence uv − w = xn((xn(uv − w)) mod x2n − 1). By computing uv mod x2n − 1,
subtracting w mod x2n − 1, multiplying by xn modulo x2n − 1 (which boils down
to swapping top and bottom coefficients), and multiplying the result by xn, one
obtains uv − w.

Similarly, if one knows a polynomial w such that deg(uv−w) < x2n and uv ≡ w
(mod xn), then one can compute uv − w by computing uv mod xn − 1.

Reciprocal. Consider again the problem of computing g = 1/f given f . Write
g0 = g mod xn and ε = ((f mod x2n)g0 − 1) mod x2n; recall that g mod x2n =
g0 − εg0 mod x2n.

The algorithm from Section 2 computed (f mod x2n)g0 as a generic product of
degree below 4n. But the top n coefficients of the product are known: deg g0 < n
so deg((f mod x2n)g0) < 3n. The bottom n coefficients of the product are also
known: ((f mod x2n)g0) mod xn = fg mod xn = 1. Hence it suffices to compute
(f mod x2n)g0 mod x2n − 1.

Similarly, computing εg0 boils down to computing εg0 mod x2n − 1.
The total effort drops by a factor of 2 + o(1), because the multiplications are

now half-size. This algorithm takes (48 + o(1))n lg n operations in R to compute
g mod x2n from g mod xn, or to compute g mod xn from scratch recursively.

Quotient or logarithm. Consider again the problem of computing q = h/f given
f and h. Define g, g0, ε as above.

The second strategy from Section 2 multiplied h by 1 − ε modulo x2n, and
then multiplied the result by g0 modulo x2n. Notice that h(1 − ε) = h − hε ≡

h − (h mod xn)ε (mod x2n). The product (h mod xn)ε can be computed modulo
x2n − 1: it has degree below 3n and its bottom n coefficients are known to be 0.
The final multiplication by g0 can be performed modulo x3n − 1: the product has
degree below 3n.

The initial computation of g0 takes (48 + o(1))n lg n operations in R. The
computation of ε takes (24 + o(1))n lg n operations in R. The multiplication by
h takes (24 + o(1))n lg n operations in R. The final multiplication by g0 takes
(36 + o(1))n lg n operations in R. The total effort is (132 + o(1))n lg n operations
in R to compute q mod x2n; i.e., (66 + o(1))n lg n operations in R to compute
q mod xn.

Square root. Consider again the problem of computing f = h1/2 and g = h−1/2

given h. Write f0 = f mod xn, g0 = g mod xn, and δ = f2
0 − h mod x2n. Recall

that f mod x2n = f0 − (1/2)δg0 mod x2n.
The square f2

0 can be computed modulo xn − 1: it has degree below 2n, and its
bottom n coefficients are known to match h mod xn. Similarly, the product δg0 can
be computed modulo x2n − 1. The total effort is (36 + o(1))n lg n operations in R

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION 7

to compute f mod x2n from f mod xn and g mod xn, and hence (84 + o(1))n lg n
operations in R to compute both f mod x2n and g mod x2n from f mod xn and
g mod xn.

Computing f mod xn and g mod xn from scratch takes (84 + o(1))n lg n opera-
tions in R. Computing just f mod xn takes (60 + o(1))n lg n operations in R. As
in the case of reciprocals, the total effort has dropped by a factor 2 + o(1), because
each multiplication is half the size it was before.

Exponential. Consider again the problem of computing f = exph and g = 1/f ,
given h.

Write f0 = f mod xn, g0 = g mod xn, h0 = h mod xn, δ = f0g0 − 1, and
ε = (log f0) − h mod x2n. Recall that f mod x2n = f0 − εf0 mod x2n and D(ε) =
D(f0)g0 − D(h) − δD(h0) mod x2n.

The product f0g0 can be computed modulo xn − 1: it has degree below 2n, and
it is congruent to 1 modulo xn.

The product D(f0)g0 can be computed modulo xn − 1: it has degree below 2n,
and it is congruent to D(h0) modulo xn.

The product δD(h0) can be computed modulo x2n − 1: it has degree below 3n,
and it is congruent to 0 modulo xn.

The product εf0 can be computed modulo x2n − 1: it has degree below 3n, and
it is congruent to 0 modulo xn.

The total effort is (72 + o(1))n lg n operations in R to compute f mod x2n from
f mod xn and g mod xn. and hence (120 + o(1))n lg n operations in R to compute
both f mod x2n and g mod x2n from f mod xn and g mod xn. Computing f mod
xn and g mod xn from scratch recursively takes (120 + o(1))n lg n operations in R.
Computing just f mod xn takes (96 + o(1))n lg n operations in R. The total effort
has once again dropped by a factor 2 + o(1).

4. Repeated multiplicands and sums of products

Here are two common forms of redundancy. First, an algorithm computes two
separate products uv and uw that share an input u. Second, an algorithm computes
a sum of separate products, such as tu + vw.

This section identifies and eliminates these forms of redundancy in each of the
algorithms of Section 3.

The same forms of redundancy also show up outside the context of Newton’s
method. I should add references here.

Tools: the FFT. This section relies on further knowledge of the structure of
FFT-based multiplication.

The size-2n FFT is a function F2n from C[x]/(x2n − 1) to C2n. This function
is a C-algebra morphism. In particular, it preserves addition, subtraction, and
multiplication: F2n(u ± v) = F2n(u) ± F2n(v), and F2n(uv) = F2n(u)F2n(v). Here
the addition, subtraction, and multiplication in C2n are componentwise operations
that take O(n) operations in R.

Computing F2n(u), given u mod x2n − 1, takes (8 + o(1))n lg n operations in
R when n is ultrasmooth. Computing u mod x2n − 1, given F2n(u), also takes
(8 + o(1))n lg n operations in R when n is ultrasmooth.

Furthermore, given F2n(u) and u mod x2n + 1, one can compute F4n(u) with
(8 + o(1))n lg n operations in R.

8 DANIEL J. BERNSTEIN

Section 3’s procedure for multiplication modulo x2n−1 is implemented as follows.
Starting from u, v, one computes F2n(u) and F2n(v); then multiplies in C2n to
obtain F2n(uv); then inverts F2n to obtain uv mod x2n − 1.

How to exploit repeated multiplicands at the same size: FFT caching.

There is no need to compute F2n(u) more than once.
For example, to compute u2 mod x2n − 1, one can compute F2n(u), then square

in C2n, then invert F2n. This takes only (16 + o(1))n lg n operations in R, rather
than (24 + o(1))n lg n operations in R.

Similarly, computing both uv mod x2n − 1 and uw mod x2n − 1 takes only (40+
o(1))n lg n operations in R. The intermediate result F2n(u) from the computation
of uv is saved and reused in the computation of uw.

How to exploit repeated multiplicands at double size: FFT doubling.

Rather than separately computing F2n(u) and F4n(u), one can compute F2n(u) and
then use it along with u mod x2n + 1 to compute F4n(u). I learned this speedup
from a recent preprint by Robert Kramer.

For example, in computing uv mod x2n − 1 and uw mod x4n − 1, one computes
both F2n(u) and F4n(u). Half of the time in computing F4n(u) can be eliminated.

How to exploit sums of products: FFT addition. Rather than inverting F2n

on several inputs and adding the results, one can add the results and then invert
F2n once.

For example, to compute tu+ vw mod x2n − 1, one can compute F2n(t)F2n(u)+
F2n(v)F2n(w) in C2n, and then invert F2n. This takes only (40 + o(1))n lg n oper-
ations in R, rather than (48 + o(1))n lg n operations in R,

Reciprocal. Consider again the problem of computing g = 1/f given f . Write
g0 = g mod xn. Recall that the algorithm from Section 3 multiplies f mod x2n by
g0 modulo x2n−1, and then multiplies a certain polynomial ε by g0 modulo x2n−1.

The intermediate result F2n(g0) can be saved and reused, eliminating (8 +
o(1))n lg n operations in R. The total effort is now (40 + o(1))n lg n operations
in R to compute g mod x2n from g mod xn, or to compute g mod xn from scratch
recursively.

Quotient or logarithm. Consider again the problem of computing q = h/f given
f and h.

Write g = 1/f . The first strategy to compute q mod x2n was to compute g mod
x2n and then multiply by h mod x2n. The multiplication by h mod x2n can take
advantage of the previous transform of g mod xn.

Define g0, g1, h0, h1 by g0 = g mod xn, g0 + g1x
n = g mod x2n, h0 = h mod xn,

and h0 + h1x
n = h mod x2n. Then q mod x2n = g0h0 + (g0h1 + g1h0)x

n mod x2n.
Computing g0 from scratch takes (40 + o(1))n lg n operations in R. Computing

g1—with F2n(g0) as an intermediate result—takes another (40 + o(1))n lg n opera-
tions in R. Computing F2n(g1), F2n(h0), and F2n(h1) takes another (24+o(1))n lg n
operations in R. Computing F2n(g0h0) and F2n(g0h1 + g1h0) takes o(1)n lg n
operations in R. Computing g0h0 and g0h1 + g1h0, and thus q mod x2n, takes
(16 + o(1))n lg n operations in R.

The total effort is (120 + o(1))n lg n operations in R to compute g mod x2n

and q mod x2n; i.e., (60 + o(1))n lg n operations in R to compute g mod xn and

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION 9

q mod xn. Note that F2n(g0) and F2n(g1) are now both cached, so dividing another
power series by f to precision n takes only (16 + o(1))n lg n operations.

The second strategy was to multiply h by 1− ε1x
n and then by g0, where ε1 was

a particular polynomial of degree below n. Both g0 and h0 are repeated here.
Define u1 = h1 − ε1h0 mod xn. Then h(1 − ε1x

n) ≡ h0 + u1x
n (mod x2n), so

q ≡ h(1 − ε1x
n)g0 ≡ h0g0 + u1g0x

n (mod x2n).
Computing g0 from scratch takes (40 + o(1))n lg n operations in R. Computing

F2n(g0) and ε1 takes (24 + o(1))n lg n operations in R. Computing F2n(h0) and
ε1h0, hence u1, takes (24 + o(1))n lg n operations in R. Computing h0g0 takes
(8+ o(1))n lg n operations in R. Computing u1g0 takes (16+ o(1))n lg n operations
in R.

The total effort is (112 + o(1))n lg n operations in R to compute q mod x2n; i.e.,
(56 + o(1))n lg n operations in R to compute q mod xn.

Square root. Consider again the problem of computing f = h1/2 and g = h−1/2

given h. Write f0 = f mod xn, g0 = g mod xn, and δ = f2
0 − h mod x2n. Recall

that f mod x2n = f0 − (1/2)δg0 mod x2n.
Assume that f0, g0, and Fn(f0) are already known. Computing f 2

0 mod xn − 1,
hence f2

0 , hence δ, takes (4 + o(1))n lg n operations in R. Computing F2n(g0)
takes (8 + o(1))n lg n operations in R. Computing F2n(δ) takes (8 + o(1))n lg n
operations in R. Computing δg0 mod x2n − 1, hence δg0, hence f mod x2n, takes
(8 + o(1))n lg n operations in R. Computing F2n(f mod x2n) takes (8 + o(1))n lg n
operations in R. Computing (f mod x2n)g0 mod x2n − 1, hence (f mod x2n)g0,
hence the aforementioned ε, takes (8 + o(1))n lg n operations in R. Computing
F2n(ε) takes (8 + o(1))n lg n operations in R. Computing εg0, hence g mod x2n,
takes (8 + o(1))n lg n operations in R.

The total effort is (60 + o(1))n lg n operations in R to compute f mod x2n,
g mod x2n, and F2n(f mod x2n) from f mod xn, g mod xn, and Fn(f mod xn).
Computing f mod xn and g mod xn from scratch recursively takes (60+o(1))n lg n
operations in R. Computing just f mod xn takes (44+ o(1))n lg n operations in R.

Exponential. Consider again the problem of computing f = exph and g = 1/f ,
given h.

Write f0 = f mod xn, g0 = g mod xn, h0 = h mod xn, δ = f0g0 − 1, and
ε = (log f0) − h mod x2n. Recall that f mod x2n = f0 − εf0 mod x2n and D(ε) =
D(f0)g0 − D(h) − δD(h0) mod x2n.

Assume that f0, g0, and Fn(f0) are already known. Computing Fn(g0) takes
(4 + o(1))n lg n operations in R. Computing f0g0 mod xn − 1, hence δ, takes (4 +
o(1))n lg n operations in R. Computing Fn(D(f0)) takes (4+o(1))n lg n operations
in R. Computing D(f0)g0 mod xn−1, hence D(f0)g0−D(h), takes (4+o(1))n lg n
operations in R. Computing F2n(g0), using Fn(g0), takes (4+o(1))n lg n operations
in R. Computing F2n(f0), using Fn(f0), takes (4 + o(1))n lg n operations in R.
Computing F2n(δ) takes (8 + o(1))n lg n operations in R. Computing F2n(D(h0))
takes (8 + o(1))n lg n operations in R. Computing δD(h0) mod x2n − 1, hence
δD(h0), hence D(ε), hence ε, takes (8 + o(1))n lg n operations in R. Computing
F2n(ε) takes (8 + o(1))n lg n operations in R. Computing εf0 mod x2n − 1, hence
εf0, hence f mod x2n, takes (8+o(1))n lgn operations in R. Computing F2n(f mod
x2n) and g mod x2n takes (32 + o(1))n lg n operations in R.

10 DANIEL J. BERNSTEIN

The total effort is (96 + o(1))n lg n operations in R to compute f mod x2n,
g mod x2n, and F2n(f mod x2n) from f mod xn, g mod xn, and Fn(f mod xn).
Computing f mod xn and g mod xn from scratch recursively takes (96+o(1))n lg n
operations in R. Computing just f mod xn takes (80+ o(1))n lg n operations in R.

5. Cross-iteration redundancy

This section explains how to squeeze a small amount of extra performance out
of some of the algorithms of Section 4, by considering several Newton steps simul-
taneously.

I’m not happy with the algorithms in this section. They have huge o(1)’s; they
are slower than the algorithms of Section 4 for any reasonable value of n. They’re
messy; I don’t have a simple explanation of how they produce better constants.
They don’t use the technique of Section 3, or FFT doubling from Section 4; I don’t
see how to achieve better constants by combining the techniques.

Reciprocal. Consider again the problem of computing g = 1/f given f . Write f
as f0 + f1x

n + f2x
2n + . . . , where each fi has degree below n. Similarly write g as

g0 + g1x
n + g2x

2n +
Let d be a positive integer. Assume that

g0, . . . , gd−1,

F2n(g0), . . . , F2n(gd−1),

F2n(f0), . . . , F2n(fd−1)

are already known.
Compute F2n(fd), . . . , F2n(f2d−1). This uses d(8 + o(1))n lg n operations in R.
Next compute fd−1g0+· · ·+f0gd−1, fdg0+· · ·+f1gd−1, . . . , f2d−1g0+· · ·+fdgd−1.

This computation uses (d + 1)(8 + o(1))n lg n operations in R for the inversions of
F2n. It also uses O(d2n) operations in R for O(d2) multiplications and additions
in C2n, but this is negligible if d ∈ o(lg n).

Next compute ε = (f(g mod xdn)− 1) mod x2dn by extracting the top dn coeffi-
cients of (fd−1g0 + · · ·+f0gd−1)x

(d−1)n +(fdg0 + · · ·+f1gd−1)x
dn + · · ·+(f2d−1g0 +

· · · + fdgd−1)x
(2d−1)n mod x2dn. This sum differs from ε by f0g0 + · · · + (fd−2g0 +

· · · + f0gd−2)x
(d−2)n, which is a polynomial of degree below dn.

Next write ε as εdx
dn + · · ·+ε2d−1x

(2d−1)n, and compute F2n(εi) for each i. This
uses d(8 + o(1))n lg n operations in R.

Next compute εdg0, εd+1g0 + εdg1, . . . , ε2d−1g0 + · · · + εdgd−1. This uses d(8 +
o(1))n lg n operations in R if d ∈ o(lg n).

Next compute g mod x2dn = (g mod xdn)−ε(g mod xdn) mod x2dn = g0+g1x
n+

· · · + gd−1x
(d−1)n − (εdg0)x

dn − (εd+1g0 + εdg1)x
(d+1)n − · · · − (ε2d−1g0 + · · · +

εdgd−1)x
(2d−1)n mod x2dn. This is fast.

Finally, compute F2n(gd), . . . , F2n(g2d−1). This uses d(8 + o(1))n lg n operations
in R.

The total effort to move from nd to 2nd is (5d + 1)(8 + o(1))n lg n operations in
R if d ∈ o(lg n). If d is allowed to grow slowly with n then this algorithm, applied
recursively, reaches n using (40+o(1))n lg n operations in R. Computing g mod xn

takes only (36+ o(1))n lg n operations in R, since F2n(gd), . . . , F2n(g2d−1) need not
be computed in the last iteration.

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION 11

Quotient or logarithm. As in Section 4, the first quotient strategy takes (20 +
o(1))n lg n operations in R after a reciprocal, and the second quotient strategy saves
(4 + o(1))n lg n operations by not computing the reciprocal.

Square root. My best algorithm along these lines uses (44+o(1))n lg n operations
in R; the much simpler algorithm of Section 4 also uses (44+o(1))n lg n operations
in R.

Exponential. Consider again the problem of computing f = exph and g = 1/f ,
given h. Write f as f0 + f1x

n + f2x
2n + . . . ; write g as g0 + g1x

n + g2x
2n + . . . ;

write h as h0 + h1x
n + h2x

2n +
Let d be a positive integer. Assume that

f0, . . . , fd−1,

g0, . . . , gd−1,

F2n(f0), . . . , F2n(fd−1),

F2n(g0), . . . , F2n(gd−1),

F2n(D(f0)), . . . , F2n

(

D(fd−1x
(d−1)n)

x(d−1)n

)

,

F2n(D(h0)), . . . , F2n

(

D(hd−1x
(d−1)n)

x(d−1)n

)

,

are already known.
Compute fd−1g0 + · · ·+ f0gd−1, fd−1g1 + · · ·+ f1gd−1, . . . , fd−1gd−1. This uses

d(8 + o(1))n lg n operations in R.
Next compute δ = (f mod xdn)(g mod xdn) − 1 by extracting the top dn co-

efficients of (fd−1g0 + · · · + f0gd−1)x
(d−1)n + (fd−1g1 + · · · + f1gd−1)x

dn + · · · +
(fd−1gd−1)x

(2d−2)n mod x2dn. This sum differs from δ by f0g0 + · · · + (fd−2g0 +
· · · + f0gd−2)x

(d−2)n, which is a polynomial of degree below dn.
Next write δ as δdx

dn + · · ·+δ2d−1x
(2d−1)n, and compute F2n(δi) for each i. This

uses d(8 + o(1))n lg n operations in R.
Next compute

g0
D(fd−1x

(d−1)n)

x(d−1)n
+ · · · + gd−1D(f0)

g1
D(fd−1x

(d−1)n)

x(d−1)n
+ · · · + gd−1

D(f1x
n)

xn
− δdD(h0),

g2
D(fd−1x

(d−1)n)

x(d−1)n
+ · · · + gd−1

D(f2x
2n)

x2n
− δd+1D(h0) − δd

D(h1x
n)

xn
,

. . .,

gd−1
D(fd−1x

(d−1)n)

x(d−1)n
− δ2d−2D(h0) − · · · − δd

D(hd−2x
(d−2)n)

x(d−2)n
,

− δ2d−1D(h0) − · · · − δd
D(hd−1x

(d−1)n)

x(d−1)n
.

This uses (d + 1)(8 + o(1))n lg n operations in R.
Next multiply these results by x(d−1)n, xdn, . . . , x(2d−1)n, add modulo x2dn, and

extract the top dn coefficients. The result is exactly D(f mod xdn)(g mod xdn) −

12 DANIEL J. BERNSTEIN

D(h) − δD(h mod xdn) mod x2dn: the difference is a polynomial of degree below
dn.

Next compute ε = log(f mod xdn) − h mod x2dn from the formula D(ε) =
D(f mod xdn)(g mod xdn) − D(h) − δD(h mod xdn) mod x2dn.

Next write ε as εdx
dn + · · ·+ε2d−1x

(2d−1)n, and compute F2n(εi) for each i. This
uses d(8 + o(1))n lg n operations in R.

Next compute f mod x2dn = (f mod xdn) − ε(f mod xdn) mod x2n. This uses
d(8 + o(1))n lg n operations in R.

Next compute F2n(fd), . . . , F2n(f2d−1). This uses d(8 + o(1))n lg n operations in
R.

Next compute g mod x2dn as in the above algorithm for reciprocals. This uses
(3d + 1)(8 + o(1))n lg n operations in R.

Finally, compute

F2n(gd), . . . , F2n(g2d−1),

F2n

(

D(fdx
dn)

xdn

)

, . . . , F2n

(

D(f2d−1x
(2d−1)n)

x(2d−1)n

)

,

F2n

(

D(hdx
dn)

xdn

)

, . . . , F2n

(

D(h2d−1x
(2d−1)n)

x(2d−1)n

)

.

This uses 3d(8 + o(1))n lg n operations in R.
The total effort to move from nd to 2nd is (12d+2)(8+ o(1))n lgn operations in

R. This algorithm, applied recursively, reaches n using (96+ o(1))n lg n operations
in R. Computing f mod xn and g mod xn takes only (84 + o(1))n lg n operations
in R, since the final step of the last iteration can be skipped. Computing just
f mod xn takes only (68 + o(1))n lg n operations in R.

References

[1] David H. Bailey, The computation of π to 29,360,000 decimal digits using Borweins’ quar-

tically convergent algorithm, Mathematics of Computation 50 (1988), 283–296. ISSN 0025–
5718. MR 88m:11114. Available from http://cr.yp.to/bib/entries.html#1988/bailey.

[2] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of Com-
putation 67 (1998), 1253–1283. ISSN 0025–5718. MR 98j:11121. Available from http://cr.

yp.to/papers.html.
[3] Daniel J. Bernstein, Fast multiplication and its applications, to appear in Buhler-Stevenhagen

Algorithmic number theory book. Available from http://cr.yp.to/papers.html#multapps.
[4] Daniel J. Bernstein, Computing logarithm intervals with the arithmetic-geometric-mean it-

eration. Available from http://cr.yp.to/papers.html#logagm. ID 8f92b1e3ec7918d37b28b

9efcee5e97f.
[5] Richard P. Brent, Multiple-precision zero-finding methods and the complexity of elemen-

tary function evaluation, in [12] (1976), 151–176. MR 54:11843. Available from http://web.

comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub028.html.
[6] Stephen A. Cook, On the minimum computation time of functions, Ph.D. thesis, Department

of Mathematics, Harvard University, 1966. Available from http://cr.yp.to/bib/entries.

html#1966/cook.
[7] Alan H. Karp, Peter Markstein, High-precision division and square root, Technical Re-

port HPL-93-42(R.1), 1994; see also newer version [8]. Available from http://www.hpl.hp.

com/techreports/93/HPL-93-42.html.
[8] Alan H. Karp, Peter Markstein, High-precision division and square root, ACM Transactions

on Mathematical Software 23 (1997), 561–589; see also older version [7]. ISSN 0098–3500.
MR 1 671 702. Available from http://www.hpl.hp.com/personal/Alan Karp/publications/

publications.html.

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION 13

[9] H. T. Kung, On computing reciprocals of power series, Numerische Mathematik 22 (1974),
341–348. ISSN 0029–599X. MR 50:3536. Available from http://cr.yp.to/bib/entries.

html#1974/kung.
[10] Arnold Schönhage, Andreas F. W. Grotefeld, Ekkehart Vetter, Fast algorithms: a multitape

Turing machine implementation, Bibliographisches Institut, Mannheim, 1994. ISBN 3–411–
16891–9. MR 96c:68043.

[11] Malte Sieveking, An algorithm for division of powerseries, Computing 10 (1972), 153–156.

ISSN 0010–485X. MR 47:1257. Available from http://cr.yp.to/bib/entries.html#1972/

sieveking.
[12] Joseph F. Traub, Analytic computational complexity, Academic Press, New York, 1976. MR

52:15938.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@pobox.com

