Target: Mathematics of Computation. New version of paper in preparation, with
4.5 for reciprocal, 6.5 for quotient, 5.5 for square root, and 8.5 for exponential. See
http://cr.yp.to/fastnewton.html.

REMOVING REDUNDANCY IN
HIGH-PRECISION NEWTON ITERATION

DANIEL J. BERNSTEIN

ABSTRACT. This paper speeds up Brent’s algorithms for various high-precision
computations in the power series ring C|[[¢]]. If it takes time 3 to compute a
product then it takes time roughly 5.6 to compute a reciprocal; roughly 8.2
to compute a quotient or a logarithm; roughly 6.5 to compute a square root;
roughly 9 to compute both a square root and a reciprocal square root; and
roughly 10.4 to compute an exponential. The same ideas apply to approximate
computations in R, Q,, etc.

1. INTRODUCTION

Let f € CJ[t]] be a power series with constant coefficient 1. How can one compute
f~'? The standard answer is Newton’s method, which shows how to compute
f~! mod t*" from f~! mod " with a few size-n multiplications: f~! mod t*" =
go + (1 — fgo)go mod " where go = f ! modt". One can compute gy by the
same method recursively. (This algorithm is sometimes credited to Sieveking, who
published it in [8]; Kung in [6] pointed out that Sieveking’s method was an example
of Newton’s method.) Similar comments apply to computing f'/2, log f, et al.

Using FFTs one can multiply polynomials of degree up to n with 3knlogn+0O(n)
arithmetic operations in C for some constant k. Brent in [5] showed that one can
compute the first n coefficients of f~1 with 9knlogn + O(n) operations, log f with
12knlogn+ O(n) operations, f~ /2 with 13.5knlogn + O(n) operations, both f1/2
and f~'/2 with 16.5knlogn + O(n) operations, and exp f with 22knlogn 4+ O(n)
operations.

The point of this paper is that some obvious redundancies account for a large
fraction of the run time of Brent’s algorithms. Sections 2, 3, 4, and 5 present
several streamlined examples of Newton’s method, culminating in an algorithm to
compute n coefficients of exp f with only 10.4knlogn + O(n) operations. Section
6 gives implementation results.

Generalizations. Newton’s method is not limited to C[[t]]; it is also used for high-
precision computations in k[[t]] where k is a finite field, in the p-adic numbers Q,,
in R, and so on. See [3] for a survey of relevant multiplication methods. Roundoff
error analysis is typically required for Q,, where it is easy, and for R, where it is
not so easy; see, e.g., [2, section 8 and section 21]. Some functions, such as log,
require completely different methods for R; see, e.g., [5].

Brent’s methods can be streamlined in all of these situations. I have focused on
C[[t]] in this paper since it is the simplest case. It is also the case used in [4].

Date: DRAFT 19980627.
1991 Mathematics Subject Classification. Primary 68Q40; Secondary 65Y20.
The author was supported by the National Science Foundation under grant DMS—9600083.

1

2 DANIEL J. BERNSTEIN

Notation and terminology. Throughout this paper, n is a positive integer. Sub-
scripted variables such as fy, fi1,... refer to polynomials of degree below n. Thus
every power series can be written uniquely in the form fo 4+ t"f; + 2" fo +---.

A transform means a size-2n FFT or a size-2n inverse FFT. If p is a polyno-
mial of degree below 2n then p* means the result of applying a size-2n FFT to
p. Recall that one can compute a bilinear form such as fog2 + f191 + f290, given
15 I, 15,98, 91, 95, with a single transform plus O(n) operations.

If f is a power series then D(f) means ¢ times the derivative of f. If f is a power
series with constant coefficient 0 then I(f) means the integral of f/t.

2. RECIPROCALS

Let f and g be power series with fg = 1. This section considers the problem of
computing g given f.

Write f = fo + fit" + fot*™ +--- and g = gg + g1t" + g2t*" + - - -. Define ¢; and
r1 by 14+ ¢1t" = fogo and 71 = f1go mod t™. Then g; = —(q1 + 71)go mod ¢™.

Given fy, f1, 90, Brent suggested computing fogo, hence q1; f19o, hence r1; and
then (g1 +71)go, hence g;. Each multiplication can be done with 3 transforms, for a
total of 9 transforms to compute g mod #2" given g mod t*. The work to compute
g mod t” by the same method recursively is comparable to 9/2+ 9/4 +--- = 9
transforms.

However, each multiplication uses the same intermediate result g5, so only 7

transforms are required: f¢, f{, g5, fogo, f190, (1 +71)*, and (g1 + r1)go-

Higher-order iterations. Define g2,q3,72,73 by (fo + fit")(go + g1t") = 1 +
@t*™ + g3t®™ and ro + r3t™ = (f2 + f3t")(go + g1t") mod t2". Then go + gst™ =
—(g2 + 72 + (g3 + 73)t")(go + g1t™) mod t2".

Brent suggested first computing g; as discussed above, then using size-4n FFTs
to multiply fo + fi1t", f2 + f3t", and g2 + 72 + (g3 + 73)t" by go + g1t".

However, it is wasteful to feed fo and g to two different sizes of FFTs. One can
do better by sticking with size-2n FFTs: compute g7, figo + fog1, fig91, f5, f3,
f290, f291 + f390, (g2 +72)*, (g3 +73)*, (g2 +72)g0, and (g2 + r2)g1 + (g3 + 73) 0.

The total is 18 transforms to compute g mod t*” from g mod t". The work to
compute g mod ¢™ by the same method recursively is comparable to 18/4+18/16 +
.-+ = 6 transforms.

The same idea can be applied repeatedly. One can compute g mod 3" from
g mod t" with just 40 transforms, for example. The work to compute g mod t"
recursively is comparable to 5.541.5/(2° —1) transforms with an order-2¢ iteration.
One should select e as a function of n to avoid excessive overhead.

Notes. The idea of reusing transforms is standard. For example, it is well known
that squaring takes only 2 transforms while multiplication takes 3. See [3, section
12] for references.

A 6-transform bound for reciprocals, presumably using an order-4 iteration as
above, was announced by Schonhage, Grotefeld, and Vetter in [7, page 213].

3. QUOTIENTS

Let f,g,h be power series with fg = 1. This section considers the problem of
computing hg given h and f.

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION 3

Brent suggested computing g mod t", as discussed above, and then multiplying
gmod t" by h mod t". This takes time comparable to 8.6 transforms if g mod ¢"
is computed with an order-16 iteration. However, one can do better by reusing the
intermediate results from the computation of g.

Write g = go + g1t™ + g2t®™ + ---. Section 2 shows how to compute gy in
time comparable to 5.6 transforms, and then g§, 97, 95, 93, 91, 92, 93, 94, 95, g6, g7 in
40 transforms. Then computing g¢;, 95, 95,97 takes just 4 more transforms, and
computing hg mod 8" takes 16 more transforms.

The upshot is that computing hg mod t™ takes time comparable to 8.2 trans-
forms.

Logarithms. Let f be a power series with constant coefficient 1. Then one can
compute log f = I(D(f)/f) in time comparable to 8.2 transforms.

4. SQUARE ROOTS

Let f, g, h be power series with fg = 1 and h = f2. This section considers two
problems: computing f and g given h; and computing f given h.

Write f = fo+ fit" + fot™ + ..., g = go + g1t" + g2t*” + ..., and h =
ho + hit™ + hot®™ + Brent suggested (among other techniques) computing f
from the standard Newton iteration: f1t™ = —(f2—h)/2fo mod t*7; fot®"+ f3t3" =
—((fo + fit™)? — h)/2(fo + f1t") mod t**; etc. However, there is some overlap
between each step and the next. For example, one can reuse go = 1/fo mod t" in
the computation of go + g1t™ = 1/(fo + f1t™) mod t>".

So define g;,7; as in section 2. Define s; by s1t" = f2 — hg — hit™; s2 and s3
by sat?™ + s3t3" = (fo + fit")? — ho — h1t™ — hot®>™ — h3t3"; and so on. Then
fr = (=1/2)s19o mod t*, fo + fst" = (=1/2)(s2 + s3t")(g0 + g1t™) mod t>", etc.

Starting from fo, go, ho, h1, one can compute f; with 5 transforms: f§, f2, s,
95, S190. One can then compute g; with 5 transforms: f{, fogo, f190, (g1 +71)%,
(g1 + r1)go- One can then compute fo, f3 with 7 transforms; then go, g5 with 10
transforms; and so on.

The work to compute both f mod ¢" and g mod ¢ recursively is comparable to 9
transforms with an order-4 iteration. The work to compute f mod ¢" is comparable
to 6.5 transforms.

Notes. Bailey in [1] reported a square root time comparable to 21 transforms.

5. EXPONENTIALS

Let f,g,h be power series with fg = 1 and f = exph. This section considers
the problem of computing f and g given h.

Write f = fo + fit" + fot> + -+, g = go + g1t™ + got®™ + -+, h = ho + hat™ +
hztzn + -y D(f) :a0+a1t”+a2t2”—|—---, and D(h) = b0+b1tn+b2t2”+...

Define g;,7; as in section 2. Define s; by s1t™ = h — I(aggo — boqit™) mod *7;
define s9, s3 by

52t2n + 83t3n =h-— I((ao + alt")(go + gltn) - (bo + bltn)(QQt2n + q3t3n)) mod t4n;

and so on. Then f; = fos; mod t"; fo + f3t™ = (fo + f1t")(s2 + s3t™) mod t2"; etc.
XXX still have to check these run times
Starting from fo, go, ko, h1, one can compute f; with 10 transforms: fg, g5, fogo,
ags aogo, b3, a7, bogi, s1, fosi. One can then compute g; with 4 transforms: f7,

DANIEL J. BERNSTEIN

f190, (g1 +71)*, (g1 +71)go- One can then compute fy, f3 with 15 transforms; then
g2, g3 with 8 transforms; and so on.

to

The work to compute both f mod t™ and g mod t™ recursively is comparable
37/3 transforms with an order-4 iteration. The work to compute f mod " is

comparable to 31/3 transforms.

6. IMPLEMENTATION RESULTS

XXX This is a first draft! But presumably the timings will be in line with the

theoretical estimates shown below.

8
(9

recip: (9, 6) 5.6

quo or log: (12, 9) 8.2

sqrt: (16.5) 6.5

sqrt and isqrt: (16.5) 9

exp: (22) 31/3

I also still have to analyze “natural” order-3 and order-4 iterations.

REFERENCES

] David H. Bailey, The computation of = to 29,360,000 decimal digits using Borweins’ quar-
tically convergent algorithm, Mathematics of Computation 50 (1988), 283-296.

] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, to appear; available
through http://pobox.com/~djb/papers.html.

| Daniel J. Bernstein, Multidigit multiplication for mathematicians, submitted for publication;
available through http://pobox.com/~djb/papers.html.

| Daniel J. Bernstein, Bounding smooth integers (extended abstract), available through http://
pobox.com/~“djb/papers.html.

] Richard P. Brent, Multiple-precision zero-finding methods and the complezity of elementary
function evaluation, in [9], 151-176.

| H. T. Kung, On computing reciprocals of power series, Numerische Mathematik 22 (1974),

341-348.

Arnold Schénhage, Andreas F. W. Grotefeld, Ekkehart Vetter, Fast algorithms: a multitape

Turing machine implementation, Bibliographisches Institut, Mannheim, 1994.

Malte Sieveking, An algorithm for division of powerseries, Computing 10 (1972), 153-156.

| J. F. Traub, Analytic computational complezity, Academic Press, New York, 1976.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), THE UNI-

VERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045

E-mail address: djb@pobox.com

