Can we avoid tests for zero
in fast elliptic-curve arithmetic?

Daniel J. Bernstein *

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago, Chicago, IL 60607-7045
djb@cr.yp.to

Abstract. This paper analyzes the exact extent to which 0 and co cause
trouble in Montgomery’s fast branchless formulas for z-coordinate scalar
multiplication on elliptic curves of the form by? = x* + az? + x. The
analysis shows that some multiplications and branches can be eliminated
from elliptic-curve primality proofs and from elliptic-curve cryptography.

1 Introduction

Define sequences (z1,x2,...) and (21, 22, .. .) recursively, starting from z1, 21, a,
by the equations

Ton = (1'721 - 2721)2 = (an - Zn)z(xn + Zn)27

2 2
Zon = 4xpzn (X5, + axpzy + 2;))

= ((wn + Zn)2 — (zy — Zn)Q)

(@ 20+ T (@ 20)? — (@0 = 20)7),

Toni1 = HXpTrny1 — Zning1)’21

= ((Tn = 20) (@ns1 + 2p41) + (T + 20) (Tnt1 — 2011)) 21,
Zong1 = HTp2ni1 — ZnTni1)’m

= ((rn — 20)(Tng1 + 2nt1) — (Tn + 20) (Tpg1 — Zn+1))25171-

It is well known—and, unfortunately, not always true—that these sequences
compute scalar multiples on an elliptic curve: specifically, that (z,/zn,...) is
the nth multiple of the point (x1/z1,...) on the curve by? = 2 + az? + x.

This paper explains exactly what is true. Section 2 reviews the standard
definition of scalar multiplication on an elliptic curve; Section 4 analyzes the
connections between x,, z,, and nth multiples; Theorem 4.3 explains how x,,
and z, actually relate to the nth multiple of (x1/21,...) on the curve by? =
23 + ax? + z. WARNING: This is an early draft, not yet checked.

* The author was supported by the National Science Foundation under grant DMS—
0140542 and by the Alfred P. Sloan Foundation. Date of this document: 2006.07.26.
Permanent ID of this document: 3a823a6593bf3c4elffa27186c6c3191.

Tn Zn Tn+1 Zn+1
O Tp41 Or Zp41 or Tp, or zp

>
X - + "
(O
X (a — 2)/4 X X
+ 2] ————> X X< !
X
of Tanys oF tamis I

These sequences are of interest in a wide variety of applications of elliptic-
curve scalar multiplication, including elliptic-curve cryptography (ECC), elliptic-
curve primality proving (ECPP), and the elliptic-curve factorization method
(ECM). For example, my ECC speed records in [2] use these sequences. The
sequences were introduced by Montgomery in [12, Section 10.3.1] twenty years
ago to speed up ECM. The point is that computing (z,, 2n, Tni1, Znt1) takes
just
4 squarings,

1 multiplication by (a — 2)/4, which is small in most applications,
1 multiplication by z;, which is small in most applications,

1 multiplication by x1, which is small in many applications,

4 more multiplications,

4 additions, and

4 subtractions

for each bit of n, as shown in the data-flow diagram above. These are not always
the smallest known costs for elliptic-curve scalar multiplication—see, e.g., [3]—
but they have never been improved upon by more than a small percentage.
Sections 5, 6, and 7 explain how to use x,, and z, to replace nth multiples
in various applications of elliptic-curve scalar multiplication. The bottom line
is that this paper speeds up elliptic-curve primality proofs and elliptic-curve
cryptography by eliminating various multiplications and branches.

2 Elliptic curves

Fix a field k not of characteristic 2, and fix a,b € k with b(a? — 4) # 0. This
section reviews the standard definition of the group E(k), where E is the elliptic
curve by? = x® + az?® + z over k.

Elliptic curves not of the form by? = 23+ ax? +x are outside the scope of this
paper. The particular shape by? = 23 + ax? + = was highlighted by Montgomery
in [12, Section 10.3.1], and is often called “Montgomery form.”

Define E(k) as the set {oo} U {(z,y) € k x k : by? = 2® + az® + z}. Define
a unary operation — on E(k) as follows: —oo = oo; —(z,y) = (x, —y). Define a
binary operation + on E(k) as follows:

00 4 00 = Q.

oo+ (2,y) = (z,y).

(e,y) +00 = (l‘a)

(229 + (5, —y) =

Ify #0 then (x, y) + (z,y) = (2”,y") where A\ = (322 + 2ax + 1)/2by,
" =bA\? —a— 2z, and y"" = Az — 2") — .

o If o/ # w then (z,y) + (z,¢') = (¢",y") where A = (v —y)/(2’ —),
=0\ —a—x -2, and ¢y = Nz —2") —v.

Standard (although lengthy) calculations show that E(k) is a commutative group
with oo as neutral element, — as negation, and + as addition.

3 Montgomery’s x-coordinate formulas

Montgomery in [12, Section 10.3.1] presented some surprisingly simple formulas
for the z-coordinates of sums of points on elliptic curves by? = =3 + az?® + x.
This section reviews Montgomery’s formulas.

Define E(k) as in Section 2. Define X : F(k) — {oo}Uk as follows: X (z,y) =
x; X(00) = oc.

Note that if X(Q) = 0 then @ = (0,0). Indeed, @ = (0,y) for some y € k
with by? = 03 +a0? + 0 =0, i.e., with y = 0.

Theorem 3.1. Let k be a field not of characteristic 2. Let a,b be elements of k
with b(a® —4) # 0. Define E as the elliptic curve by* = x® + ax® +z over k. Let
Q be an element of E(k) with 2Q # oco. Then X(Q)?>+aX(Q)*+X(Q) # 0 and

(X(Q)? -1)?
AX(Q) +aX(Q)* + X(Q))

X(2Q) =

Proof. Q # oo so Q = (z,y) for some x,y € k satisfying by? = 23 + az? + z. If
y = 0 then 2Q = (z,0)+ (x,0) = oo, contradiction. Thus y # 0, z3+ax?+x # 0,

and 2Q = (bA?> — a — 2x,...) where \ = (322 + 2ax + 1)/2by. Consequently

322 + 2ax + 1)?

X(2Q) :bAQ—a—2x:b(

102y —a—2x
(32 4 2ax +1)? g9 — (322 + 2az + 1)? g— 9
B 4by? T 4(x3 +ax? + 1)

(322 + 2azx +1)? — 4(2® + az? + 1) (22 + a)
4(x3 + ax? + x)
924 +12ax3+(4a?+6)r2 +4az+1 — 4(22*+-3az3+(a®+2) 2% +azx)
- 4(x3 + ax? + x)
rt—22% + 1 (22 —1)?

C 4(x3 tax?+x) 423 +ar?+x)

Finally X(Q) = z. 0

Theorem 3.2. Let k be a field not of characteristic 2. Let a,b be elements of k
with b(a? —4) # 0. Define E as the elliptic curve by? = 23 + ax® +x over k. Let
Q, R be elements of E(k) with Q # oo, R # 00, Q@ — R # o0, and Q + R # .
Then X (Q) # X(R) and

X(Q+ WY@ =1 = G

Proof. Q # 0o so Q = (x,y) for some x,y € k satisfying by? = 23 + ax? + x; and
R # 00 so R= (2/,y') for some 2’y € k satisfying b(y')? = (z')® + a(z)? + 2'.
Suppose that = 2’. Then by? = b(y')? so y = +y. If y = 3 then Q = R so
Q@ — R = oo, contradiction. If y = —y’ then Q = —R so Q+ R = oo, contradiction.
Thus ¢ # 2/, and Q+ R = (A2 —a—x —2/,...) where A = (y —vy)/(2' —).
Consequently

!/ 2
X(Q—I—R):bAQ—a—x—xlzbu—a—x—x’

(2 —x)?
_ b(y)? + by? — 2byy’ :
= CaSE —a—z—x
(2')34a(z")?+2' + 23+ax’+x — 2byy’ — (a + 2’ + x)(2'—x)?
- (2 —x)?
(@) + 2+ 2%+ v+ 20z’ — 2byy’ — (¢ + z) (2 — x)?
- (2" — z)?

(' +2)(1 4 za’) + 2azx’ — 2byy’
()2 ‘

Similarly X (Q — R) = ((#' + x)(1 + x2’) + 2axz’ + 2byy’)/(z' — z)?. Thus

X(Q+R)X(Q— R)(a' — x)*

= (2" + 2)(1 + z2') + 2az2")? — (2byy')?
= (2" + 2)(1 + z2) + 2azz")? — 4by*b(y)?

= ((z' + 2)(1 + z2) + 2az2")? — 4(2® + az® + 2)((2')* + a(2')? + 2')
= (' + 2)*(1 + 22')? + daza’ (2 + 2)(1 + z2’) + 4a*2*(2)?

—4(2°+2)((2")+2) — da((2®+2) (2")* +((2") +2")2?) — 4a’2®(2")?
= (' +2)?(1 + 22")? + daza’ (2’ + = + (2')%x + 222)

— 4z + 2)((2)? + o)) — dazxa’ (222 + 2" + (2))%2 +)
= ((2")? 4 2z2" + 2*)(1 + 2z’ + 2%(2)?)

— 4(x3(2")? + 232" + (") + 22))
= (2/)? + 2z’ + 2* + 22(2')® + 42 (2')? + 2232

+ 22(2)* + 223 (2")3 4 24 (2)? — 4(23(2")3 + 232" + (2')3x + z2))
= (2/)? — 2z’ + 2% — 22(2')® + 422 (2')? — 2272

+ 22(2)* — 223 (2")3 4 2% (2')?
= ((z")? — 2z2" + 2%)(1 — 2z2’ + 2%(2')?)

= (' — 2)%(x2’ — 1)?

0 X(Q+R)X(Q—R) = (z2' —1)?/(2’ —x)?. Finally X(Q) =z and X(R) = 2/.

4 Handling the exceptional cases

Consider the problem of efficiently computing nth multiples in the group E(k)
defined in Section 2.

It is usually, but not always, true that any point of the form (x1/z1,y1)
in E(k) has nth multiple (x,,/2,,y,) for some y,,, where x,, and z, are defined
recursively in Section 1. Indeed, put @ = n(z1/21,v1) and R = (n+1)(z1/21,11),
and assume inductively that X(Q) = x,/z, and X(R) = x,4+1/2n+1. Theorem
3.1 usually states that

) (X(Q)2 —1)? @
X0 = IXQF T aX(Q)? T X(Q) W@Ban +ar222 T 2n7) 7o

and Theorem 3.2 usually states that
(X(Q)X(R)_l)2 _ (xnxn+1 - ann+1)2 _ Ton+1
X(Q-R)(X(Q)—-X(R)? (x1/21)(TnZnt1 — Tn+120)® Z2nt1

But this logic breaks down if any of the hypotheses of Theorems 3.1 and 3.2 are
violated: for example, if 2Q) = cc.

X(Q+R) =

Of course, if the nth multiple of (z1/21,...) is 0o, then it is certainly not
(n/Zn,...). But this is not the only case where the logic breaks down. For
example, if the nth multiple of (x1/21,...) is oo, then the (2n + 1)st multiple
is the same as (x1/z1,...); is it true that xo,41/22n+1 = #1/2z17 The above
induction does not reach z,,/z,, so it also does not reach xo,1+1/22,41-

Readers familiar with standard projective coordinates might guess that the
complete story is as follows: (1) if the nth multiple of (x1/21,...) is oo then
x, = 0 and z, = 0; (2) if the nth multiple of (x1/21,...) is not co then z, # 0
and the nth multiple is (z,,/z,,...). But both parts of this guess turn out to be
wrong. For example, take 1 = 0 and z; = 1. The 2nd multiple of (0, 0) is co, but
9 # 0, contradicting the first part of the guess. Furthermore, the 3rd multiple
of (0,0) is not oo, but z3 = 0, contradicting the second part of the guess.

One could check for co—equivalently, for various quantities being zero—
during the recursive computation of z,, and z,, and branch into a different
computation when oo appears, falling back to various cases in the definition
of elliptic-curve addition in Section 2. However, in some applications, checking
for oo costs an extra multiplication for each bit of n, as discussed in Section
6. Furthermore, the complications are annoying for programmers who want a
simple computation, and the branches are annoying for cryptographers who want
to avoid leaking secrets through side channels.

Can we avoid these branches? The answer, in a nutshell, is yes. Theorem 4.3,
the main theorem of this paper, shows exactly how x,, and z, behave. Sections
5, 6, and 7 show how various applications can be efficiently adapted to the actual
behavior of z,, and z,.

The theorems

Define / : k x k — {oo} Uk as follows: z/z is the usual quotient in k for z # 0;
x/0 = oo. Note that if x/z = 2’/2' then 22’ = 2’2, but the converse is not
necessarily true.

Theorem 4.1. Let k be a field not of characteristic 2. Let a,b be elements of k
with b(a? —4) # 0. Define E as the elliptic curve by? = 23 + ax® +x over k. Let
Q be an element of E(k). Let x1,2z1 be elements of k with x1/z1 = X(Q) and
(z1,21) # (0,0). Define xo = (23 — 22)? and zp = 4x121(2? + azx121 + 23). Then
xo/z0 = X(2Q) and (x2,22) # (0,0).

Proof. Case 1: () = 0o. Then 2Q) = oo; and x1/21 = X(Q) = 00 so 21 = 0 so
29 =080 T3/29 = 0o = X (2Q). Furthermore 1 # 0 so 2% — 22 # 0 so x5 # 0.

Case 2: Q # oo but 2Q = oo. Then z1/z1 = X(Q) # o0 so z; # 0.
Furthermore Q = (X(Q),0) by definition of doubling; so X(Q)? + aX(Q)? +
X(Q) =0; 50 20 = 421(X(Q)3 + aX (Q)* + X(Q)) = 0; 50 22 /20 = 00 = X(2Q).

If (xg,22) = (0,0) then 22 — 27 = 0 50 z1 = 27 so +422(2? L azf +22) =0
so (a £ 2)zf = 0; but a £ 2 # 0 since a® # 4, so z; = 0, so (z1,21) = (0,0),
contradiction. Hence (x2, z2) # (0,0).

Case 3: 2Q) # oo. Then @ # o0 so x1/21 = X(Q) # o0 so z1 # 0. Apply
Theorem 3.1 to see that z3 = 42$(X(Q)3 +aX(Q)? + X(Q)) # 0 and X (2Q) =

(X/(Q)2—1)2/4(X(Q>3+GX(Q)2+X(Q)) = (21 —21)*/A(afz1 +aaizi +a127) =
Tro/ZzZ2. O

Theorem 4.2. Let k be a field not of characteristic 2. Let a,b be elements of k
with b(a® —4) # 0. Define E as the elliptic curve by* = 23+ ax?® +z over k. Let
Q@ and R be elements of E(k). Let

e 11,21 be elements of k with x1/z1 = X(Q — R), 1 # 0, and z; # 0;
® 15,20 be elements of k with x2/20 = X(Q) and (x2,22) # (0,0); and
e 13,23 be elements of k with x3/z3 = X(R) and (x3,z3) # (0,0).

Define x5 = 4(xox3 — 2223)%21 and z5 = 4(xo23 — z9x3)%x1. Then x5/25 =
X(Q+ R) and (x5,25) # (0,0).

Note that both x; and z; are assumed to be nonzero.

Proof. Case 1: Q = R. Then z1/z1 = X(Q — R) = X(00) = 00 580 21 = 0,
contradiction.

Case 2: Q) # R and Q = oo. Then z3/2z0 = X(Q) = 00 so z3 = 0.
Furthermore z1/2; = X(Q — R) = X(R) = z3/23 so zijx3 = x123. Hence
rs5 = 4(1273)%21 = 423312373 and z5 = 4(w23)%2; = 4237123,

Observe that z5 # 0. Indeed, x1 # 0; 22 # 0 since 2o = 0; and 23 # 0
since z3/z3 = X(R) # oo. Thus z5/2z5 = x3/23 = X(R) = X(Q + R) and
(5, 25) # (0,0).

Case 3: Q # R and R = oo. Then z3/23 = X(R) = o0 so z3 = 0.
Furthermore z1/21 = X(Q — R) = X(Q) = z2/2z3 so z1x2 = x1z2. Hence
T5 = 4(xow3)%21 = 423712010 and 25 = 4(20m3)%w1 = dadx23.

Observe that z5 # 0. Indeed, x1 # 0; x3 # 0 since z3 = 0; and 25 # 0
since /29 = X(Q) # oo. Thus z5/25 = w2/20 = X(Q) = X(Q + R) and
(25, 25) # (0,0).

Case 4:) # R and Q + R = oc. Thenxg/zg ()=X(—R)=X(R) =
x3/23 SO Tazg = 2oz S0 z5 = 0. Hence x5/25 = X(0) =X(Q+ R). I will
show that x5 # 0; hence (x5, z5) # (0,0).

Note that zo # 0: if 2 = 0 then 25 # 0 so X(Q) = z2/22 = 0 s0 @ = (0,0)
so R=—-Q =—(0,0) = (0,0) = Q, contradiction. Similarly x5 # 0.

Suppose that x5 = 0. Then 4(xors — 2223)%21 = 0, but 21 # 0, s0 Tow3 =
z923. Consequently (zo — 29)(x3 + 23) = Tox3 — 2ox3 + To23 — 2223 = 0 and

(9 + 22)(x3 — 23) = xow3 + 2003 — Toz3 — 2223 = 0. If 29 + 29 # 0 then
x3 — 23 = 080 x3 + 23 = 223 # 0 80 k9 — 25 = 0; i.e., X(Q) = x2/x2 = 1 and
X(R) = x3/x3 = 1. Otherwise x9 = —z3 S0 T3 — 29 = 229 # 0 s0 T3 = —z23; i.e.,

X(Q) = —1 and X(R) = —1. Either way X(Q)?>—1=0. Now 2Q # Q+ R = o0
so X(2Q) = (X(Q)* —1)?/--- =0 by Theorem 3.1. Thus #1/21 = X(Q — R) =
X(2Q) = 0 so z1 = 0, contradiction.
Case 5: QQ # R; Q # 00; R # oo; and Q + R # 00. Then z5/25 = X (Q) # o
s0 z9 # 0; 3/23 = X(R) # 00 so z3 # 0; and X(Q) # X(R) so xo/z9 # w3/ 23
so z5 # 0. Now
(X(Q)X(R) —1)* _ (2223 — 2225)°

@+ 20 = XQ BXQ =) = RO X~ (raa — 0P

by Theorem 3.2; so X (Q + R) = (2223 — 2023)%21 /(2223 — x320)%21 = 25/25. O

Theorem 4.3. Let k be a field not of characteristic 2. Let a,b be elements of k
with b(a® —4) # 0. Define E as the elliptic curve by = x® + ax?® +z over k. Let
Q be an element of E(k). Let x1,2z1 be elements of k with x1/2z1 = X(Q) and
(x1,21) # (0,0). Recursively define (x2,x3,...) and (22, 23,...) by

Ton = (22 — 22)? forn > 1,

Zop = 4xnzn(x + axnzy + 2) form >1,

Tont1 = 4(TnTni1 — Zn2ns1)’21 forn >1,

Zont1 = 4(TnZng1 — Zn@ny1) w1 forn > 1.
Then xp,/zn = X(nQ) for each n > 1, except in the following case: if 1 = 0,
z1 20, n > 1, and n is odd, then @ = (0,0), X(nQ) = 0, and z,/z, = 0.
Furthermore, (x,,2,) # (0,0) for each n > 1, except in the following cases: if

x1 # 0, 21 =0, and n is not a power of 2, then Q = 0o and (x,, z,) = (0,0); if
x1 =0, 21 #0, and n is not a power of 2, then Q = (0,0) and (z,,z,) = (0,0).

Proof. Case 1: z; = 0. Then X(Q) = x1/z1 = 21/0 = 00 s0o Q = o0 s0
X (nQ) = X(noo) = X(0) = 0.
Observe that z, = 0 for every n > 1; consequently xz,,/z, = co = X (nQ) as

claimed. Indeed, 20 = --+2y = 0; 23 = -+ (- 20 — -+ 21)2 = 0; 24 = - 25 = 0;
Z5:(Z3—Z2)2:0; etC.
Next observe that xo,, = xi and x9,4+1 = ---21 = 0. If 1y =0 then z,, =0

for all n > 1 by induction. Otherwise z,, # 0 when n is a power of 2, while
x, = 0 for all other n by induction.

Case 2: 21 =0 and 2z; # 0. Then X(Q) =x1/21 =0/z1 =0s0 @ = (0,0) so
2Q = (0,0)+(0,0) = oo; so X(nQ) = X(0,0) =0 for n odd, X (nQ) = X(c0) =
oo for n even.

Observe that z,, = 0 for every n > 1. Indeed, z0 = - 21 =0; 23 =--- 21 = 0;
24 =29 =0; z5 = ---x1 = 0; etc. Consequently each odd n > 1 has z,,/z, =
oo = X (nQ), while each even n > 1 has x,,/z, = co with X (nQ@) = 0.

Next z,, = 0 for every odd n. Indeed, Z2,41 = 4(TnTni1 — ZnZni1)’21. One
of n,n +11is odd, so z,z,+1 = 0 by induction; and 2,1 = 0.

Now zs, = xﬁ. Thus x,, = 0 for every n that is not a power of 2, while
Tn # 0 when n is a power of 2.

Case 3: 1 # 0 and z; # 0. Replace x1,21,22,29 in Theorem 4.1 with
Ty Zns Toan, Zon: 1 T /2, = X (nQ) and (x4, 2,,) # (0,0) then xa, /29, = X(2nQ)
and (zap, z2,) # (0,0). Similarly, replace xa, 29,3, 23,25, 25 in Theorem 4.2
with @, 2n, Tni1, Zna1, Tontl, 2on+1: i Tn/zn = X(nQ) and (x4, 2,) # (0,0)
and Tp41/2n41 = X((n+ 1)Q) and (41, 2n+1) # (0,0) then zop41/20n41 =
X((2n +1)Q) and (2n41, 22n+1) # (0,0). By induction z,,/z, = X(n@Q) and
(Zn, 2zn) # (0,0) for every n > 1. 0

5 Elliptic-curve cryptography (ECC)

Miller in [11], and independently Koblitz in [8], proposed an elliptic-curve variant
of the Diffie-Hellman secret-sharing system. Miller in [11, page 420] suggested
using the standard “division-polynomials” recurrence to compute nth multiples
using 26 multiplications per exponent bit. Miller in [11, page 425] suggested
using x-coordinates instead of (z,y)-coordinates.

The secret-sharing system with xz-coordinates works as follows. One user, say
Alice, has a secret key s and a public key X (sP), where P is a standard point on
a standard elliptic curve. Another user, say Bob, has a secret key ¢ and a public
key X (tP). Alice and Bob then both know a shared secret X (stP), apparently
quite difficult for an attacker to predict. The bottleneck here is elliptic-curve
scalar multiplication: Alice has to compute the shared secret X (stP) given her
secret key s and Bob’s public key X (tP).

What happens if one uses Montgomery’s x,,/z, to replace X (n---)? Can an
attacker force oo to occur in the elliptic-curve secret-sharing system, or in other
cryptographic protocols? Can an attacker thus obtain information about a secret
n? It is worrisome to see unanalyzed discrepancies between the nth multiples
in papers and the z,, and z, in high-speed software; perhaps the discrepancies
allow easy attacks on cryptographic protocols that would otherwise have been
secure.

I suggest replacing X by a modified z-coordinate function Xg : E(k) — k
defined as follows: Xo(z,y) = x; Xo(oco) = 0. Theorem 5.1, generalizing the
results for nonsquare a®—4 in my recent conference paper [2, Appendix B], shows
that Xy of an nth multiple is always very easy to compute via Montgomery’s
recurrence (X, zp).

Theorem 5.1. Let k be a field not of characteristic 2. Let a,b be elements of k
with b(a? —4) # 0. Define E as the elliptic curve by? = 23 + ax® +x over k. Let
Q@ be an element of E(k). Recursively define (x1,x2,xs,...) and (21, 22, 23, . . .)

by

1 = Xo(Q),
21 = 1,
Lo, = (22 — 22)? forn > 1,

Zom = 4xp 2 (22 + axpz, + 22) forn > 1,
Toni1 = HTnTps1 — Zning1)’21 forn > 1,
Zons1 = HTp2ni1 — ZnTpg1)’wr forn > 1.
Then Xo(nQ) =z /2n if z2n # 0, and Xo(nQ) =0 if z, = 0.
In particular, if k is finite, then Xo(nQ) = z,,2#*~! for every n > 1.

Proof. If z, # 0 then xz,/z, # o0 so X(nQ) = z,/z, # oo by Theorem 4.3 so
Xo(nQ) = xp/2n.

If z, = 0 then z,/2z, = o0 so X(nQ) = z,/z, = 00 or X(n@Q) = 0 by
Theorem 4.3. Either way X,(nQ) = 0. O

6 Elliptic-curve primality proving (ECPP)

Goldwasser and Kilian in [5] suggested proving the primality of an integer p by
exhibiting a point of order ¢ > (p'/* + 1) on an elliptic curve over Z/p. If p is
not prime then there is a field quotient k of Z/p with #k < ,/p; but the same
curve has a point of order g over k, so ¢ < (vV#E +1)2 < (p'/* +1)2 by Hasse’s
bounds in [7], contradiction.

This elliptic-curve primality-proving method has attracted interest for two
reasons. First, there is a fast algorithm that is conjectured to always find an
elliptic-curve primality proof—i.e., an appropriate elliptic curve, an appopriate
point, an appropriate prime ¢, and a recursive proof of the primality of q. There
have been many improvements in this algorithm; see [13] for the state of the art.
Second, the resulting primality proofs are short: one can rather quickly verify,
given a prime g and a point on an elliptic curve over Z/p, that the point has
order g on the curve.

The standard verification algorithm—see [6, Section 2.3]—works with affine
coordinates and performs a division modulo p for each elliptic-curve addition.
The division might fail, proving that p is actually composite. (With some effort
one can define elliptic-curve addition in this case, as explained by Lenstra in [10,
Section 3]; but this effort is unnecessary for elliptic-curve primality proving.) In
the absence of such failures, the elliptic-curve operations over Z /p are consistent
with the elliptic-curve operations over every field quotient k of Z/p, as required
for the Goldwasser-Kilian logic.

An obvious speedup here, as in other applications of elliptic curves, is to work
with projective coordinates; i.e., to represent intermediate quantities as fractions,
delaying all divisions until the last possible moment. But there is no guarantee
that the simplest projective-coordinate algorithm produces the right results!
The affine-coordinate algorithm checks invertibility of each denominator in Z/p,
either proving that p is composite or proving that the results are consistent with
results over every field quotient k. The simplest projective-coordinate algorithm
never checks invertibility, so it does not produce a complete proof of primality
of p.

A corrected projective-coordinate algorithm checks invertibility of all the
denominators, for example by computing ged{p, product of denominators}. This
takes an extra multiplication modulo p for each elliptic-curve addition. Can these
multiplications be eliminated?

The standard “division-polynomials” recurrence does not need intermediate
invertibility tests. See, e.g., [13, Proposition 3.1]. But it is nevertheless a step
backwards in efficiency.

I suggest instead using Montgomery’s efficient recurrence. Theorem 6.1 shows
that intermediate invertibility tests are not required here. The computation in
Theorem 6.1 costs at most 10 multiplications per exponent bit. Normally ¢ will
be very small, saving 1 multiplication per exponent bit. One can also—at the
expense of substantially more effort in finding ¢—force a to be small, saving
another multiplication per exponent bit.

Beware that not all elliptic curves are isomorphic to curves of Montgomery
form. In particular, the number of points on a Montgomery-form elliptic curve
over a finite field is always in 4Z. An easy calculation suggests that, out of all
elliptic curves over a prime field,

e 1/3+0(1) have odd order and thus are not isomorphic to Montgomery form;

e 1/4+ o(1) have exactly one power of 2, same conclusion;

e for primes in 3 + 4Z, an additional 1/24 + o(1) have exactly two powers of
2 without being isomorphic to Montgomery form; and

e the remaining curves are all isomorphic to Montgomery form.

Consequently one might speculate that my easy-to-verify primality proofs take
either 8/3 4 0(1) or 12/5+ o(1) times as long to find as traditional elliptic-curve
primality proofs. But the actual slowdown is less severe: the curves generated in
traditional elliptic-curve primality proofs typically have more factors of 2 than
random curves, and thus are more likely to be isomorphic to Montgomery form.

Theorem 6.1. Let g be a prime. Let f be a positive integer. Let p be an integer
larger than 1. Let a, ¢ be integers. Assume that ged{2(a* — 4)(c® + ac® + ¢),p} =
1. Recursively define (x1,x2,23,...) and (21, 22, 23,...) by

1 = C,
z1 =1,
Toy = (xi — zi)2 form >1,

Zom = 42n 20 (22 + awpzn + 22) forn>1,
Toni1 = HXnTps1 — Zning1)’21 forn > 1,
Zong1 = M Tp2np1 — ZnTpg1)’wr forn > 1.
If ged{zf,p} =1 and z;y mod p =0 and ¢ > ((pl/ﬂ +1)% then p is prime.

If g is already proven prime then the other conditions here can be checked
efficiently, proving the primality of p. I used ¢ > (]_pl/ 4-‘ + 1)? rather than
q > (p'/* + 1) because the latter condition is not as easy to check.

One can somewhat simplify Theorem 6.1 by taking f = 1, but the simplified
theorem often requires large ¢, slowing down the computation.

Proof. Define k as the smallest field quotient of Z/p, and define b = ¢ +ac? +c.
Then 2 # 0 in k; ¢ # 0 in k; b(a® —4) # 0 in k; and z, = 0 in k.

Define Q € k x k as the pair (¢,1). Then Q € E(k) where E is the elliptic
curve by? = 23 + azx? + z over k. Furthermore Q # (0,0); (z1,21) # (0,0) in k;
and x1/z1 = ¢ = X(Q) in k.

By Theorem 4.3, X(qfQ) = zqf/2qf = xq¢/0 = 00 in k, so ¢fQ = oo. By
hypothesis ¢ is prime, so f@ has order 1 or ¢ in the group E(k).

By Theorem 4.3 again, X (fQ) = xf/zy # oo in k, so fQ # oo. Thus fQ has
order q.

Consequently #E(k) > q > ([p/*] +1)? > (p¥/* + 1)%. But #E(k) <
(vV#E+1)? by Hasse’s theorem. Thus (vVF#k+1)2 > (pt/*+1)2; ie., #k > p'/?;
i.e., every prime divisor of p is larger than p'/2. Consequently p is prime. O

7 The elliptic-curve integer-factorization method (ECM)

Lenstra in [9] suggested finding small factors of an integer m by choosing n with
many divisors, such as n = lem{1,2,...,1000} ~ 2438 and computing the nth
multiple of a random point on a random elliptic curve modulo m. Computing
this multiple involves divisions modulo m, as in the Goldwasser-Kilian algorithm
discussed in Section 6; one hopes that a division fails, revealing a factor of m.
This is guaranteed to work if the multiple is co modulo one factor of m (i.e.,
the original point modulo that factor has order dividing n) and not co modulo
another factor of m.

Montgomery in [12, Section 10.3.1] introduced his recurrences to speed up
Lenstra’s elliptic-curve factorization method. Montgomery’s improved ECM is
remarkably easy to state: choose a small a € {6,10,14,...}; choose (z1,21) =
(2,1); choose n; and compute gecd{m, z,}. The connection to elliptic curves is
clear from Theorem 4.3: if n(2,1) = oo on an elliptic curve (4a + 10)y?> =
22 + ax? 4+ x over a field k then z, = 0 in k. Of course, ECM’s success doesn’t
depend on this connection being perfectly reliable; what matters for ECM are
the common cases analyzed by Montgomery, not the exceptional cases analyzed
in this paper.

For small z1, z; and large a, Montgomery’s recurrences use 9 multiplications
for each bit of n. For small x1,2; and small a, Montgomery’s recurrences use
8 multiplications for each bit of n. This improvement is stated in [12, page
261, bottom| but doesn’t seem to be widely appreciated. The standard choice
of a—see, e.g., [12, Section 10.3.2] and [15, Section 1, subsection “Suyama’s
parametrization”]—is large. There are slight advantages of the standard choice,
but those advantages are outweighed by the extra multiplication when n is not
very small.

There are many other ECM improvements due to Pollard, Montgomery, and
others; for example, using many n’s simultaneously. See [15] for a survey of the
state of the art.

References

1. — (no editor), Proceedings of the 18th annual ACM symposium on theory of com-
puting, Association for Computing Machinery, New York, 1986. ISBN 0-89791—
193-8. See [5].

2. Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records (2006). URL:
http://cr.yp.to/papers.html#curve25519. Citations in this document: §1, §5.

3. Daniel J. Bernstein, Differential addition chains (2006). URL: http://cr.yp.to/
papers.html#diffchain. Citations in this document: §1.

4. Andrew M. Gleason (editor), Proceedings of the International Congress of Math-
ematicians, volume 1, American Mathematical Society, Providence, 1987. ISBN
0-8218-0110-4. MR 89¢:00042. See [10].

5. Shafi Goldwasser, Joe Kilian, Almost all primes can be quickly certified, in [1]
(1986), 316-329; see also newer version [6]. Citations in this document: §6.

10.

11.

12.

13.

14.

15.

Shafi Goldwasser, Joe Kilian, Primality testing using elliptic curves, Journal of
the ACM 46 (1999), 450-472; see also older version [5]. ISSN 0004-5411. MR
2002e:11182. Citations in this document: §6.

. Helmut Hasse, Zur Theorie der abstrakten elliptischen Funktionenkdérper I, 11, 111,

Journal fiir die Reine und Angewandte Mathematik (1936), 55-62, 69-88, 193—208.
ISSN 0075-4102. Citations in this document: §6.

Neal Koblitz, Flliptic curve cryptosystems, Mathematics of Computation 48
(1987), 203—209. ISSN 0025-5718. MR 88b:94017. Citations in this document: §5.

. Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Annals

of Mathematics 126 (1987), 649-673. ISSN 0003-486X. MR 89g:11125.
URL: http://links.jstor.org/sici?sici=0003-486X(198711)2:126:3<649:
FIWEC>2.0.C0;2-V. Citations in this document: §7.

Hendrik W. Lenstra, Jr., Elliptic curves and number-theoretic algorithms, in [4]
(1987), 99-120. MR 89d:11114. URL: http://cr.yp.to/bib/entries.html#1987/
lenstra-ecnta. Citations in this document: §6.

Victor S. Miller, Use of elliptic curves in cryptography, in [14] (1986), 417-426. MR,
88b:68040. Citations in this document: §5, §5, §5.

Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factor-
ization, Mathematics of Computation 48 (1987), 243—-264. ISSN 0025-5718. MR
88e:11130. URL: http://links.jstor.org/sici?sici=0025-5718(198701)48:
177<243:STPAEC>2.0.C0;2-3. Citations in this document: §1, §2, §3, §7, §7, §7.
Francois Morain, Implementing the asymptotically fast version of the elliptic curve
primality proving algorithm (2005). URL: http://www.lix.polytechnique.fr/
“morain/Articles/fastecpp-final.pdf. Citations in this document: §6, §6.
Hugh C. Williams (editor), Advances in cryptology: CRYPTO ’85, Lecture Notes
in Computer Science, 218, Springer, Berlin, 1986. ISBN 3-540-16463—4. See [11].
Paul Zimmermann, 20 years of ECM (2006). URL: http://www.loria.fr/
“zimmerma/papers/. Citations in this document: §7, §7.

